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Abstract Arc-Consistency (AC) techniques have been used extensively in the
study of Constraint Satisfaction Problems (CSP). These techniques are used to
simplify the CSP before or during the search for its solutions. Some of the most
efficient algorithms for AC computation are AC6++ and AC-7. The novelty of
these algorithms is that they satisfy the so-calledfour desirable propertiesfor
AC computation. The main purpose of these interesting properties is to reduce
as far as possible the number of constraint checks during AC computation while
keeping a reasonable space complexity. In this paper we prove that, despite pro-
viding a remarkable reduction in the number of constraint checks, the four de-
sirable properties do not guarantee a minimal number of constraint checks. We
therefore refute the minimality claim in the paper introducing these properties.
Furthermore, we propose anew desirable propertyfor AC computation and ex-
tend AC6++ and AC-7 to consider such a property. We show theoretically and
experimentally that the new property provides a further substantial reduction in
the number of constraint checks.

1 Introduction

Constraint satisfaction problems (CSP) occur widely in engineering, science and the
arts. Applications are frequently reported in production planning, resource allocation
[BLN01], music composition [AADR98], Verification [EM97], Security [BB01] Bioin-
formatics [GW94] and many others. In fact, a CSP is any problem that can be expressed
as that of finding, from a finite set of possibilities, a collection of values satisfying
some given particular properties. These properties are represented by relations called
constraints.

In its general setting the constraint satisfaction problem has been proved to be NP-
complete. Nevertheless, in many real world instances a solution can be found with rea-
sonable time and space efficiency when appropriate techniques are applied. The most
frequently used are so-calledconsistencytechniques. The main idea in these techniques
is to use constraints not only to test the validity of a solution but as a sort of devices
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for detecting inconsistencies and for pruning from the original set of possibilities some
values that cannot appear in a solution. The reduced CSP taking into account only the
remaining values is said to satisfy a given (weak) notion of consistency. One such no-
tion is arc consistency. Consistency procedures are usually invoked repeatedly during
search so it is very important to have efficient consistency algorithms. Even savings by
a constant factor can have important overall performance consequences in some situa-
tions.

Finding better arc consistency algorithms has thus been an ongoing research topic
for more than two decades. Building from algorithm AC-3 [Mac77], improvements
such as AC-4 [MH86], AC-6 [Bes94], AC6++, AC-7 (see [BF99]) have been proposed.
The standard way to compare arc consistency algorithms is by the number of constraint
checks they perform. In [BR95] the so-calledfour desirable properties(FDP) for AC
algorithms were defined and shown to provide a remarkable reduction in the number of
constraint checks. Moreover, in [BR95] it is claimed that algorithms (such as AC6++
and AC-7) satisfying the FDP are optimal in the number of constraint checks.

Our contributions are the following: we show that even when complying with the
FDP an AC algorithm can still perform unnecessary constraint checks (e.g., AC-6++
and AC-7). We thus refute the above optimality claim. We prove that there is a family
of CSP’s for which these unnecessary constraint checks can be rather significant. We
also define a new property and show how AC algorithms satisfying it can avoid those
redundant checks. This property is parameterized in a set of inference rules. We give
two such rules and show their validity. We give a general AC algorithm taking into
account the new property and show its correctness. We then use it to orthogonally extend
AC-6++ and AC-7 into algorithms maintaining the new property and show how they
improve over the originals in some benchmark and randomly generated problems.

Recently, [van02] has proposed a particular constraint processing ordering heuristic
that can lead to savings of constraint checks similar to ours. Our idea is independent of
constraint ordering and so leaves more room to variations in constraint ordering heuris-
tics. This is important theoretically because the optimality claim for FDP compliant
algorithms is wrt to analysis that assume the same particular constraint ordering. It is
important in practice because a particular ordering may encode useful knowledge about
the problem domain. On the other hand, efficient implementations of our idea seem to
require particular value orderings, so it may leave less room to value ordering heuristics.

2 CSP and AC: Concepts, Assumptions and Concerns

A Constraint Satisfaction Problem(CSP) consists of a given finite set of variables
with their corresponding finite domain of values, and a given set of constraints over
the variables. The constraints specify allowed value assignments for the correspond-
ing variables. A CSPsolutionis a value assignment for the variables satisfying all the
constraints. Since CSP’s are NP-complete [GJ79], usually they are simplified by using
pre-processing techniques, most notably Arc-Consistency (AC). This technique, also
usedduring the search of CSP’s solutions, involves the removal of some values that
cannot be in any solution.
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In AC we are only concerned with binary constraints, so we confine ourselves to
CSP’s where all the constraints are binary relations; i.e.,binary CSP’s.

We can define a (binary) CSP as a tuplehV;D;Ci whereV = fx1; : : : ; xng is a
set ofvariables, D = fD1; : : : ; Dng is a set ofdomainswith eachDi specifying the
domain ofxi 2 V , andC is a set ofconstraintsCij � Di�Dj :We define the predicate
Cij(v; w) to be true iff(v; w) 2 Cij . Without loss of generality, for each pair(xi; xj)
of variables inV , we assume that there is at most one constraintCij 2 C. A tuple
(v1; : : : ; vn) 2 D1 � : : :�Dn is asolutioniff for eachCij 2 C, Cij(vi; vj).

Example 1.Let V = fx1; x2; x3g, D = fD1; D2; D3g with D1 = D3 = f1; 2g
andD2 = f0; 1; 2g. DefineC12 = f(v; w) 2 D1 � D2 j v � wg andC23 =

f(v; w) 2 D2 � D3 j v � wg: Consider the CSPhV;D; fC12; C23gi : The tuples
(1; 1; 1); (1; 1; 2); (1; 2; 2); (2; 2; 2) are solutions, but no tuple having 0 as its second
component (i.e., of the form(_; 0; _)) can be a solution. ut

2.1 Bidirectionality

Let hV;D;Ci be a CSP. Notice that ifCij 2 C, augmenting the CSP with a constraint
Cji which is theconverseof Cij (i.e.,Cji = C�1

ij
= f(w; v) j (v; w) 2 Cijg) does

not restrict any further the CSP, i.e., the CSP’s solutions remain the same. Intuitively,
Cij and its converseCji represent exactly the same constraint except thatCij can be
viewed as a constraint going fromxi toxj whileCji as going fromxj toxi. The reader
may care to augment the CSP’s constraints in Example 1 with the conversesC21 and
C32 and verify that the resulting CSP’s solutions are the same as the ones to the original
CSP.

If a CSP has a converseCji for each of its constraintsCij then it is said to satisfy
thebidirectionalityproperty. Without loss of generality, we shall confine our attention
to CSP’s satisfying the bidirectionality propertyas usually done for AC.

2.2 Arc-Consistency and Viability

As mentioned before, the idea behind AC computation is to eliminate from the domains
of a given CSP some values that cannot be in any of its solutions. We say that such
values are notviable.

Definition 1 (Support and Viability). Let P = hV;D;Ci be a CSP whereD =

fD1; : : : ; Dng. Let D0

1
� D1 : : : D

0

n
� Dn: Suppose thatCij 2 C, v 2 D0

i
and

w 2 D0

j
.

We say thatw is a support for v iff Cij(v; w). Also, we say thatv is viable wrt
D0

j
iff there exists a support forv in D0

j
. Furthermore, we say thatv is viable wrt

D0

1
� : : :�D0

n
iff for all Cik 2 C, v is viable wrtD0

k
:

Example 2.LetP be the CSPhV;D;Ci with V andD as in Example 1 andC as the set
containing the constraintsC12 andC23 in Example 1 plus its conversesC21 andC32.

Notice that2 2 D2 is a support for1; 2 2 D1. Also notice that0 2 D2 is not viable
wrt D1, so it cannot be in any solution toP . We shall see that in AC computation,
0 2 D2 must be removed. ut
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The AC algorithms use a graph whose nodes and arcs correspond to the variables
and constraints, respectively, of the input CSP. Given a CSPP = hV;D;Ci ; define
GP as the graph with nodesNodes(GP ) = fi j xi 2 V g and arcsArcs(GP ) =

f(i; j) j Cij 2 Cg. Let us recall the definition of arc-consistency:

Definition 2 (AC Graphs). LetP = hV;D;Ci be a CSP whereD = fD1; : : : ; Dng
and letD0

1
� D1 : : :D

0

n
� Dn:

An arc(i; j) in GP is said to bearc-consistentwrt D0

i
andD0

j
iff everyv 2 D0

i
is

viable wrtD0

j
. AlsoGP is said to bearc-consistentwrt D0

1
� : : : � D0

n
iff every arc

(i; j) in GP is arc-consistent wrtD0

i
andD0

j
.

Furthermore, we say thatGP is maximal arc-consistentwrt � = D0

1
� : : :�D0

n

iff GP is arc-consistent wrt� and there are noD00

1
� D0

1
; : : : ; D00

n
� D0

n
such thatGP

is arc-consistent wrtD00

1
� : : :�D00

n
:

Example 3.LetP = hV;D;Ci as in Example 2. Notice thatGP is not arc-consistency
wrt D1�D2�D3 but it is wrt;�;�;. Verify thatGP is maximal arc-consistent wrt
D1 �D0

2
�D3 whereD0

2
= D2 � f0g: ut

Computing Arc-Consistency.

Given aP = hV;D;Ci whereD = fD1; : : : ; Dng, the outcome of an AC algorithm
on inputP , is aP 0 = hV;D0; Ci with D0 = fD0

1
; : : : ; D0

n
g, D0

k
� Dk (1 � k � n)

such thatGP is maximal arc-consistent wrtD0

1
� : : :�D0

n
:

Usually, an AC algorithm takes each arc(i; j) of GP and removes fromDi those
values that are not viable wrtDj (i.e., not having support inDj). This may cause the
viability of some values, previously supported by the removed ones fromDi, to be
checked again by the algorithm.

Constraint Checks.The standard comparison measure for the various AC algorithms is
thenumber of constraint checksperformed (i.e., checking whetherCij(v; w) for some
Cij andv 2 Di, w 2 Dj) [Bes94,BR95,BFR95]. It has been shown analytically and
experimentally [BFR95] that if we assume a large cost per constraint check ordemon-
strate large enough savings in the number of constraint checks, the constraint checks
count will dominate overhead concerns.

In the next section we shall see several properties aiming at reducing substantially
the number of constraint checks from simple but useful observations.

Domain Ordering�. Henceforth, we presuppose a total underlying order� on the
CSP’s domains as typically done for AC computation [Bes94,BR95,BFR95]. In prac-
tice,� corresponds to the ordering on the data structure representing the domains. In
our examples, we shall take� to be the usual ”less” relation< on the natural numbers.

We can now recall the general notion of support lower-bound. Such a notion denotes
a value before which no support for a given value can be found.

Definition 3 (Support Lower-Bound). Let P = hV;D;Ci be a CSP whereD =

fD1; : : : ; Dng and letD0

1
� D1 : : :D

0

n
� Dn: For all Cij 2 C, the valuew 2 D0

j
is a

support lower-bound in D0

j
for v 2 D0

i
iff for everyw0 2 D0

j
withw0 � w, Cij(v; w

0)

does not hold.
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Example 4.LetP be as in Example 2. Assume that the total ordering� on the domains
is<. Then1 2 D2 is a support lower-bound inD2 for 1; 2 2 D1: ut

(Notice that a support lower-bound forv is not necessarily a support ofv.)
In the next sections, we shall see that simple and general notions, such as support

lower-bound and bidirectionality (which are usually assumed in AC), can reduce sub-
stantially the number of constraints checks.

3 Four Desirable Properties of AC computation

Modern AC algorithms satisfy the so-calledfour desirable propertiesof a AC compu-
tation given in [BR95,BFR95]. These are very simple and practical properties aiming at
reducing the number of constraint checks while keeping a reasonable space complex-
ity. In practice, algorithms satisfying these properties have shown to be very success-
ful [BR95,BFR95].

In the following we assume thatD1; : : : ; Dn represent the current CSP domains of
during AC computation. The desirable properties require (of an AC algorithm) that:

1. Cij(v; w) should not be checked if there isw0 still in Dj such thatCij(v; w
0) was

already successfully checked.
2. Cij(v; w) should not be checked if there isw0 still in Dj such thatCji(w

0; v) was
already successfully checked.

3. Cij(v; w) should not be checked if:
a.Cij(v; w) was already checked, or
b.Cji(w; v) was already checked.

4. The space complexity should beO(ed) wheree; d are the cardinalities of the set of
constraints and the largest domain, respectively, of the input CSP.

The properties can be justified as follows. An AC algorithm checksCij(v; w) when
establishing the viability ofv wrt Dj (i.e., the algorithm needs to find a support forv in
Dj if any, otherwise it should removev fromDi). Now, the valuev in (1) has already
a support, i.e., it is viable, if such aw0 still exists inD0

j
; so there is no need to check

whetherCij(v; w). Property (2) can be explained similarly by using bidirectionality.
Property 3.a states that there is no need of doing the same constraint check more than
once, and 3.b states that, by bidirectionality, if we have checkedCji(w; v) then we
already know the result of checkingCij(v; w). Property (4) states a restriction on the
space that can be used (see [BR95] for further details).

The AC algorithm AC-3 does not satisfy Properties (1-3); AC-4 does not satisfy
Properties 1,2,3.b, and 4; AC-6 does not satisfy Properties 2 and 3b (the ones using
bidirectionality); AC-Inference does not comply with Property 4. The modern algo-
rithms AC6++ and AC-7 preserve the four properties and hence they are said to be
optimal [BR95].

The AC6++ and AC-7 algorithms differ mainly in the order that values and arcs
are considered during AC computation. The latter propagates the effects of removing a
value as soon as possible (i.e., to reconsider the viability of the values supported by the
removed one). In practice, this heuristic seems to save unnecessary constraint checks.
Experimentally, AC-7 has shown to outperform AC6++.
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In [BR95] it is also claimed that the four desirable properties guarantee a minimal
number of constraint checks. This claim is in the context of CSP’s where nothing is
known about the particular semantics of the constraints and wrt the order in which val-
ues, variables and arcs are considered during AC computation. Hence, AC6++ performs
a minimal number of constraint checks according to the order used by this algorithm,
but still it may perform more constraint checks than AC-7 which uses a different order.

The above four properties are of important practical significance. Nevertheless, we
believe that they are not enough to guarantee the minimal number of constraint checks,
thus contradicting the claim mentioned above. In the next section, we shall show that
even when complying with the four desirable properties, an AC algorithm can still per-
form a substantial number of unnecessary constraint checks.

4 New Desirable Property and and Non-Viability Deductions

A drawback of the four desirable properties is that they allow checkingCij(v; w) even
when the non-viability ofv orw could have been deduced by using only the general no-
tions of bidirectionality and support lower-bound, and information about previous cons-
traint checks —i.e., without using any particular semantic properties of the constraints
under consideration. In our view, the check ofCij(v; w) under the above conditions
would be unnecessary.

Let us illustrate the above with the following example:

Example 5.LetP be the CSP defined in Example 4. Suppose that during AC computa-
tion an algorithm satisfying the four desirable properties checks, first of all, the viability
of the values inD1 and immediately after the viability of the values inD3. Furthermore,
suppose that the search for support inD2 is done according to�.

After establishing the viability of all the values inD1, the algorithm has checked
that for no valuev 2 D1; C12(v; 0) holds. Similarly after establishing the viability of
the values inD3, the algorithm has checked that for no valuew 2 D3,C32(w; 0) holds.

Nevertheless, notice that for anyw 2 D3 checkingC32(w; 0) is really unnecessary,
because after checking for the viability of the values inD1 one can deduce that0 2 D2

is not viable.
Here is a proof of the non-viability of0 2 D2: Recall from Example 4 that1 2 D2

is a support lower-bound inD2 for 1; 2 2 D1: Now 0 � 1, so after checking for
the viability of 1; 2 2 D1, we can conclude from Definition 3 that:C12(1; 0) and
:C12(2; 0). By bidirectionality:C21(0; 1) and:C21(0; 2):Hence we candeduce, from
Definition 1, that0 2 D2 is not viable. ut

4.1 Unnecessary Constraint Checks

One can verify that both AC6++ and AC-7 may indeed perform the unnecessary cons-
traint checks mentioned in the above example. Also notice that the number of unneces-
sary constraint checks in the above example isd = jD3j. However, as shown below, one
can generalize Example 5 to a family of CSP’s for which the numbers of unnecessary
constraint checks is abouted2, wheree is the number of constraints andd is the size of
the largest domain.
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In the following theorem, byunnecessary constraint checkwe mean that the check
can be avoided by using only bidirectionality, the notion of support lower-bound, and
information about previous constraint checks.

Theorem 1. There is family of CSP’s for which the number of unnecessary constraint
checks during AC computation, even when complying with the four desirable properties,
can be
(ed2), wheree is the number of constraints andd the size of the largest domain.

Proof (Outline).Let P = hV;D;Ci whereD = fD1; : : : ; Dng with all the domains
being of a same even size. Decree that for any(i; j) 2 Arcs(GP ), i < j; the first half
of the values inDj (according to the domain ordering�) are not viable wrtDi.

Let us suppose that we have an AC algorithm satisfying the four desirable proper-
ties. Assume that the algorithm checks first of all the viability of the values inD1 wrt
Dn (i.e., it searches supports inDn for the values inD1), thenD2 wrt Dn ; : : : ; Dn�1

wrt Dn, and thenD1 wrt Dn�1, D2 wrt Dn�1 and so on. Furthermore, suppose that
the search for support is done according to�.

After establishing the viability of the values inD1; it is possible to deduce, by
using the notion of bidirectionality and support lower-bound (as in Example 5), that
the values in the first half ofDn are not viable. Now, for eachk = 2; : : : ; n � 1,
the four desirable propertiesdo not preventthe algorithm from checking unnecessarily
Ckn(v; w) for everyv 2 Dk and everyw in the first half ofDn: The same happens for
k = 2; : : : ; n � 2 wrt Dn�1, and so on. It then follows that the algorithm can perform

(ed2) unnecessary constraint checks. ut

4.2 New Desirable Property.

In order to avoid unnecessary constraint checks of the kind above, we could suggest the
following new desirable property:Cij(v; w) should not be checked if it can be deduced
via bi-directionality and the notion of support-lower bound thatv or w is not viable.
We shall use “deduce” in a loose sense of the word: We mean that one can conclude,
without performing further constraint checks, thatv (orw) is not viable.

Nevertheless, there could be many other ways of deducing non-viability (e.g., spe-
cial properties of constraints, domains, etc). Hence, we find it convenient to define the
new desirable property wrt to fixednon-viability deduction systemS; i.e, a set ofinfer-
ence rulesthat allows us to deduce the non-viability of some values. We assume that
whether a given value can be deduced inS as non-viable can always be decided. The
fifth desirable property wrt a fixedS can be stated as follows:

5. Cij(v; w) should not be checked if it can be deduced, in the underlying non-
viability inference systemS; thatv orw are not viable.

Of course some deduction systems may be of little help. For example ifS is the
empty set of rules, in which case both AC-6++ and AC-7 would trivially satisfy the
fifth property. Other example is a deduction system in which deciding the non-viability
of a given value cannot be done withO(ed) in space —see the fourth desirable property.
Next we give more helpful but general deduction systems (inference rules).
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Non-Viability Deductions

In the following properties, we give two simple and general inference rules for non-
viability deduction to avoid unnecessary constraint checks of the kind illustrated in
Example 5 and stated in Theorem 1.

Property 1 (Support LOWEST-Bound).Let P = hV;D;Ci be a CSP whereD =

fD1; : : : ; Dng and letD0

1
� D1 : : : D

0

n
� Dn: Suppose thatSLBij is theleastvalue

(wrt �) in a given set containing a support-lower bound inD0

j
for eachv 2 D0

i
: The

following is a valid non-viability inference rule:

If w 2 D0

j
andw � SLBij thenw is not viable wrtD0

i
:

Proof. By using the notions of support lower-bound (Definition 3) and bidirectionality.
ut

The above property says that a value can be deduced as non-viable if it is less than
every support-lower bound for (all the values of) a given domain. The property can be
implemented by using an arraySLB such thatSLB[i; j] keeps the least support-lower
bound inDj for the values inDi. We shall discuss this issue in Section 5.1.

Property 2 (Support Upper-Bound Cardinality).Let P = hV;D;Ci be a CSP where
D = fD1; : : : ; Dng and letD0

1
� D1 : : : D

0

n
� Dn: Suppose thatsubij(v) denotes

an upper bound on the number of supports ofv 2 D0

i
in D0

j
: The following is a valid

non-viability inference rule:

If subij(v) = 0 thenv is not viable wrtD0

j
:

Proof. Immediate ut

We can implement the above property by having counters of the formsubij(v)

initially set to jDj j. Then countersubij(v) decreases each time a check ofCij(v; w) is
found to be false, a supportw0 2 Dj for v is eliminated, or some value supported byv

is eliminated. Oncesubij(v) = 0 we can proceed as ifv did not exist inDi. We shall
discuss this in Section 5.1.

In the next sections we shall also illustrate experimentally that despite its simplic-
ity, the above deduction rules indeed provide a substantial reduction in the number of
constraint checks for CSP’s where nothing is known about the particular semantics of
the constraints.

5 AC Algorithms with Non-Viability Deductions

In this section we first present a new generic AC algorithm, here called AC[S], which is
parametric in an underlying non-viability deduction systemS. The algorithm is based
on AC-5 and it can be instantiated to produce other AC algorithms such as AC-4, AC-5,
AC-3, AC6++ and AC-7.

The generic AC algorithm removes the values deduced as being non-viable imme-
diately. This can be justified as follows: If propagating the consequences of removing
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a value as soon as possible is a good heuristic (as shown by AC-7 [BFR95]) then it is
reasonable to perform removals as soon as possible. The non-viability deductions can
also help to detect promptly values that must be removed.

In the following we assume thatP = hV;D;Ci represents the CSP on input of
which AC[S] is to perform AC. Furthermore, we assume thatD1; : : : ; Dn represent the
current CSP’s domains during the AC computation.

Most AC algorithms use a waiting listQ containing elements that have been re-
moved and for which we need to propagate the effects of their elimination. In AC[S],
Q contains elements of the formh(i; j); wi ; where(i; j) is an arc andw is value which
has been removed fromDj ; thus making us reconsider the viability of some values in
Di supported byw.

As AC-5, AC[S] is parametric in the procedures ArcCons and LocalArcCons (Fig-
ure 1) whose implementation can give rise to various AC algorithms. The procedure
ArcCons(i; j;�i; �j) computes the set of values�i � Di without support inDj

and the set of values�j � Dj deduced, wrtS, as being non-viable. The proce-
dure LocalArcCons(i; j; w;�i; �j) is similar except that it computes the set of values
�i � Di without support inDj which were previously supported by a valuew removed
fromDj :

procedureArcCons(in i; j; out�i; �j)
Pre:(i; j) 2 Arcs(GP )
Post:�i = fv 2 Di j 8w 2 Dj : :Cij(v; w)g

�j = fw 2 Dj j P `S w is not viableg

procedureLocalArcCons(in i; j; w;out�i; �j)
Pre:(i; j) 2 Arcs(GP ) ^ w 62 Dj

Post:�i = fv 2 Di j Cij(v; w) ^ 8w
0 2 Dj : :Cij(v; w

0)g
�j = fw

0 2 Dj j P `S w0 is not viableg

Figure1. The ArcCons and Local ArcCons Procedures. NotationP `S E means thatE can be
deduced in the inference systemS from the current information aboutP

The AC[S] algorithm (see Figure 2) has two phases. In the first one, called initial-
ization phase (Lines 1-7), AC[S] enforces each arc(i; j) to be arc-consistent wrt to the
currentDi andDj . In the second one, called propagation phase (Lines 8-15), it propa-
gates the effects of all the removed values. Notice that the removed values are put inQ

and they stay in there until the effects of their elimination are propagated.
The following theorem states that the outcome of AC[S] on a CSPP = hV;D;Ci

whereD = fD1; : : : ; Dng, is a CSPP 0 = hV;D0; Ci with D0 = fD0

1
; : : : ; D0

n
g,

D0

k
� Dk (1 � k � n) such thatGP is maximal arc-consistent wrtD0

1
� : : :�D0

n
:

Theorem 2 (Correctness of AC[S]). The algorithm AC[S], Figure 2, is correct wrt its
precondition and postcondition.
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Algorithm AC[S] (in-out P )
Pre:P is a CSPhV;D; Ci with D = fD1; : : : ; Dng
Post:GP0 is maximal arc-consistency wrtD1 � : : :�Dn

1: Q ;
2: for each (i; j) 2 Arcs(GP ) do
3: ArcCons(i; j;�i; �j)
4: Q Q [ fh(k; i); vi j (k; i) 2 Arcs(GP ) ^ v 2 �ig
5: Q Q [ fh(k; j); wi j (k; j) 2 Arcs(GP ) ^ w 2 �jg

6: Di  Di ��i

7: Dj  Dj ��j

8: while Q 6= ; do
9: choose h(i; j); wi 2 Q
10: LocalArcCons(i; j; w;�i; �j)
11: Q Q� fh(i; j); wig
12: Q Q [ fh(k; i); vi j (k; i) 2 Arcs(GP ) ^ v 2 �ig
13: Q Q [ fh(k; j); wi j (k; j) 2 Arcs(GP ) ^ w 2 �jg
14: Di  Di ��i

15: Dj  Dj ��j

Figure2. The generic AC[S] algorithm. NotationP0 denotes the CSPP when input to the algo-
rithm.

Proof (Outline).Suppose that the AC[S] algorithm runs on inputP = hV;C;Di with
D = fD1; : : : ; Dng. Let �f = D1f

� : : : � Dnf
be such thatGP is maximal arc-

consistency wrt�f .
Let Di0

be the initialDi andDik
with k > 0 be the currentDi after thek-th

elimination of a�m (Lines 6-7 and 14-15) from someDmk�1
. Let �k = D1k

� : : :�
Dnk

: It is sufficient to prove that AC[S] terminates with a final�k ; k � 0; such that
�k = �f .

From the specification of ArcCons and LocalArcCons, it is easy to verify that any
value is removed fromDik�1

only if it is found non-viable wrt�k�1; either it did not
have a support or it was deduced inS as being non-viable. Now one can prove by
induction onk that if v 62 Dik

thenv 62 Dif
. So, the first invariant of AC[S] is the

following:
�f � �k � �k�1 � : : : � �0: (1)

Also, from the specification of ArcCons and LocalArcCons, one can verify that after
the initialization phase (Lines 1-8) every value has a support in the current domains or
in the waiting listQ. More precisely, letVal(Q) be the set of domain values appearing
in Q; during the propagation phase, the second invariant of AC[S] is:

8(i; j) 2 GP ;8v 2 Dik
; 9w 2 Djk

[ Val(Q) : Cij(v; w): (2)

The algorithm terminates whenQ = ;. Hence, from Definition 2 and the second
invariant,GP is arc-consistency wrt the�k at termination time. Furthermore, from the
first invariant we have�f � �k: It then follows thatGP is maximal arc-consistent wrt
the�k at termination time, as wanted.
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It only remains to prove termination; i.e., that the propagation phase terminates
(Lines 8-15). Observe that once an elementh(i; j); wi is taken fromQ it is never put
back inQ. In each iteration in the propagation phase, an element is taken fromQ:

Furthermore, there can be no more thaned elements inQ, wheree = jCj andd is the
size of the largest domain. Hence,ed is an upper-bound on the number of iterations of
the propagation phase. ut

5.1 Implementation: AC6-3+ and AC-7+

We have implemented the non-viability inference rules given in Properties 1 and 2 for
AC6++ and AC-7. We call AC6-3+ the algorithm that (orthogonally) extends AC6++
with the supportlowest-bound inference rule (Property 1) and AC-7+ the one that ex-
tends (orthogonally) AC-7 with the support upper-bound cardinality rule (Property 2).

The algorithm AC6-3+ has a three-dimensional arrayslb used exactly as in AC6++.
Each entryslb[i; j; v] represents a supportlower-bound forv 2 Di in Dj—in fact the
greatest one so far found by the algorithm; see [BR95] for more details. In addition,
AC6-3+ has a two-dimensional arraySLB . Each entrySLB [i; j] keeps theleastof all
slb[i; j; v] for all v 2 Di: Justified by Property 1, every value inw 2 Dj less than
SLB [i; j] is removed fromDj before checking any constraint of the formCkj(u;w) or
Ckj(w; u):

As for AC-7+, we use an additional three-dimensional arraysub: Each array entry
sub[i; j; v] represents a lower-bound on the number of supports inDj for v 2 Di.
Initially, eachsub[i; j; v] is set tojDj j. Then the algorithm decreasessub[i; j; v] each
timeCij(v; w) is found to be false, a supportw0 2 Dj for v is eliminated, or some value
supported byv is eliminated. Justified by Property 2,v is removed fromDi whenever
sub[i; j; v] becomes zero.

Both extended algorithms have the same worst-case complexities of their predeces-
sors AC6++ and AC-7. More precisely, both AC6++ and AC-7+ haveO(ed2) worst-
case time complexity andO(ed) worst-case space complexity, wheree is the number
of constraints andd the size of the largest domain [BR95,BFR95]. They also satisfy
the four desirable properties as a result of being orthogonal extensions of AC6++ and
AC-7. Furthermore, they satisfy the new desirable property wrt their underlying non-
viability deduction rules, thus they can save some unnecessary constraint checks. In the
next section, we shall show experimental evidence of these savings.

6 Experimental Results

Here we show some of our experimental results obtained from CSP’s typically used to
compare AC algorithms [Bes94,BR95,BFR95]. We compared AC6++ vs AC6-3++ and
AC-7 vs AC-7+ in benchmark CSP’s [Van89] as well as randomly generated CSP’s
[Bes94,BR95,BFR95]. Each comparison was performed wrt fifty instances of each
problem.

For the ZEBRA problem [Van89] we obtained the following results in terms of
constraint checks (ccs):



12 Camilo Rueda and Frank D. Valencia

AC6++ : 717 ccs AC-7 : 640 ccs
AC6-3+ : 639 ccs AC-7+ : 594 ccs

As for the combinatorial problem suggested in [Van89], we obtained:

AC6++ : 977 ccs AC-7 : 966 ccs
AC6-3+ : 783 ccs AC-7+ : 826 ccs

Figure3. AC6++ vs AC6-3+ (left) and AC-7 vs AC-7+ (right) on random generated problems
with 20 variables, at most 5 values per domain, and 30% probability of having a constraint be-
tween two variables. The horizontal axis represents the probability percentage that two values
support each other. The vertical axis represents the number of constraint checks.

For the randomly generated problems, following [Bes94,BR95,BFR95], we took
the following as parameters of the generation: the number of variables, the size of the
domains, the probability of having a constraint between any two variables, and the
probability for any two values to be support of each other. In Figure 3 we show some
results corresponding to the values of the parameters used in experiments of [BR95]. On
average, we obtained that the reduction in the number of constraint checks by AC6-3+
and AC-7+ wrt AC6++ and AC-7 (respectively), was about 10%. We also observed that
the numbers of values deduced as being non-viable was proportional to the reduction
in the number of constraint checks. Moreover, even when the number of non-viability
deductions was small, the number of constraint checks was significantly reduced.

7 Concluding Remarks

We have shown that, despite providing a remarkable reduction in the number of cons-
traint checks, the four desirable properties of AC computation still allow a substantial
number of unnecessary constraint checks—in the sense that the checks could have been
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avoided by deducing, only from general constraint properties and previous constraint-
checks, the non-viability of some values. We also suggested a new desirable property
which provides a further substantial reduction in the number of constraint checks. We
modified some of the best known AC algorithms to satisfy the property and showed
experimentally the benefits of the modified algorithms.

Since the reduction in the number of constraint checks by the new property depends
on the non-viability of values, we believe it is practical for problems with strong struc-
tural properties (i.e., strong constrains, large domains, etc). As future work, we plan to
identify and implement more inference rules to deduce non-viability efficiently.

Acknowledgements.Many thanks to Christian Bessière and Marc van Dongen for help-
ful comments on this work.
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