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Sujet :

Combinatoire des cartes planaires

et applications algorithmiques

Soutenue le lundi 11 juin 2007 devant le jury composé de:
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conditions de travail et d’un cadre sympathique, je pense en particulier à mon ami
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à préparer la soutenance.
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Résumé. Cette thèse traite de l’algorithmique des cartes planaires (graphes dessinés
dans le plan sans intersection d’arêtes) et propose des procédures efficaces pour le
codage, la génération aléatoire, et le dessin de plusieurs familles importantes: 3-
connexes, triangulations, quadrangulations... En particulier, on décrit le premier
algorithme optimal de codage des incidences faces-arêtes-sommets des maillages
polygonaux de topologie sphérique, qui atteint la borne inférieure de 2bits par
arête. En partant d’un générateur de cartes 3-connexes, on développe un nou-
veau générateur aléatoire uniforme de graphes planaires dont la complexité est
la meilleure connue actuellement: quadratique (en espérance) en taille exacte et
linéaire (en espérance) en taille approchée. Enfin, on donne plusieurs algorithmes
de dessin en lignes droites (arêtes représentées par des segments) de cartes planaires
sur la grille. Les procédures de dessin sont à la fois très simples à décrire et don-
nent les meilleures performance (en probabilité) pour le dessin de deux familles
de cartes: les triangulations du carré sans 3-cycle rempli —dites irréductibles— et
les quadrangulations. Pour développer les algorithmes présentés dans la thèse, on
exploite plusieurs structures combinatoires sur les cartes (orientations spécifiques,
partitions en arbres couvrants...) ainsi que de nouvelles constructions bijectives.

Abstract. This thesis describes algorithms on planar maps (graphs embedded
in the plane without edge-crossings) based on their combinatorial properties. For
several important families of planar maps (3-connected, triangulations, quadran-
gulations), efficient procedures of random generation, encoding, and straight-line
drawing are described. In particular, the first optimal encoder for the combinatorial
incidences of polygonal meshes with spherical topology is developed. Starting from
a generator for 3-connected maps, a new random generator for planar graphs is in-
troduced. The complexity of generation is the best currently known: quadratic (in
expectation) for exact-size sampling and linear (in expectation) for approximate-
size sampling. Finally, several straight-line drawing algorithms for planar maps
are introduced. The procedures are both simple to describe and very efficient,
yielding the best known grid size for two families of maps: triangulations of the
4-gon with no filled 3-cycle —called irreducible— and quadrangulations. The algo-
rithms presented in the thesis take advantage of several combinatorial structures on
planar maps (orientations, partitions into spanning trees) as well as new bijective
constructions.





Introduction

Cette thèse a pour vocation d’explorer les interactions fructueuses entre la
combinatoire et l’algorithmique. Pour dire les choses simplement “comprendre la
structure des objets permet de les manipuler efficacement”. Notre étude porte
principalement sur les cartes planaires, objets fondamentaux au carrefour entre les
mathématiques, l’algorithmique, et la physique statistique (une carte planaire est
un graphe planaire dessiné sans croisement d’arête sur la sphère ou le plan).

L’ubiquité des cartes planaires apparâıt dès leur définition, les cartes pou-
vant être vues selon les contextes comme polyèdres convexes, surfaces discrètes,
ou graphes plongés. Ainsi, la question naturelle d’énumérer les polyèdres convexes,
qui remonte à Euler, est en fait un problème de comptage de cartes (précisément,
de cartes dites 3-connexes).

En tant que surface “discrète”, une carte représente une surface fermée spécifiable
en utilisant une quantité finie d’informations. Typiquement une carte est obtenue
par un jeu de construction consistant à assembler une surface fermée en prenant
une collection de polygones et en collant leurs bords deux à deux de sorte qu’il
ne reste plus de bord libre. Par exemple, le cube s’obtient par recollement de six
carrés et le tétraèdre par recollement de quatre triangles assemblés convenablement.
Seule l’information sur le recollement intervient ici dans la définition de l’objet, de
sorte qu’on parle de surface topologique, par opposition aux surfaces géométriques
spécifiées par les coordonnées de leurs points.

Dans ce contexte, les cartes sont utilisées en physique comme modèles de sur-
faces aléatoires discrètes, voir la figure 1(b). Le concept de surface aléatoire est
central en physique théorique moderne dans une branche appelée gravitation quan-
tique bidimensionnelle; les surfaces aléatoires discrètes sont alors un bon moyen
d’appréhender les phénomènes, par exemple pour l’étude des transitions de phase [19].
En informatique appliquée, on utilise aussi beaucoup les cartes dans le cadre de la
géométrie algorithmique. En effet, pour pouvoir être stockées et transmises effi-
cacement, les surfaces manipulées sont discrétisées sous forme de maillages, voir
la figure 1(a). On distingue alors l’information géométrique —les coordonnées des
sommets— de l’information combinatoire —les incidences entre faces, arêtes, et
sommets— qui est en fait exactement une carte. Il est donc crucial de bien compren-
dre la structure des cartes pour compresser efficacement l’information combinatoire
sur le maillage, qui est la plus coûteuse en pratique.

Par l’observation qu’une carte est décrite par des relations d’incidence entre
sommets, faces, et arêtes, un autre point de vue naturel consiste à considérer une
carte comme un graphe dessiné sur une surface sans croisement d’arêtes; on parle
plus précisément de “plongement” topologique sur une surface. Notons qu’un même
graphe peut être plongé sur des surfaces différentes. Par exemple, la figure 2 illustre
le plongement du graphe complet à quatre sommets dans le plan, sur la sphère
(topologique), et sur le tore. Comme le plan est équivalent à la sphère privée d’un
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a ) b ) c )
Figure 1. Un maillage (Fig. a), une surface aléatoire discrète
(Fig.b, figure obtenue par Gilles Schaeffer par génération aléatoire),
et le dessin d’une triangulation aléatoire (Fig.c, l’algorithme utilisé
est présenté au chapitre 5.)

a) b) c)

Figure 2. Le graphe complet à 4 sommets plongé dans le plan
(Fig. a), sur la sphère topologique (Fig. b), et sur le tore (Fig. c).

point, considérer les cartes dans le plan ou sur la sphère revient au même (au choix
d’une face extérieure près). Ainsi, la figure 2(a) s’obtient à partir de la figure 2(b)
par simple projection stéréographique.

Les cartes apportent un éclairage précieux pour l’étude des graphes. En ef-
fet, l’enrichissement par une structure de plongement donne une meilleure intuition
géométrique et permet d’utiliser des outils spécifiques efficaces: citons par exemple
la formule d’Euler reliant les nombres de sommets, faces, et arêtes, ou encore le
théorème de Jordan selon lequel tout cycle partitionne la sphère topologique en
deux régions disjointes. En tant que graphes plongés, les cartes s’inscrivent dans
le cadre plus général des graphes stables par mineur, développé par Robertson et
Seymour dans leur fameuse série d’articles “Graph minors”. Cette théorie très
puissante implique par exemple que l’obstruction au plongement d’un graphe sur
une surface donnée ne peut être due qu’à un nombre fini de configurations (ap-
pelées mineurs) interdites. Dans le cas planaire, le théorème de Kuratowski [81]
assure que le nombre de configurations interdites n’est que de deux. Dans le cas
de surfaces de genre plus élevé (c’est-à-dire des surfaces ayant des “trous”), par
exemple le tore, le nombre de configurations interdites augmente très rapidement.
Plus généralement, les problèmes de comptage et d’algorithmique sont beaucoup
plus difficiles à résoudre en genre supérieur, et la plupart des très jolies propriétés
combinatoires vérifiées dans le cas planaire ne semblent pas s’y adapter.
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Dans cette thèse, nous nous concentrons uniquement sur les cartes planaires et
adoptons le point de vue des cartes comme graphes plongés; ce cadre est pratique et
usuel pour décrire les applications algorithmiques. Un exemple d’application algo-
rithmique abordée dans cette thèse est le dessin automatique de graphes planaires,
une discipline qui a connu un très grand essor ces dernières années et répond à
de nombreux besoins industriels comme la visualisation de diagrammes, la disposi-
tion de composants sur un circuit électrique, ou encore le déploiement de réseaux.
Dans cette thèse, nous nous penchons sur l’un des problèmes les plus classiques
dans ce domaine, à savoir le dessin de carte planaire sur une grille (de sorte que
les sommets ont des coordonnées entières) et tel que les arêtes sont représentées
par des segments. La figure 1(c) illustre un tel plongement pour une carte trian-
gulée aléatoire de 200 sommets (le générateur alátoire est présenté au chapitre 4 et
l’algorithme de dessin au chapitre 5).

Petit historique des cartes planaires. Bien qu’étant des objets très naturels,
les cartes n’ont été étudiées de manière systématique qu’à partir des années 1960
avec les travaux fondateurs de Tutte. Originellement, la motivation était de prouver
le théorème des 4 couleurs. Ce but n’a pas été atteint, mais les efforts entrepris
ont ouvert la voie à la combinatoire énumérative des cartes. En particulier, Tutte
a développé dans sa série d’articles “A census of...” [110, 111, 112, 113] une
méthode systématique très astucieuse de comptage de cartes par séries génératrices,
récemment formalisée dans un cadre général [21]. De manière surprenante, ces
résultats ont été retrouvés par des physiciens [26], suite à l’observation que les
cartes planaires sont les diagrammes de Feynman dominants apparaissant dans le
calcul d’intégrales de matrices sous distribution gaussienne.

Les formules d’énumération obtenues sont étonnamment simples, étant donnée
la complexité des méthodes de calculs mises en œuvre, que ce soit par séries
génératrices ou par intégrales de matrices. Pour de nombreuses familles naturelles
de cartes planaires (triangulations, quadrangulations, cartes sans boucles), les for-
mules de comptage s’expriment au moyen de coefficients binomiaux, suggérant
de fortes propriétés combinatoires sous-jacentes. Par exemple, le nombre cn de
cartes planaires “enracinées” (l’enracinement est une opération naturelle permet-
tant d’éliminer les symétries) à n arêtes est

(1) cn = 3n 2(2n)!

n!(n+ 2)!
.

Une percée importante concernant la combinatoire structurelle des cartes et
graphes planaires est survenue en 1989, lorsque Schnyder a introduit la notion
de réaliseur (aussi appelé forêt de Schnyder) et a montré que toute triangulation
(graphe planaire maximal plongé) est naturellement partitionnée au niveau de ses
arêtes en trois arbres couvrants [101]. Ce résultat fondamental a donné un nouvel
éclairage sur les graphes planaires, permettant d’obtenir des critères originaux de
planarité en terme d’ordres partiels [46, 101, 119] et des algorithmes efficaces pour
dessiner [16, 102] et coder [17, 18] les graphes planaires. De manière plus générale,
le concept d’orientation s’est avéré très fructueux pour décrire les propriétés com-
binatoires des cartes, avec notamment les travaux de Propp [96], De Fraysseix et
al [37], la thèse d’Ossona de Mendez sur les orientations bipolaires [92] et le récent
article de Felsner [48].
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Concernant la combinatoire bijective des cartes planaires, les premiers travaux
remontent à Cori et Vauquelin [33] qui établissent de manière récursive des bijec-
tions entre cartes et arbres dits “bien étiquetés”. Les premières constructions bijec-
tives directes ont été données par G. Schaeffer dans sa thèse [99], où il décrit une
reformulation non récursive de [33] et introduit de nouvelles bijections reposant sur
le concept d’arbres bourgeonnants, qui ont été récemment généralisées par Bouttier,
Di Francesco et Guitter [23]. Ces constructions ont notamment permis de résoudre
combinatoirement des modèles de physique statistique sur carte aléatoire, tels que
le modèle d’Ising [22] ou le modèle à particules dures [24]. Elles rendent également
possible de définir de manière probabiliste une notion de carte limite continue [85]
et d’étudier les propriétés métriques [30, 84] et topologiques [66] de l’object limite.
De nouvelles constructions bijectives dues à O. Bernardi sont venues récemment en-
richir le domaine, permettant de compter respectivement les cartes boisées [7] et
les cartes triangulées [9] via comptage de chemins dans un demi-plan.

Notre approche. Nous nous concentrons dans cette thèse sur les cartes planaires
vues comme des graphes plongés dans le plan. Comme mentionné plus haut, les
cartes planaires ont des propriétés structurelles fortes: existence d’orientations,
de partitions en arbres couvrants... Notre approche consiste à étudier en détail
ces propriétés combinatoires et de les faire fructifier sous forme d’algorithmique
efficace sur les cartes et graphes planaires, pour la génération aléatoire, le codage,
et le dessin. Nous nous situons donc à l’interaction entre la théorie et la pratique.

L’avantage qu’il y a à tirer partie de propriétés combinatoires structurelles a
priori plutôt théoriques est double: tout d’abord les algorithmes dérivés des struc-
tures étudiées sont particulièrement efficaces et simples à décrire. Par exemple,
les algorithmes de dessin donnés dans cette thèse sont très faciles à effectuer à la
main, par opposition aux premiers algorithmes historiquement développés, tel le
“spring embedding” de Tutte [114], qui nécessitent des calculs itérés sur les nom-
bres rationnels. Le second point est que la bonne compréhension des propriétés
structurelles sous-jacentes permet d’analyser les algorithmes et de valider les per-
formances observées expérimentalement. Ainsi nous avons pu prouver rigoureuse-
ment, en utilisant notamment des outils d’analyse de singularité [52], que le nouvel
algorithme de dessin de triangulations introduit dans cette thèse donne un gain
d’un facteur 27/22 pour la taille de la grille par rapport aux meilleurs algorithmes
précédemment connus.

À l’origine de notre travail se trouve une bijection de G. Schaeffer et D. Poulal-
hon [95] pour compter les triangulations planaires et obtenir des procédures efficaces
de génération aléatoire et de codage pour cette famille de cartes (qui correspondent
aux graphes planaires maximaux). La bijection fait apparâıtre de manière frappante
la structure de réaliseur (forêt de Schnyder) sur les triangulations, révélant un lien
entre propriétés structurelles et bijectives des cartes planaires. C’est précisément ce
lien que nous explorons dans le chapitre central de cette thèse (chapitre 3), en nous
appuyant sur un article récent de Felsner [48] étudiant les propriétés d’orientations
des cartes planaires avec degré sortant fixé pour chaque sommet. Notre approche
combinatoire des cartes est donc au croisement entre l’approche structurelle par
les orientations et l’approche bijective développée par G. Schaeffer. En cela, nous
sommes proches des récents travaux de O. Bernardi [7], qui s’appuie également sur
la notion d’orientation pour trouver une méthode bijective générale de comptage
de cartes boisées (cartes munies d’un arbre couvrant).
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Contributions. Notre travail se situe dans le domaine de l’algorithmique sur
les cartes et graphes planaires et trouve notamment des applications en géométrie
algorithmique et en tracé automatique de graphes. Les principales contributions de
cette thèse sont les suivantes:

• Le premier algorithme de codage optimal des incidences entre faces, arêtes,
et sommets de maillages polygonaux de la sphère (qui sont des cartes 3-
connexes), atteignant la borne inférieure de 2 bits par arête (théorème 4.1
page 127). Un travail récent de Castelli-Aleardi, Devillers et Schaeffer [28]
assure que notre codage peut être enrichi tout en conservant l’optimalité
(asymptotique), de sorte à rendre possible de naviguer rapidement sur le
maillage et de répondre à des requêtes locales en temps constant.
• Un nouvel algorithme de génération aléatoire uniforme de graphes planaires,

tel que la complexité moyenne de chaque tirage est quadratique en taille
exacte et linéaire en taille approchée (théorèmes 4.3 et 4.4 page 132). Par
contraste, le meilleur algorithme précédemment connu a une complexité
un peu au dessus de n7 [13]. Notre générateur devrait notamment trouver
une grande utilité pour estimer la complexité moyenne des innombrables
algorithmes opérant sur les graphes planaires (bien souvent, seule une
borne supérieure sur la complexité dans le cas le pire peut être facilement
prouvée).
• Un nouvel algorithme de dessin en lignes droites sur la grille (théorème 5.2

page 160), qui s’applique aux familles de triangulations du carré sans
triangle séparateur —dites irréductibles— et aux quadrangulations. En
terme de taille de la grille, le gain par rapport aux meilleurs algorithmes
précédemment connus est de 27/22 pour les triangulations irréductibles
du carré (théorème 5.7 page 175) et de 27/26 pour les quadrangulations
(théorème 5.9 page 180); les preuves font appel à des techniques de com-
binatoire analytique.

Pour développer ces algorithmes, nous nous appuyons principalement sur deux
ingrédients:

(1) Une étude théorique des propriétés structurelles des cartes planaires, où
nous obtenons également des résultats originaux, notamment des algo-
rithmes d’orientations (chapitre 2). Un de nos algorithmes d’orientations
(théorème 2.1 page 66) est un ingrédient clé pour obtenir le meilleur
algorithme connu de dessin de graphes planaires en lignes droites, tel
qu’introduit par Bonichon et al [16].

(2) De nouvelles constructions bijectives de cartes planaires (chapitre 3), in-
timement liées aux propriétés structurelles, en particulier à la notion
d’orientations à degré sortant fixé pour chaque sommet, qui sont ap-
pelées α-orientations. Ces constructions permettent de compter, coder,
et générer aléatoirement de nombreuses familles bien connues de cartes
planaires (triangulations, quadrangulations...).

Tous les algorithmes présentés dans cette thèse ont été implantés dans le langage
Java et sont ou seront bientôt disponibles sur la page web de l’auteur.

Plan. Cette thèse se compose de 5 chapitres d’une trentaine de pages chacun. Les
dépendances de lecture sont les suivantes:

chapitre 1 → {chapitre 2, chapitre 3, chapitre 5},
chapitre 3 → {chapitre 4, chapitre 5 (deuxième partie)}.



12 INTRODUCTION
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Figure 3. Le schéma général de la thèse.

Le schéma général de la thèse est illustré par la figure 3.

Le chapitre 1 “Combinatorial structures on planar maps” considère plusieurs
familles naturelles de cartes planaires et décrit pour chaque famille une struc-
ture combinatoire qui caractérise l’appartenance à la famille. Par exemple, une
carte avec deux sommets adjacents marqués est 2-connexe (c’est-à-dire sans som-
met déconnectant) si et seulement si elle admet une orientation acyclique avec les
deux sommets marqués comme uniques éléments extrémaux. Une telle orienta-
tion est dite bipolaire. Dans le cas des cartes 3-connexes (cartes sans paire de
sommets séparante), la structure combinatoire est un ensemble de trois arbres cou-
vrants —appelée forêt de Schnyder— avec des relations d’incidence spécifiques.
Toutes les structures combinatoires considérées peuvent être formulées en termes
d’orientations à degré sortant fixé pour chaque sommet, appelées α-orientations
dans la littérature [48]. En particulier, une propriété que nous rappelons est que
l’ensemble des orientations d’une carte qui réalisent une affectation fixée des degrés
sortants est un treillis distributif. Notre contribution dans ce chapitre est de faire
une étude détaillée de la structure combinatoire qui caractérise la famille des trian-
gulations du 4-gone qui sont sans 3-cycle séparateur, dites irréductibles. La struc-
ture en question, introduite par Xin He dans [73] et appelée ici structure transverse,
est une partition des arêtes internes en deux orientations bipolaires transverses.
Notre résultat principal (théorème 1.4 page 50) est de donner une formulation des
structures transverses en termes d’α-orientation et de décrire l’opération locale de
navigation (appelée “flip”) sur le treillis distributif associé.

Le chapitre 2 “Efficient computation” se concentre sur le calcul efficace des
sructures combinatoires présentées dans le premier chapitre. Plus précisément,
pour chaque structure combinatoire et chaque carte pouvant être munie d’une telle
structure, nous décrivons un algorithme qui calcule en temps linéaire la structure
dite minimale: celle réalisant le minimum du treillis distributif associé. Nous rap-
pelons tout d’abord l’algorithme pour les orientations bipolaires donné par Ossona
de Mendez [92], dont le principe nous inspire un nouvel algorithme de calcul de
structures transversales (après ceux donnés par Kant et He dans [78]). Notre algo-
rithme a l’avantage de pouvoir être spécifié pour calculer la structure transversale
minimale en temps linéaire (théorème 2.7 page 70). Nous introduisons également
un algorithme permettant de calculer la forêt de Schnyder minimale d’une carte
3-connexe en temps linéaire (théorème 2.1 page 66). Ces algorithmes de calcul de



INTRODUCTION 13

structures minimales sont utiles à la fois pour coder les cartes planaires (chapitre 3)
et les dessiner sur la grille (chapitre 5).

Le chapitre 3 “Bijective counting of maps” est dédié à des constructions bi-
jectives de cartes à partir d’arbres (cartes planaires à une face). Tout d’abord,
nous décrivons en section 1 une méthode bijective générale reposant sur la notion
d’α-orientation minimale et s’appliquant à des familles de cartes enracinées. Nous
reformulons ainsi plusieurs bijections dans un cadre unifié. Ensuite, nous intro-
duisons en section 2 deux nouvelles constructions bijectives s’appliquant à des cartes
non-enracinées. La première construit une dissection quadrangulée d’un hexagone
sans 4-cycle séparateur —dite irréductible— à partir d’un arbre binaire. La sec-
onde construit une dissection triangulée d’un carré sans 3-cycle séparateur —dite
irréductible— à partir d’un arbre ternaire. Nous en déduisons la première preuve
bijective (proposition 3.5 page 100) de la formule d’énumération des triangulations
planes non enracinées, trouvée par Brown [27].

Le chapitre 4 “Algorithmic applications” exploite les bijections présentées au
chapitre 3 pour obtenir des algorithmes efficaces pour la génération aléatoire et le
codage de cartes planaires. On utilise la bijection entre arbres binaires et dissections
irréductibles de l’hexagone pour compter les cartes 3-connexes enracinées (propo-
sition 4.1 page 124), effectuer leur génération aléatoire en temps linéaire, et les
coder avec seulement 2 bits par arête (théorème 4.1 page 127), atteignant la borne
inférieure donnée par l’entropie. De manière similaire, la bijection entre arbres
ternaires et triangulations irreductibles du carré permet de réaliser l’énumération
(proposition 4.2 page 125), la génération aléatoire en temps linéaire (proposition 4.5
page 130), et le codage optimal (théorème 4.2 page 128) des triangulations en-
racinées dites 4-connexes, qui ont un degré de connectivité de plus que les triangula-
tions classiques. La contribution principale du chapitre est un générateur uniforme
de graphes planaires (la différence avec les cartes est qu’il n’y a pas de plongement
attaché) extrêmement efficace, qui réalise des appels répétés au générateur bijectif
de cartes 3-connexes et assemble les cartes générées en un graphe planaire. Les
probabilités de branchement sous-jacentes au processus d’assemblage reposent sur
le cadre des générateurs de Boltzmann [43]. Le générateur de graphes planaires
obtenu a une complexité moyenne quadratique en taille exacte et linéaire en taille
approchée (théoremes 4.3 et 4.4 page 132).

Le chapitre 5 “Straight-line drawing” introduit un nouvel algorithme de dessin
en lignes droites sur une grille, basé sur les structures transversales (théorème 5.2
page 160). Il se situe dans la famille des algorithmes par comptage de faces, comme
l’algorithme de dessin de cartes 3-connexes récemment développé par Bonichon et
al [16]. Notre algorithme s’applique au dessin des triangulations irréductibles du
carré (théorème 5.4 page 165) et des quadrangulations (théorème 5.5 page 168).
Pour les triangulations irréductibles du carré (resp. les quadrangulations), la grille
obtenue est avec grande probabilité de taille 11n/27 × 11n/27 (resp. 13n/27 ×
13n/27) à petites fluctuations près, ce qui représente en probabilité un gain par
un facteur 27/22 (resp. 27/26) par rapport aux meilleurs algorithmes connus
précédemment [89, 10], lesquels ne peuvent garantir qu’une grille n/2 × n/2.
Nous analysons également en probabilité la taille de la grille pour l’algorithme
de dessin de Bonichon et al, et montrons qu’une carte 3-connexe aléatoire uni-
forme à n sommets et ⌊βn⌋ faces est dessinée avec grande probabilité sur une grille
(1− (4β)−1)n× (1− (4β)−1)n à petites fluctuations près (théorème 5.6 page 170).
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Notre méthode d’analyse probabiliste de la taille de la grille pour les algorihmes
par comptage de faces repose sur plusieurs ingrédients: 1) la taille de la grille est
reformulée en termes de paramètres explicites de la carte munie de sa structure
combinatoire minimale, 2) les paramètres en question s’avèrent correspondre à des
paramètres explicites de l’arbre associé bijectivement, 3) l’analyse probabiliste des
paramètres sur l’arbre est effectuée en utilisant un outil bien connu de la combina-
toire analytique, le théorème des quasi-puissances [52].

Publications sur les travaux de thèse. La bijection entre arbres binaires et
dissections irréductibles de l’hexagone (chapitre 3) et ses applications au traitement
algorithmique de cartes 3-connexes (maillages sphériques polygonaux) a donné lieu
à une communication à la conférence ACM SODA’05 à Vancouver [64]. L’article
long est à parâıtre dans une édition spéciale du journal Transactions on Algorithms,
sous le titre:

“Dissections, orientations, and trees, with applications to optimal mesh en-

coding and random sampling”, avec Dominique Poulalhon et Gilles Schaeffer.

Les travaux concernant les triangulations irréductibles du carré (structures transver-
sales, algorithme de dessin, comptage, codage, et génération aléatoire de triangu-
lations 4-connexes) ont donné lieu à une communication à la conférence Graph
Drawing’05 à Limerick [58]. L’article long est à parâıtre dans une édition spéciale
de Discrete Math., sous le titre

“Transversal structures on triangulations: combinatorial study and straight-

line drawing algorithm”.

L’algorithme de dessin de quadrangulations a été présenté sous forme de commu-
nication courte (6 pages) à la conférence Graph Drawing’06 à Karlsruhe, sous le
titre

“Straight-line drawing of quadrangulations” [60].

L’algorithme de génération aléatoire de graphes planaires a été présenté à la conférence
Analysis of Algorithms AofA’05 à Barcelone, sous le titre

“Quadratic exact-size and linear approximate-size random generation of planar

graphs” [57].

Une version journal est soumise [62].

Autres travaux. Outre l’algorithmique sur les cartes planaires, je me suis intéressé
à plusieurs thématiques durant la période de thèse, qui sont principalement le comp-
tage à symétrie près, la génération aléatoire, et le comptage probabiliste.

Comptage à symétrie près. Tout d’abord j’ai développé une méthode de comptage
de cartes dites “non enracinées”, un travail engagé pendant mon stage de DEA
sous les précieux conseils de Gilles Schaeffer. Comme il s’agit d’énumération non
enracinée, les symétries potentielles doivent être prises en compte. Notre méthode
consiste à visualiser les symétries des cartes au niveau d’une décomposition ar-
borescente, voir la figure 4(a). On en déduit l’énumération (par séries génératrices)
de nombreuses familles de cartes non enracinées. En particulier, notre approche
permet d’obtenir les formules les plus simples connues actuellement pour énumérer
les cartes 3-connexes, et donne le meilleur algorithme de comptage. Cette famille
est particulièrement intéressante. En effet, par un théorème de Steinitz, les cartes
3-connexes correspondent exactement aux polyèdres convexes à isotopie près, dont
le problème de comptage avait déjà été attaqué par Euler [55]. Ces résultats ont été
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a ) b )
Figure 4. Décomposition arborescente d’une quadrangulation
symétrique (Fig.a), et opération de substitution préservant une
symétrie sous-jacente (Fig.b).

présentés à la conférence FPSAC’05. L’article long a été publié dans le Séminaire
Lotharingien de Combinatoire sous le titre

“Counting unrooted maps using tree-decomposition” [61]

Durant un séjour à Berlin, j’ai eu la chance de collaborer avec Manuel Bodirsky,
Mihyun Kang et Stefan Vigerske (Université Humboldt de Berlin). En partant des
idées principales de mon travail sur le comptage de cartes non enracinées, nous avons
conçu une méthode très générale d’énumération de structures non étiquetées, qui
combine un opérateur de pointage “non biaisé” —pointage d’un cycle de symétrie—
et de nouvelles constructions adaptées à cet opérateur. La figure 4(b) illustre la
construction par substitution, qui généralise la construction par substitution sur les
cartes non enracinées (figure 4(a)). Ce travail a été présenté à la conférence ACM
SODA’07 à la Nouvelle Orléans sous le titre

“An unbiased pointing operator for unlabeled structures, with applications to

counting and sampling” [12], avec Manuel Bodirsky, Mihyun Kang, and Stefan

Vigerske.

Dans le domaine du comptage à symétries près, j’ai travaillé également à Berlin
sur un problème concernant les polytopes qui m’a été donné par Günter Ziegler.
Précisément, il s’agit de compter le nombre de polytopes en dimension d avec (d+3)
sommets et à isotopie/réflexion près. Par l’usage de “diagrammes de Gale” [71,
Sect. 6.3], ce problème se ramène à compter certains diagrammes du plan à rota-
tion/réflexion près. Les symétries sont ici prises en compte par des outils classiques
de théorie des groupes tels que le lemme de Burnside, et l’énumération se fait par
automates et séries génératrices. Par l’usage d’automates, ma présentation diffère
d’une première résolution du problème par Lloyd [83], dans laquelle une erreur
s’était glissée. Ce travail est paru dans le Electronic Journal of Combinatorics sous
le titre

“Counting d-polytopes with (d + 3) vertices” [59].

Génération aléatoire. Trouver des méthodes efficaces de génération aléatoire uni-
forme trouve de nombreuses applications, par exemple pour tester des conjectures,
estimer le complexité moyenne des algorithmes, et observer des propriétés struc-
turelles de grands objets aléatoires. Comme il est nécessaire de tirer de très grands
objets pour observer des phénomènes asymptotiques, les générateurs de complexité
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a ) b ) c )
Figure 5. Un graphe série-parallèle (Fig.a), une composition
circulaire (Fig.b), et une partition plane (Fig.c) engendrés par
génération de Boltzmann (figures obtenues par Carine Pivoteau).

linéaire sont nettement préférables. Dans ce but, une méthode très puissante a été
récemment introduite, appelée génération de Boltzmann [43]. La complexité de ces
générateurs est linéaire, au prix d’une légère perte de contrôle sur la taille de la
sortie.

Avec Carine Pivoteau (durant son stage de Master) et Philippe Flajolet, nous
avons étendu le premier cadre de génération décrit dans [43] pour prendre en compte
les constructions impliquant des symétries (Multiensemble, Ensemble, Cycle). La
variété des classes combinatoires traitables par génération de Boltzmann est ainsi
considérablement accrue. Les figures 5(a) et (b) ont été obtenues par Carine Piv-
oteau et montrent respectivement un circuit série-parallèle et une composition cir-
culaire engendrés par nos générateurs. Ce travail a été présenté au Workshop
ANALCO’07 à la Nouvelle Orléans, sous le titre

“Boltzmann sampling of unlabelled structures” [50], avec Philippe Flajolet et

Carine Pivoteau.

En collaboration avec Carine Pivoteau et Olivier Bodini, nous avons également
développé un générateur de Boltzmann pour la classes des partitions planes, qui
peuvent être vues comme des empilements de cubes “tassés” dans l’espace R3

+.
L’idée est de tirer partie d’une bijection de Pak entre partitions planes et une
classe décomposable. Les règles de génération de [50] combinées avec la bijection
permettent d’obtenir un générateur très efficace, de complexité quasi-linéaire en
taille approchée. Ce travail a fait l’objet d’une communication à la conférence
GASCOM’06, sous le titre

“Random sampling of plane partitions” [11], avec Olivier Bodini et Carine

Pivoteau.

La figure 5(c) montre une partition plane aléatoire engendrée par notre générateur.
On observe par simulation une surface limite, dont la description a été donnée par
Cerf et Kenyon [29].

Comptage probabiliste. La fouille de données est un domaine de recherche très actif,
dont le but est d’extraire des informations dans des flux de données massifs. Ces flux
peuvent souvent être vus comme des multi-ensembles, par exemple le trafic internet
transitant par un routeur est une suite de paquets, chaque paquet étant identifé
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par une paire (adresse source, adresse destination), appelée connexion. Dans ce
contexte, les éléments du multi-ensemble sont les paquets et les éléments distincts
sont les connexions. Le nombre d’éléments distincts du multi-ensemble, appelé
cardinalité, est une information importante sur le flux, qui permet notamment de
détecter des attaques sur le réseau internet. En pratique, on se contente de calculer
une estimée probabiliste de la cardinalité, ce qui permet de concevoir des procédures
très rapides et ne nécessitant qu’une mémoire auxiliaire d’ordre constant. De nom-
breux algorithmes obéissant à ce principe ont été développés (voir [49] pour un
survol du domaine). Dans un travail récent avec Philippe Flajolet, Olivier Gan-
douet, et Frédéric Meunier, nous avons introduit une nouvelle estimée basée sur la
moyenne harmonique, qui réalise le meilleur compromis actuellement connu entre
précision et mémoire auxiliaire. Ce travail va être présenté à la conférence AofA’07
à Antibes, sous le titre

“HyperLogLog, the analysis of a near-optimal cardinality estimation algo-

rithm”, avec Philippe Flajolet, Olivier Gandouet et Frédéric Meunier.

Dans un autre travail en collaboration avec Frédéric Giroire, nous avons adapté
l’algorithme MinCount [69] que Frédéric a développé dans sa thèse au modèle de
la fenêtre coulissante [34], de manière à répondre à des requêtes sur la cardinalité
en temps réel et pour une fenêtre de temps fixée. Ce travail a été présenté au
Workshop ANALCO’07 à la Nouvelle Orléans, sous le titre

“Estimating the number of active flows in a data stream over a sliding window ” [63],

avec Frédéric Giroire.





CHAPTER 1

Combinatorial structures on planar maps

Introduction. The aim of this chapter is first to provide a short and accessible
presentation of planar maps. For a more detailed introduction, see the introductory
chapter in the theses of Bernardi [8] and Schaeffer [99]. Then, the key point
we develop is that, for several well known families of planar maps, there exists a
particular combinatorial structure that characterises the maps of the family. The
combinatorial structure is often an orientation with specific properties, which can
be combined with a coloration of the edges such that the induced subgraph in each
color has a simple form (e.g. a tree). As we will see in Chapter 3, 4, and 5, such a
structure is a precious tool to study the corresponding family of maps: in each case,
it makes it possible to count bijectively the family according to a size parameter and
gives rise to efficient algorithms for random sampling, encoding, and straight-line
drawing.

After presenting planar maps in Section 1, we will focus on four examples of
combinatorial structures: 1) Eulerian orientations for the family of Eulerian maps,
2) bipolar orientations for the family of 2-connected maps, 3) Schnyder woods for
families related to 3-connected maps, 4) transversal structures for families related
to 4-connected maps. As we will see, all these structures can be formulated in
terms of orientations with prescribed outdegree for each vertex. These are called α-
orientations and obey nice structural properties —in particular lattice properties—
that are recalled in Section 2.

Results obtained in this chapter. Most of the results presented in this chapter
are not new. The theory of α-orientations is developed in not less than 3 sources:
an unpublished article by Propp [96], the thesis of Ossona de Mendez [92], and
a more recent article by Felsner [48]. Our presentation of Eulerian orientations
and Schnyder woods closely follows [48]. In the literature, the lattice property of
bipolar orientations is studied in [92] and the correspondence with 2-orientations of
quadrangulations is described in [38]; our presentation in Section 4 sketches how the
lattice property of bipolar orientations is easily described via the lattice structure of
2-orientations of a quadrangulation; essentially we combine the arguments presented
in [92] and in [38] so as to provide a shorter presentation of the results.

Our main contribution in this chapter is a detailed combinatorial study of
transversal structures, which were introduced by Xin He —under the name of regu-
lar edge-labeling— for triangulations of the 4-gon with no filled 3-cycle [73], called
hereafter irreducible triangulations. We extend the definition to any planar map,
show a characterisation as a transversal pair of bipolar orientations, and describe
conditions of existence. Then we study the set of transversal structures of a fixed
irreducible triangulation T . Our main result is Theorem 1.4 page 50, where we
show that the set of transversal structures of T is a distributive lattice, with an

19
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explicit simple flip operation. Similarly as for bipolar orientations, the description
is obtained via α-orientations of an associated quadrangulated map.

Motivations. The results on orientations recalled and obtained in this chapter
are extensively used to develop a general bijective framework for counting planar
maps, and to analyse the straight-line drawing algorithms presented in Chapter 5.
Our study of transversal structures has also a specific application to a result of
cartography [104], where an exhaustive generation of transversal structures is useful
to obtain the best cartographic representation (the discussion is given in Section 6).

1. Planar maps

1.1. Definitions. Graphs. A graph G is given by a set V = {v1, . . . , vn} of
vertices and a set E of unordered pairs of vertice that are called edges . An edge
is classically written e = {v, v′}. The vertices v and v′ are called the extremities of
e; if v = v′ e is called a loop, otherwise e is said to connect v and v′. A multiple
edge is a pair of distinct vertices connected by at least 2 edges. The degree of a
vertex v is the number of edges incident to v, with multiplicity 2 for loops incident
to v. A path of G is a sequence v0, e0, v1, . . . , ek, vk+1 of vertices and edges such
that, for 0 ≤ i ≤ k the edge ei connects vi and vi+1. The vertices v0 and vk+1

are said to be connected by the path. The path is called simple if the vertices
v0, . . . , vk+1 are different. A graph is said to be connected iff any pair of vertices
are connected by a path. A cycle of G is a cyclic sequence v0, e0, v1, . . . , vk, ek such
that for each 0 ≤ i ≤ k, the edge ei connects vi to v(i+1) mod k. The cycle is
simple if the vertices v0, . . . , vk are different. A graph is oriented if all its edges
are directed. An edge e from a vertex v to a vertex v′ is denoted by e = (v, v′),
the vertex v is called the origin of e and v′ is called the end-vertex of e. For each
vertex v, the number of edges whose origin is v is called the outdegree of v and
is denoted by Outdeg(v). Similarly, the number of edges whose end-vertex is v is
called the indegree of v and is denoted by Indeg(v). An oriented path is a path
v0, e0, v1, . . . , ek, vk+1 such that, for 0 ≤ i ≤ k, ei goes from vi to vi+1; and a circuit
is a cyclic sequence v0, e0, v1, . . . , vk, ek such that for each 0 ≤ i ≤ k, the edge ei

goes from vi to v(i+1) mod k. The notion of simple oriented path and simple circuit
are defined similarly as for unoriented graphs.

Embeddings. An embedding D (or drawing) of a graph G in the plane R2 is
given by an injective mapping ΦV : v ∈ V → (xv, yv) from the vertices of G to
plane points, and by a mapping ΦE from the edges of G to open smooth arcs in the
plane such that the extremities of any edge e are mapped by ΦV to the extremities
of the arc ΦE(e). An embedding is said to be planar iff the (closure of the) arcs
(ΦE(e))e∈E do not meet except at common extremities, see Figure 1(a). A graph
G that admits a planar embedding is called a planar graph . Notice that a planar
graph G admits infinitely many planar embeddings. However it admits only finitely
many if the embeddings are considered up to isotopy, i.e., two planar embeddings
D0 and D1 are identified if there exists a continuous family {D(t), t ∈ [0, 1]} of
planar embeddings of G such that D(0) = D0 and D(1) = D1. In the plane, this is
equivalent to the existence of an orientation-preserving homeomorphism mapping
D0 to D1. The isotopy relation allows us to abstract the geometry and to consider
only the embeddings at the topological level.
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a) b) c)

Figure 1. Two different planar maps with the same underlying
graphs (Fig.a and Fig.b), and a straight-line drawing of the second
map (Fig.c).

Maps. A planar map (hereafter shortly called a map) is an isotopy class of planar
embeddings of a connected planar graph. Notice that the graphs embedded are
unlabelled. To state it simply, a planar map is a connected unlabelled graph drawn
in the plane without edge-crossings and up to continuous deformation. Planar maps
are often called plane graphs in the literature. As illustrated in Figure 1(a)-(b),
a planar graph can have non-isotopic planar embeddings, so that it gives rise to
several maps. Due to the topological embedding, a map has more structure than
a graph. In particular, a map has faces , each face corresponding to a connected
component of the plane split by the embedding. The unique unbounded face is
called the outer (or infinite) face. Vertices, edges, and faces are called the 0-cells, 1-
cells, and 2-cells of the map, respectively. The numbers |V |, |E|, and |F | of vertices,
edges, and faces (including the outer face) of a map are related by the well known
Euler’s relation:

(2) |V | − |E|+ |F | = 2.

A pair of cells are incident to one another if one of the two cells belongs to the
closed boundary of the other one, e.g. a vertex v is incident to a face f (and vice
versa) if v belongs to the boundary of f . It will be convenient to see an edge e
as a pair of half-edges starting at each of the two extremities of e and meeting in
the middle of e, i.e., we imagine that each edge is cut at its middle into two half-
edges. The face incident to a half-edge h is defined to be the face on the right of h
(looking from the origin of h). The degree of a vertex v is the number of half-edges
incident to v, i.e., having v as origin. If there is no loop nor multiple edges, the
degree of v is its number of neighbours. The degree of a face f is the number of
edges traversed during a tour of the boundary of f . Finally, let us make precise
the terminology and properties concerning cycles and circuits. First, cycles and
circuits will always be assumed to be simple when dealing with maps. A theorem
of Jordan ensures that a cycle C partitions the plane into two regions, a bounded
one called the interior of C, and an unbounded one called the exterior of C. A
vertex or edge will be said to be inside C (outside of C) if it is in the interior of C
(exterior of C, respectively). Concerning circuits (i.e., oriented cycles), a circuit C
is said to be clockwise (shortly written cw) if the interior of C is on the right of C
and is said to be counter-clockwise (shortly written ccw) otherwise .

Combinatorial encoding of maps. Even if the definition is geometric, planar
maps are combinatorial objects. Indeed, a map M is encoded by the so-called
half-edge structure. Given a half-edge h of M , define the opposite half-edge of h
—denoted by opp(h)— as the half-edge complementing h into an edge, and define
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the next half-edge of h —denoted by next(h)— as the half-edge following h in
counterclockwise order around the origin of h. If the half-edges of M are given
distinct labels in {1, . . . , 2n}, the map M is completely encoded (up to specifying
the outer face) by the two permutations σopp, which maps the label of each half-
edge to the label of the opposite half-edge (hence σopp has one cycle of length
2 for each edge), and σnext, which maps the label of each half-edge to the label
of the next half-edge (hence σnext has a cycle for each vertex). Notice that the
permutation σface := σnext ◦ σopp maps each half-edge h to the following half-edge
in clockwise order around the face incident to h. The half-edge encoding is also
very convenient to handle maps as data structures; this is the data structure we
have used to implement all algorithms presented in this thesis. In practice, each
half-edge has a pointer to its opposite half-edge and a pointer to its next half-edge.
The half-edge data structure makes it possible to navigate around a vertex, a face,
to traverse a map according to various orders...

Rooted maps. Even though the encoding of maps is done via labeling of the half-
edges, maps are unlabeled objects. Hence, they are subject to symmetries, which
makes a combinatorial treatment more complicated. Precisely, given two maps M1

and M2, an isomorphism from M1 to M2 is a bijection φ mapping the half-edges
of M1 to the half-edges of M2, preserving the opposite and next half-edge, and
preserving the outer face (this last condition is dropped if maps are considered on
the sphere rather than in the plane, see [8, Chap 0]). In other words, opp(φ(h)) =
φ(opp(h)) and next(φ(h)) = φ(next(h)), and φ maps the half-edges of the outer
face of M1 to the half-edges of the outer face of M2. An automorphism of a map
M is an isomorphism from M to itself. To avoid problems due to automorphisms,
it is more convenient to consider rooted maps instead of maps. A map is rooted by
marking and orienting an edge so that this edge has the outer face on its left. The
marked oriented edge is called the root and its origin is called the root-vertex. If no
outer face is specified (map on the sphere rather then on the plane), the operation
of rooting consists in marking a half-edge and choosing the face on the left as outer
face, so as to get a rooted planar map. It can be proved that an automorphism
Φ 6= Id of a map M on the sphere has no fixed half-edge, so that a rooted map has
no symmetry. Notice that this property is not true for unlabeled planar graphs, i.e.,
a planar graph with a marked oriented edge can have nontrivial automorphisms.

Straight-line drawing. Like planar graphs, a planar map can be represented by
infinitely many planar embeddings. We will focus in Chapter 5 on a very natural
representation of a planar map, called straight-line drawing. A planar embedding
of a map M is called a straight-line drawing if the vertices are mapped to points
of a regular integer grid [0..W ] × [0..H ] and edges are mapped to segments, see
Figure 1(c). The integers W and H are called the width and the height of the grid.
It is well known that a planar map M with no loop nor multiple edge admits a
straight-line drawing. Indeed, M can be triangulated by adding edges, and there
exist straight-line drawing algorithms for triangulations, as we will see in Chapter 5.

1.2. Families of planar maps. Several families of planar maps will be con-
sidered in this thesis. Our aim is to have a good understanding of the combinatorial
properties of these families, in order to develop an efficient algorithmics. Classical
families of maps are obtained by imposing a regularity on the degrees of vertices
or faces, or by imposing a higher connectivity. Much attention will be devoted
to triangulated maps (all inner faces are triangles) and quadrangulated maps (all
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inner faces are quadrangles). These families are historically important, as trian-
gulations are maximal planar graphs, and quadrangulations are maximal bipartite
planar graphs. Hence, these two families often capture the difficulty of conjectures
or algorithmic tasks on planar graphs and bipartite planar graphs.

Trees. A plane tree is a map with only one face, the outer face. Families of trees
with refined conditions will be considered in Chapter 3.

Eulerian maps. A map is called Eulerian iff all its vertices have even degree.
Loops and multiple edges are allowed.

Triangulated maps. A triangulated map is a loopless map such that all faces
have degree 3. A triangulation is a map with no loop nor multiple edge and such
that all faces have degree 3. Triangulations are also called maximal plane graphs
because any edge addition breaks planarity. A triangulation of the k-gon is a map
with no loop nor multiple edge and with an outer face of degree k and all inner faces
of degree 3. A triangulation T of the k-gon is said to be irreducible if the interior
of any 3-cycle is a face, i.e, there is no filled 3-cycle. Notice that k > 3 unless T is
reduced to the triangle. A lot of attention in this thesis will be devoted to irreducible
triangulations of the 4-gon, which we shortly call irreducible triangulations.

Bicolored maps. Bipartite maps are maps whose vertices can be partitioned
into black and white vertices, with the property that any pair of adjacent vertices
have different colors. A bipartite map endowed with such a bicoloration is called
a bicolored map. It is easily shown that bipartite maps are exactly maps with all
faces of even degree. Moreover, the bicoloration of vertices is unique up to the color
of the first vertex. Rooted bipartite maps will always be endowed with their unique
bicoloration such that the origin of the root is black.

Quadrangulated maps. Quadrangulated maps are maps with all faces of degree
4. Notice that such maps are bipartite, so that they have no loops. Quadrangu-
lations are quadrangulated maps with no multiple edges. Quadrangulations are
also called maximal bipartite plane graphs because any edge addition either breaks
bipartiteness or planarity. A separating 4-cycle of a quadrangulation is a 4-cycle
C such that neither the interior nor the exterior of C is a face. A quadrangulation
is called irreducible if it has no separating 4-cycle. For k ≥ 3, a quadrangulated
dissection of the 2k-gon —shortly called dissection— is a map with outer face of
degree 2k and all inner faces of degree 4. A dissection is said to be irreducible if
the interior of any 4-cycle is a face. Notice that the definition is simpler than for
quadrangulations, since the outer cycle is not a 4-cycle (hence, the exterior of a
4-cycle can not be a face). A lot of attention will be devoted to irreducible dissec-
tions of the hexagon, which are of great interest for the algorithmic treatment of
3-connected maps.

k-connected maps. A map is called k-connected if at least k vertices (and their
incident edges) have to be removed to disconnect the map; in addition the map
must have at least k vertices, loops are forbidden if k > 1, and multiple edges are
forbidden if k > 2. It is easily shown that a quadrangulation is 2-connected, a
triangulation is 3-connected, and a triangulation is 4-connected iff the interior of
any 3-cycle—except the outer one—is a face. Notice that the characterisation of 4-
connected triangulations is very close to the condition of irreducibility, except that
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a) b) c)

Figure 2. A planar map (Fig.a), its derived map (Fig.b), and its
dual map (Fig.c).

the outer 3-cycle can be filled in a 4-connected triangulation. This link will be used
in Chapter 3 to study 4-connected triangulations from irreducible triangulations.

1.3. Correspondences between families of maps. There exist several
simple correspondences between families of maps. We recall here the duality map-
ping and the angular mapping, which will be intensively used.

1.3.1. Duality. The dual of a map M is the map M∗ having one vertex vf in
each face f of M , two vertices vf and vf ′ being adjacent in M∗ iff the faces f and
f ′ are adjacent in M , i.e., there exists an edge having f and f ′ on each side; see
Figure 2 for an example. Each edge e ∈M gives rise to exactly one edge e∗ ∈M∗,
which crosses e at a vertex ve. The map obtained by superimposing M and M∗

is called the derived map of M . The vertices of M ′ corresponding to intersections
of an edge with its dual edge are called edge-vertices. Clearly each edge-vertex has
degree 4 and each edge of the derived map either corresponds to a half-edge of
M —these are called primal edges of M ′— or corresponds to a half-edge of M∗

—these are called dual edges of M ′. A vertex of M ′ is said to be primal (dual) if it
belongs to M (to M∗, respectively). The duality exchanges the number of vertices
and faces, i.e., the dual of a map with i vertices, n edges, and j faces, is a map
with j vertices, n edges, and i faces. It is also easily checked that the duality is
involutive, i.e., (M∗)∗ = M . If maps are rooted, the root of M∗ is the dual edge
of the root edge e of M , oriented from the left of e to the right of e. In its rooted
version, the duality is involutive up to the orientation of the root. A nice property
of duality is to preserve the connectivity degree up to order 3. The properties are
summarized in the following theorem.

Theorem 1.1 (Duality). The families of connected, 2-connected, and 3-connected
maps are stable under duality. The duality mapping is involutive and the parameters
of a map M and of its dual map M∗ satisfy the following correspondences:

vertex of M ↔ face of M∗,
face of M ↔ vertex of M∗,
edge of M ↔ edge of M∗.

1.3.2. Angular mapping. There is a well known correspondence, due to Tutte,
between quadrangular maps and unconstrained maps, which we call the angular
mapping. Given a bicolored quadrangulated map Q, the primal map of Q is the
map M whose vertices are the black vertices of Q, two black vertices being adjacent
in M iff they are incident to the same face of Q, see Figure 3. Notice that the same
construction with white vertices instead of black vertices would give the dual map
of M . Clearly, there is an edge of M for each face of Q. Conversely, Q is called
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Figure 3. A rooted quadrangulation Q (Fig.a), addition of the
black diagonals (Fig.b), and the primal map of Q (Fig.c).

the angular map of M , because each edge of Q corresponds to an angle of M . If
Q is rooted, then the primal map also receives a root, which is chosen to be the
edge following the root of Q in counterclockwise order around the root vertex of
Q, see Figure 3. The angular mapping has a nice restriction to 2-connected and
3-connected maps. Indeed, the presence of a multiple edge in Q is equivalent to
the presence of a separating vertex in M , and the presence of a separating 4-cycle
in Q is equivalent to the presence of a separating pair of vertices in M [90]. The
properties of the angular mapping are summarized in the following theorem.

Theorem 1.2 (Angular mapping). The angular mapping is a bijection between
the following families of maps:

bicolored quadrangulated maps ↔ maps,
bicolored quadrangulations ↔ 2-connected maps,

bicolored irreducible quadrangulations ↔ 3-connected maps.

In its rooted version, the angular mapping is a bijection between the following
families of rooted maps:

rooted quadranulated maps ↔ rooted maps,
rooted quadrangulations ↔ rooted 2-connected maps,

rooted irreducible quadrangulations ↔ rooted 3-connected maps.

The parameters of a quadrangulated map Q and of its primal map M satisfy
the following correspondences:

edge of Q ↔ angle of M ,
black vertex of Q ↔ vertex of M ,
white vertex of Q ↔ face of M ,

face of Q ↔ edge of M .

2. The theory of α-orientations

Orientations with prescribed outdegree, the so-called α-orientations, are at the
heart of all combinatorial structures to be presented later. A very elegant theory of
these orientations has been developed by Propp [96], Ossona de Mendez [92], and
Felsner [48]. The ideas can also be traced back to an earlier paper by Kuhler et al
on the lattice properties of circulations in planar graphs [80]. This section recalls
the main properties to be used later, in particular the lattice rules. First, let us
recall the definition of distributive lattices.
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Distributive lattices. A lattice is a partially ordered set (E,≤) such that, for
each pair (x, y) of elements of E, there exists a unique element x ∧ y and a unique
element x ∨ y satisfying the conditions:

• x ∧ y ≤ x, x ∧ y ≤ y, and ∀z ∈ E, z ≤ x and z ≤ y implies z ≤ x ∧ y,
• x ∨ y ≥ x, x ∨ y ≥ y, and ∀z ∈ E, z ≥ x and z ≥ y implies z ≥ x ∨ y.

In other words, each pair admits a unique common lower element dominating all
other common lower elements, and the same holds with common upper elements.
The lattice is said to be distributive if the operators ∧ and ∨ are distributive
with respect to each other, i.e., ∀(x, y, z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). We define a flip (flop) as the operation of moving
from an element of the lattice to a lower (upper, respectively) covering element.
The nice feature of distributive lattices is that, in most cases, moving from an
element of the lattice to a covering lower (upper) element has a simple geometric
interpretation, which we informally call a flip (flop, respectively). As we recall
next, in the case of orientations of a plane graph with prescribed vertex outdegrees,
the flip (flop) operation consists in reversing a clockwise circuit (counter-clockwise
circuit, respectively).

Definition of α-orientations. Given a planar map M = (V,E) and a function
α : V → N, an α-orientation is an orientation of the edges of M such that each
vertex v has outdegree α(v). A function α : V → N such that M has at least one
α-orientation is called feasible.

Conditions of existence. Given a function α : V → N, a necessary condition of
existence of an α-orientation is clearly

∑
v∈V α(v) = |E|. There is a refinement of

this condition to all subsets of V . For X ⊂ V , write δ(X,X) for the set of edges
connecting a vertex in X and a vertex in X := V \X , and write E[X ] for the set of
edges connecting two vertices in X . Then, in any α-orientation of M , the number
of edges going from X to X has to be equal to OutX :=

∑
v∈X α(v)− |E[X ]|. The

cut condition states that, for any subset X ⊂ V , 0 ≤ OutX ≤ |δ(X,X)|. Clearly,
the cut condition is a necessary condition of existence of an α-orientation. It is also
a sufficient condition, as proved by induction on the number of edges [48].

Invariants. Given a planar map M = (V,E) and a fixed feasible function α : V →
N for M , there are several properties shared by all α-orientations of M . We have
seen that the number of edges going out of a subset X ⊂ V does not depend on
the α-orientation, and satisfies 0 ≤ OutX ≤ |δ(X,X)|.

In the two extremal cases OutX = 0 and OutX = |δ(X,X)|, the edge cut (the
set of edges connecting X and X) is called rigid. Clearly an edge belonging to a
rigid edge-cut, called a rigid edge, has the same orientation in all α-orientations of
M . Based on the cut condition, it is easily shown that the accessibility from a vertex
v to a vertex v′ does not depend on the α-orientation. Hence the decomposition
of M into strongly connected components does not depend on the α-orientation:
the rigid edges are the edges connecting different strongly connected components,
and the non-rigid edges are the edges inside a strongly connected component. In
particular, any non-rigid edge e belongs to an oriented circuit C. Reversing C yields
another α-orientation where e has the reverse direction. Circuit reversion is the
fundamental operation to navigate in the set of α-orientations of a planar map.

Essential circuits. Consider a planar map M endowed with an α-orientation.
A circuit C is called chordal if there exists an oriented path P of edges inside C
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Figure 4. Reversing an oriented chordal circuit in two steps.

such that the two extremities of P are on C. As illustrated in Figure 4, reversing a
chordal circuit can be done by reversing successively two smaller oriented cicuits,
in the sense that the regions enclosed by these circuits are strictly included in the
region enclosed by C. The circuits that are not chordal are called essential circuits.
Hence, a circuit reversion can always be performed as a sequence of reversions of
essential circuits. Notice that the status (essential or chordal) of a circuit C does not
depend on the α-orientation. Indeed, C is essential iff it is chordless and no vertex
inside C is in the same strongly connected component as C. A cycle C appearing as
an essential circuit in at least one α-orientation of M is called an essential cycle.

Definition. A flip (flop) is the operation of reversing a clockwise (counterclockwise,
respectively) circuit.

Theorem 1.3 (Lattice property [48, 92, 96]). Given a planar map M and
a feasible function α : V → N, the set of α-orientations of M endowed with the
flip-flop operations is a distributive lattice.

Proof (Sketch). The idea is to associate a potential-vector to each α-orientation,
so that the corresponding set of vectors is stable under minimum and maximum,
hence is a distributive lattice for the min-max partial order. Define E as the set of
essential cycles of M for the function α : V → N. Starting from an α-orientation
X , it can be shown that the number of times an essential C cycle is flipped in a
maximal flip-sequence is a finite number NX(C) not depending on the maximal
flip-sequence [48]. As the number of essential cycles is finite, any flip-sequence
terminates at an α-orientationX0, which has no clockwise circuit. In particular, this
proves the existence of an α-orientation with no clockwise circuit. The uniqueness
of such an orientation is also easily proved [48, Lem.1]. Then, the lattice structure
relies on the following property; for two α-orientations X and X ′, there exists
an α-orientation X ∧ X ′ and an α-orientation X ∨ X ′ such that NX∧X′(C) =
min(NX(C), NX′(C)) and NX∨X′(C) = max(NX(C), NX′(C)) ∀C ∈ E . In other
words, α-orientations of M are in bijection with a set of vectors of N|E| stable under
minimum-maximum. The fact that such a vector-set is a distributive lattice is a
folklore result. Finally it easily follows from the definition that the cover relation in
the set of potential vectors corresponds to reversing the orientation of an essential
circuit. �

Applications. As discussed by Felsner [48], distributive lattices are well under-
stood structures. Let us cite the fundamental theorem [105]: “a distributive lattice
can be represented as the set of downward ideals of a partially ordered set”. This
theorem is the formal general statement explaining why it is mostly easy to nav-
igate in a distributive lattice using simple local operations. Accordingly, efficient
algorithms have been developed for uniform random generation [97] (using coupling
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from the past techniques) and exhaustive generation. An application of exhaustive
generation to optimize a result of cartography will be given in Section 6.

The next sections are devoted to the presentation of combinatorial structures
that characterise several families of planar maps, and have a natural formulation
in terms of α-orientations. Let us mention a first example (not developed in this
thesis); the set of spanning trees of a fixed rooted planar map M is in bijection with
the set of α-orientations of the derived map M ′, for the function α equal to 1 for
non-root primal and dual vertices, equal to 0 for the root vertex and v∞ (the dual
vertex corresponding to the infinite face), and equal to 3 for edge-vertices. The
bijection makes use of the fact that the edges dual to edges not in the spanning tree
form a spanning tree of the dual map. Propp [96] and Felsner [48] characterise the
flip operation directly on spanning trees.

3. Eulerian orientations

The first example of structure we investigate are Eulerian orientations. Let
us first recall the definition of Eulerian circuits, which represent one of the first
historical developments in graph theory. Given a graph G = (V,E), an Eulerian
circuit C of G is a circuit traversing each edge of G exactly once. Eulerian circuits
(and the similar notion of Eulerian path) have been first considered by Euler to give
a negative answer to the classical Königsberg problem (whether all the bridges of
the city of Königsberg can be traversed exactly once). Notice that the orientation
of G induced by an Eulerian circuit is such that each vertex has same indegree as
outdegree, in particular each vertex has even degree. A graph G with all vertices of
even degree is called an Eulerian graph, and an orientation of the edges of G such
that Indeg(v) = Outdeg(v) is called an Eulerian orientation.

Proposition 1.1 (Characterization (Folklore)). A graph admits an Eulerian
orientation iff it is Eulerian.

Proof. Clearly, a graph endowed with an Eulerian orientation is Eulerian. Con-
versely, if a graph G is Eulerian, there exist classical algorithms to compute an
Eulerian circuit for each connected component of G [54], inducing an Eulerian ori-
entation. In fact, it is even simpler to compute directly an Eulerian orientation in
a greedy way [103, Vol A, Sect6.4]. �

It can be shown that the problem of counting the number of Eulerian orienta-
tions of a fixed Eulerian graph is difficult, namely is #P-complete [87]. Neverthe-
less, as observed in [96, 48], the set O of Eulerian orientations of a fixed Eulerian
map has an explicit combinatorial structure.

Proposition 1.2 (Lattice structure [48, 96]). Given an Eulerian map M ,
the set of Eulerian orientations of M is a distributive lattice. The flip operation
consists in reversing the orientation of a clockwise circuit delimiting a face.

Proof. The set of Eulerian orientations of M is exactly the set of α-orientations
of M , for the function α(v) = deg(v)/2. Clearly each edge-cut δ(X,X) has even
cardinality and has the same number of edges (non zero by connectivity of M) from
X to X as from X to X . Hence, there are no rigid edges, so that an essential circuit
is always the contour of a face. �

As there are no rigid edges, Eulerian orientations can be considered as the
simplest example of α-orientations. An example of distributive lattice formed by
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Figure 5. The distributive lattice of Eulerian orientations of an
Eulerian map.

the Eulerian orientations of an Eulerian map is shown in Figure 5: each arrow of
the (Hasse) diagram corresponds to reversing a ccw face boundary (flop operation).
Definition. Given an eulerian map, the eulerian orientation at the bottom of the
distributive lattice is called the minimal eulerian orientation.

4. Bipolar orientations

We consider in this section bipolar orientations, a powerful combinatorial struc-
ture that proves insightful to solve many algorithmic problems such as planar graph
embedding [31, 82] and geometric representations of graphs in various flavours (vis-
ibility [107], floor planning [78], straight-line drawing [108]). We first recall basic
properties of bipolar orientations, and then focus on the planar case. Using a bi-
jection between bipolar orientations and some orientations of the angular map, we
give a precise description of the lattice of bipolar orientations of a fixed map. Our
study closely follows the thesis of Ossona de Mendez [92].

Definition. Given a graph G = (V,E), a bipolar orientation of G is an acyclic
orientation of G such that the induced partial order on V has a unique minimum
s, called the source, and a unique maximum t, called the sink.

4.1. Properties and characterization. A rich source of results on bipolar
orientations is an article of De Fraysseix et al [38]. Among the classical properties,
it is shown that for any vertex v, there exists a simple oriented path from s to
t passing by v. To state the condition of existence of a bipolar orientation, it is
convenient to consider rooted graphs : a graph is rooted by marking and directing
one of its edges, called the root. In this framework, a bipolar orientation is always
such that the origin of the root is the source and the end-vertex of the root is the
sink.

Proposition 1.3 (Characterization [38]). A rooted graph G = (V,E) admits
a rooted bipolar orientation iff G is 2-connected.

Proof. Let G be a rooted graph admitting a bipolar orientation. Assume there
exists a separating vertex v. If v = s, there is clearly at least one sink in each
component of G\{s}, contradicting the uniqueness of the sink; similarly v can not
be equal to t, i.e., v ∈ G\{s, t}. As the source s and the sink t are adjacent, they
are in the same connected component of G\{v}. Hence, there exists a connected
component G1 of G\{v} that contains neither s nor t. Let w be a vertex in G1. As



30 1. COMBINATORIAL STRUCTURES ON PLANAR MAPS

a) b)

Figure 6. A bipolar orientation of a rooted 2-connected map
(Fig.a), the configurations of a vertex and of a face (Fig.b).

a) b) c)
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Figure 7. The duality relation on bipolar orientations

mentioned above, there exists a simple path from s to t passing by w. Clearly this
path has to pass twice by v, once from s to w and once from w to t. This contradicts
the fact that the path is simple. Conversely, given a rooted 2-connected graph G,
there exist iterative algorithms to compute a bipolar orientation of G [44]. In the
planar case, there exists a simplified algorithm due to De Fraysseix et al [36], which
is recalled in Chapter 2 (Section 3). �

4.2. Bipolar orientations in the plane. We focus here on the properties of
bipolar orientations embedded in the plane. When considering rooted maps, bipolar
orientations will always be assumed to have the origin of the root as source and the
end-vertex of the root as sink, see Figure 8(a). Such bipolar orientations are called
plane bipolar orientations. According to Proposition 1.3, the family of rooted maps
that admit a bipolar orientation is the family of rooted 2-connected maps. In other
words, the combinatorial structure “bipolar orientation” characterizes the family
of rooted 2-connected maps.

Duality relation. A nice property of bipolar orientations is the duality relation.
Given a rooted map M endowed with a rooted bipolar orientation, orient the edges
of M∗ from right to left (each edge e∗ dual to an edge e ∈ M is oriented from the
right of e to the left of e), except for the root edge and its dual whose directions
are not considered, see Figure 7. Clearly, the duality relation is anti-involutive:
applying the operation twice yields the reverse bipolar orientation.

Counting plane bipolar orientations. Given a pair (i, j) of integers, let θij be
the total number of rooted plane bipolar orientations on rooted maps with i + 1
vertices and j + 1 faces. A first remark is that θij = θji, a consequence of the
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Figure 8. A rooted 2-connected map endowed with a bipolar ori-
entation (a), the angular map of M endowed with the associated
angular orientation (c).

duality relation. Precisely, θij satisfies the following exact formula:

(3) θij = 2
(i+ j − 2)!(i+ j − 1)!(i+ j)!

(i− 1)!i!(i+ 1)!(j − 1)!j!(j + 1)!
.

Formula (3) has first been discovered by Baxter [4, Eq 5.3] using technical
guess-and-check calculations on the Tutte polynomial. In a subsequent article, a
direct computation has been given by Bousquet-Mélou [20], based on the so-called
obstinate Kernel method. In collaboration with Gilles Schaeffer and Dominique
Poulalhon, I have obtained a direct bijective proof (not presented in this thesis) of
this formula [65], using a construction that draws much of its inspiration from a
nice bijective proof of Nicolas Bonichon for the total number of Schnyder woods
(defined in Section 5) on rooted triangulations with n vertices [15]. Our bijection
also makes use of a formulation of plane bipolar orientations as α-orientations on
the associated angular map, which is described next.

Formulation as α-orientations on the angular map. Given a bipolar orien-
tation X of M with source s and sink t, an angle (e, e′) formed by two edges of M
around a vertex v —with e′ following e in cw order around v— is called an extremal
angle if (e, e′) are (ingoing, ingoing) or (outgoing, outgoing), and is called a lateral
angle if (e, e′) are (ingoing, outgoing) or (outgoing, ingoing). Accordingly, the in-
ner edges of the angular map Q are partitioned into so-called extremal edges and
lateral edges, depending on the type of their associated angle. We orient the lateral
edges outward of their incident black vertex, and the extremal edges outward of
their incident white vertex. This orientation is called the angular orientation of Q
associated with X , see Figure 8(b).

Plane bipolar orientations satisfy the following important property, illustrated
in Figure 6(b). The edges incident to an inner vertex are partitioned into a non-
empty interval of ingoing edges and a non-empty interval of outgoing edges; and,
dually, each face f of M has two particular vertices sf and tf such that the contour
of f consists of two non-empty oriented paths both going from sf to tf , called left
lateral path and right lateral path of f , respectively. Hence, each inner black vertex
v of Q has two outgoing edges, corresponding to the two lateral angles incident to
v. Dually, each white vertex of Q, corresponding to a face f of M , has two outgoing
edges, corresponding to the two extremal angles incident to the face f . Notice also
that all edges of Q incident to an outer vertex v are oriented toward v.
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Definition. Given a quadrangulationQ, an orientation of the inner edges ofQ such
that all inner vertices have outdegree 2 and the four outer vertices have outdegree
0 is called a 2-orientation (the four outer edges are not oriented).

Proposition 1.4 ([38]). Let M be a rooted 2-connected map and let Q be the
angular map of M . The set of bipolar orientations of M is in bijection with the set
of 2-orientations of Q.

Proof. As discussed above, a bipolar orientationX of M gives rise to a 2-orientation
Φ(X) of Q, obtained by orienting the inner edges of Q corresponding to extremal
angles (lateral angles) toward (outward, respectively) the corresponding black ver-
tex of Q. Conversely, using Euler’s relation on 2-orientations, it can be shown that
a 2-orientation Y gives rise to a unique bipolar orientation X := Ψ(Y ) of M , in
such a way that the mappings Ψ and Φ are mutually inverse [38]. �

As any vertex of a bipolar orientation is on a path connecting the two poles,
2-orientations satisfy the following accessibility property.

Accessibility property: “For any inner vertex v of a quadrangulation endowed
with a 2-orientation, there is at least one outer vertex accessible from v”.

4.3. Lattice structure of plane bipolar orientations. According to The-
orem 1.3, the set O of 2-orientations of a fixed quadrangulation Q is a distributive
lattice. Hence, the set B of bipolar orientations of a fixed rooted 2-connected map
M is a distributive lattice, via the bijection with the 2-orientations of the angular
map Q of M (Proposition 1.4). By studying the essential circuits of a 2-orientation,
we are able to obtain a direct simple formulation of the flip operation on bipolar
orientations, see Proposition 1.5. This makes the lattice structure of B more ex-
plicit than a formulation via circuit reversion in the 2-orientations of the angular
map Q. Our presentation is very sketchy, as the detailed study is due to Ossona
de Mendez [92]. Nevertheless, we find interesting to give the ideas, as they will
appear again to describe the lattice property of transversal structures in Section 6.

Essential circuits of 2-orientations. Given a quadrangulation Q endowed with
a 2-orientation O, it is easily shown that the essential circuits of O are exactly the
circuits of length 4. The proof goes in two steps. 1) No edge e inside an essential
circuit C has its origin on C, otherwise e could be extended to an internal path of C
(using the accessibility property), contradicting the fact that C is essential. 2) Let
n be the number of vertices inside C. As no edge inside C has its origin on C, the
number of edges inside C is equal to 2n. Moreover, if 2k denotes the length of C,
Euler’s relation ensures that the number of edges inside C is equal to 2n + k − 2.
Hence k = 2.

2-pieces in 2-connected maps. Let M = (V,E) be a rooted 2-connected map.
Given a subset F ⊂ E of edges of M , we denote by M(F ) the embedded graph
(possibly made of several connected components) formed by the edges in F and
their incident vertices, and by M(E\F ) the embedded graph formed by the edges
in E\F and their incident vertices. A non-empty subset F ⊂ E not containing
the root edge is called a 2-piece if M(F ) is contained in one face of M(E\F ), and
M(F ) and M(E\F ) intersect at exactly two vertices {v, w}, which are called the
poles of the 2-piece. The connectivity of M implies that M(F ) and M(E\F ) are
connected, i.e., are planar maps. It is easily shown that the 2-pieces of M are in
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Figure 9. The flip operation on bipolar orientations.

bijection with the 4-cycles of the angular map Q (for any 4-cycle C of Q, associate
the set of edges of M that are inside C).

Transversal 2-pieces. We explain now how the bijection between 2-pieces and
4-cycles is lifted so as to take the orientations into account. Consider a bipolar
orientation X of M , and let Y be the corresponding 2-orientation on the angular
map Q. Given a 2-piece F of M , the induced orientation X(E\F ) on E\F is a
bipolar orientation with same source and sink as M ; and the induced orientation
on F is a bipolar orientation X(F ) whose poles {sF , tF } are the two poles of the
2-piece. A 2-piece is called transversal if sF and tF are not comparable in the
bipolar orientation X(E\F ). Hence, there exists a face f of X(E\F ) such that one
pole is in the (open) left lateral path of f and the other pole is in the (open) right
lateral path of f , see Figure 9. The transversal 2-piece is said to be left-oriented
(right-oriented) if tF is in the left lateral path (right lateral path, respectively) of
f .

Bijection between transversal 2-pieces and oriented 4-circuits. The bi-
jection between 2-pieces of M and 4-cycles of Q specializes as follows. Let M
be a rooted 2-connected map endowed with a bipolar orientation X and let Y
be the corresponding 2-orientation of the angular map Q of M . Then the clock-
wise (counterclockwise) essential circuits of Q are in bijection with the left-oriented
(right-oriented, respectively) transversal 2-pieces of M . Recall that a flip operation
on the 2-orientations of Q consists in reversing the orientation of an essential clock-
wise circuit, i.e., a clockwise circuit of length 4. Thanks to the bijection between
transversal 2-pieces and 4-circuits, we can formulate the flip operation directly on
bipolar orientations, see Figure 9:

Proposition 1.5 (Lattice structure [92]). The set B of (rooted) bipolar orien-
tations of a rooted 2-connected map M is a distributive lattice. The flip operation
consists in reversing the orientations of edges in a left-oriented transversal 2-piece,
thus making the 2-piece right-oriented.

Definition. Given a rooted 2-connected map M , the bipolar orientation that has
no left-oriented transversal 2-piece is called the minimal bipolar orientation of M .
This is the bipolar orientation associated with the minimal 2-orientation of the
angular map (the one with no clockwise circuit).
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Figure 10. Local conditions of Schnyder woods (Fig.a) and an
example of Schnyder wood of a triangulation (Fig.b).

5. Schnyder woods

W. Schnyder has introduced in [101] a beautiful combinatorial structure for
triangulations, which he called realizer, and is now usually called Schnyder wood.
Several equivalent definitions have been given in terms of angle labelings, orien-
tations, or colorings. The concept has also a natural extension to 3-connected
maps [3, 46]. Essentially a Schnyder wood is an orientation and partition of the
inner edges of a triangulation into three trees that are directed to each of the three
outer vertices. The definition for 3-connected maps is similar, expect that an edge
is allowed to be traversed by either one tree or by two trees traversing the edge in
opposite directions. Originally, Schnyder woods have been introduced to obtain a
nice characterization of planarity in terms of a “dimension” parameter associated
with the incidences vertices-edges [101]. These properties have beautiful geometric
interpretations in terms of orthogonal surfaces in the 3D space, see [47, 88, 119].
Schnyder woods also lead to an elegant straight-line drawing algorithm based on
barycentric representation of vertices, also due to Schnyder [102] and subsequently
improved by Zhang and He [118] and by Bonichon et al [16] (see Chapter 5 for a
presentation and analysis of the latter algorithm). In this section we define Schny-
der woods and state their main properties, in particular the decomposition into
three spanning trees. We also describe the lattice structure, following the study by
Brehm [25] for triangulations and Felsner [48] for 3-connected maps.

5.1. Schnyder woods on triangulations. Let M be a planar map with
a triangular outer face, the outer vertices in clockwise order being denoted by
a1, a2, a3. A Schnyder wood of M is an orientation and labeling, with labels in
{1, 2, 3}, of the inner edges of M such that the following conditions are satisfied
(see Figure 10):

Schnyder woods (definition with edges):

C1: Each inner vertex v of T has outdegree 1 in each color. The outgoing
edges e1, e2, e3 in each label {1, 2, 3} occur in clockwise order around v.
For i ∈ {1, 2, 3}, all edges entering v with label i are in the clockwise
sector between ei+1 and ei−1.

C2: For i ∈ {1, 2, 3}, all inner edges incident to ai are ingoing and have label
i.
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Proposition 1.6 (Characterisation). A planar map M with triangular outer
face admits a Schnyder wood iff M is a triangulation.

Proof. Let M be a map with triangular outer face admitting a Schnyder wood. Let
n be the number of inner vertices of M . The conditions C1 and C2 imply that M
has 3n inner edges. Hence, M has n+ 3 vertices and 3n+ 3 edges. Euler’s relation
thus ensures that M has 2n+ 2 faces, so that the average degree of a face is 3. It
is easily checked (also based on Euler’s relation) that M has no loop nor multiple
edge. Hence all faces of M have degree at least 3. As the average degree of the
faces is 3, all faces must have degree 3, hence M is a triangulation.

Conversely, if M is a triangulation, there exist algorithms to compute a Schny-
der wood of M . Schnyder has given an algorithm based on edge-contraction [102],
which has been reformulated by Brehm as a simple iterative procedure [25]. We
recall the algorithm of Brehm in Chapter 2 (Section 4.1). �

Acyclicity property. Given a triangulation T endowed with a Schnyder wood, let
T1, T2, T3 denote the graphs formed by the edges with labels 1, 2, 3, respectively.
Then Euler’s relation and the Schnyder conditions imply the following acyclicity
property [48].
Acyclicity property: “for i = {1, 2, 3}, the graph obtained from T by reversing
the edges with label i is acyclic”.

The acyclicity property yields two key results on Schnyder woods:

(1) Partition into 3 spanning trees. For i ∈ {1, 2, 3}, the graph Ti is a
spanning tree of M\{ai−1, ai+1} rooted at ai and oriented toward ai.

(2) Path property. For each inner vertex v of T and i ∈ {1, 2, 3}, let Pi(v)
be the path of Ti from v to its root ai. Then the paths P1(v), P2(v), and
P3(v) do not intersect, except at their origin v.

The second result makes it possible to associate with each inner vertex v three co-
ordinates f1(v), f2(v), f3(v). This leads to embedding algorithms for triangulations
and 3-connected maps both in the context of orthogonal surfaces [88, 47, 119] and
straight-line drawing [102, 46, 3, 16].

Definition. We call a 3-orientation of a triangulation T an orientation of the inner
edges of T such that each inner vertex has outdegree 3 and the outer vertices have
outdegree 0.

Clearly, the orientation given by a Schnyder wood (forgetting the labels) is a
3-orientation. Conversely, for a 3-orientation, there is exactly one way to give labels
so as to satisfy the Schnyder conditions. Uniqueness is clear, as there is no choice
in propagating the labels from ai. Existence is established by associating to each
inner edge e an acyclic path starting at e. This path ends at one outer vertex ai,
whose index is chosen to be the label given to e, see [25, 48] for details. Thus, by
existence and uniqueness of the labeling, Schnyder woods of T are in bijection with
3-orientations of T , so that Theorem 1.3 ensures that the set of Schnyder woods
of a fixed triangulation is a distributive lattice. The following proposition gives a
precise description of the lattice property, see Figure 11.

Proposition 1.7 (Lattice structure [25, 92]). For any fixed triangulation T ,
the set of Schnyder woods of T is a distributive lattice. The flip operation consists in
reversing the orientation of a clockwise circuit ∆ of length 3, and applying i→ i+1
to the labels of the edges on ∆ and i→ i− 1 to the labels of the edges inside ∆.
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Figure 11. The flip operation on Schnyder woods of triangulations

Proof. First we show that essential circuits of a Schnyder wood are exactly circuits
of length 3. Consider an essential clockwise circuit ∆ of a Schnyder wood of a
triangulation T . We claim that all edges inside ∆ have their origin inside ∆.
(Proof: assume a contrario that an edge e inside ∆ has its origin on ∆, and let i
be the label of e. Then the path with label i starting at e and going to ai; this
path thus reaches ∆, contradicting the fact that C has no chordal path.) Hence,
if n denotes the number of vertices inside ∆, the number of edges inside ∆ is 3n.
Moreover, writing k for the length of ∆, Euler’s relation implies that the number
of edges inside ∆ is 3n+k−3, so that k = 3. Conversely, similar arguments ensure
that an oriented circuit of length 3 is essential. Hence, essential circuits of Schnyder
woods are exactly circuits of length 3, and no edge goes from a vertex of ∆ toward
the interior of ∆. It easily follows from Condition C1 that the effect of the circuit
reversion on the labels is i→ i+1 on the circuit and i→ i−1 inside the circuit. �

Definition. Given a triangulation T , the Schnyder wood associated to the minimal
3-orientation is called the minimal Schnyder wood of T . This corresponds to the
unique 3-orientation of T with no clockwise circuit.

5.2. Schnyder woods on 3-connected maps. We describe here an ex-
tended definition of Schnyder woods to 3-connected maps, worked out indepen-
dently by Di Battista et al [3] and Felsner [46]. It is convenient for us to formulate
the definition in terms of half-edges (originally, the extended definition has been
given in terms of edges, allowing bi-oriented bicolored edges). We will see that a
nice property appearing in the extended definition is a duality relation. A map M
with no loop nor multiple edge is suspended by distinguishing 3 vertices a1, a2, a3

incident to the outer face in clockwise order, and adding to {a1, a2, a3} a half-edge
reaching to the outer face. Given a suspended map M , a Schnyder wood of M is an
orientation and labeling —with labels {1, 2, 3}— of the half-edges of M such that
the following conditions are satisfied, (see Figure 13(a) for an example):

Schnyder woods (definition with half-edges):
C1: Every edge e satisfies two possible configurations. 1) The two half-

edges of e are both outgoing and have different labels; then e is called
bi-oriented. 2) One half-edge is outgoing and the other is ingoing, both
half-edges having the same label; then e is called simply oriented.

C2: Each vertex v of M has outdegree 1 in each color, and the half-edges h1,
h2, h3 leaving v in color {1, 2, 3} occur in clockwise order. Each half-edge
entering v in color i is in the clockwise sector between hi+1 and hi−1.

C3: There is no interior face whose boundary is a directed circuit in one
color.
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Figure 12. A suspended map endowed with a Schnyder wood,
and the three spanning trees, one in each color.

Notice that the definition of Schnyder woods for triangulations —with edges—
is a particular case of the definition with half-edges, namely when all edges are
simply oriented and the labels of the outer edges are forgotten (then condition C3
is not useful, it follows from the acyclicity property).

Acyclicity property. The same acyclicity property as for triangulations holds
for 3-connected maps. Given a suspended map M endowed with a Schnyder wood,
let T1, T2, T3 denote the maps formed by the edges of M having at least one of
their half-edges with label 1, 2, 3, respectively. Each edge e of Ti is oriented like
the half-edge of e with label i. Then Euler’s relation and the Schnyder conditions
(this is where C3 is useful) imply the following acyclicity property [48] similar to
the one for triangulations:
Acyclicity property: “for i = {1, 2, 3}, the graph obtained from M by reversing
the orientation of the half-edges with label i is acyclic”.

As the acyclicity property extends from triangulations to 3-connected maps,
the tree property and path property also extend to 3-connected maps, i.e.,

• for i = {1, 2, 3}, the graph Ti is a spanning tree of M rooted at ai and
endowed with the orientation toward ai, see Figure 12.
• For each inner vertex v of T and i ∈ {1, 2, 3}, let Pi(v) be the path in
Ti from v to the root ai. Then the paths P1(v), P2(v), and P3(v) do not
intersect, except at their origin v.

Definition. Given a suspended map M , the augmented map of M is the map M̂
obtained by adding a vertex in the outer face ofM connected to the three suspension

vertices of M . The map M is called internally 3-connected if M̂ is 3-connected.

Proposition 1.8 (Characterisation [88, 46]). A suspended map admits a
Schnyder wood (definition with half-edges) iff it is internally 3-connected.

Proof. Assume that a suspended map M admits a Schnyder wood. Then, for any

pair of vertices v and v′ of M̂ , it is easily shown that there exist three internally
vertex-disjoint paths connecting v and v′. (The three paths are constructed as suit-
able concatenations of parts of the paths Pi(v) and Pj(v

′).) Menger’s theorem [14]

ensures that M̂ is 3-connected, i.e., M is internally 3-connected. Conversely, given
an internally 3-connected map M , the existence of a Schnyder wood of M can be
proved either inductively [46] or algorithmically [3]; in Section 4 we present an
iterative algorithm computing a Schnyder wood of an internally 3-connected map.
�

Duality relation and derived map. An advantage of the extended definition to
3-connected maps is to satisfy a simple duality relation. For suspended maps, we
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Figure 13. The duality rules (down) and an example (top): each
configuration of an edge of M (Fig.a) corresponds to a configura-
tion of the dual edge in M∗ (Fig.c). The corresponding orientation
of the derived map is an α3-orientation (Fig.b).

adapt the definitions of dual maps and derived maps so as to take the suspension
vertices into account. Given an internally 3-connected suspended map M , the dual
of M is defined as the dual map M∗ (as defined in Section 1.3) of the augmented

map M̂ . The derived map M ′ of M is defined as the superimposition of M and M∗,
see Figure 13(b). Recall that each edge ofM ′ corresponds either to a half-edge of M
or to a half-edge of M∗. The vertices of M ′ are partitioned into the vertices of M —
called primal vertices—, the vertices ofM∗ —called dual vertices—, and the vertices

at a crossing between an edge ofM and its dual edge —called edge-vertices—. As M̂
is 3-connected, Theorem 1.9 ensures that M∗ is a 3-connected map with triangular
outer face, called an outer-triangular 3-connected map. In particular, the map
M∗, when suspended at its 3 outer vertices, admits a Schnyder wood according to
Proposition 1.8. There is in fact a bijection between the Schnyder woods of M and
the Schnyder woods of M∗, the proof relying on the above mentioned acyclicity
properties of Schnyder woods.

Definition. Let M ′ be the derived map of a suspended internally 3-connected
map. An α3-orientation of M ′ is an orientation of M ′ such that all primal and dual
vertices have outdegree 3 and all edge-vertices have outdegree 1.

Proposition 1.9 (Duality for Schnyder woods [48]). Let M be an internally
3-connected suspended map, and let M∗ be the dual of M . Then the following sets
are in bijection:

• the set of Schnyder woods of M ,
• the set of Schnyder woods of M∗,
• the set of α3-orientations of M ′.

The bijective rules are illustrated in Figure 13.
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Figure 14. The Schnyder configuration of a (white) vertex in the
dual map yields a generic configuration for the contour of a face.

The lattice structure of Schnyder woods then follows from the bijection with
α3-orientations and from the fact that the set of α3-orientations of the derived
map is a distributive lattice (Theorem 1.3). Felsner has characterised the essential
circuits for an α3-orientation, as stated in the following theorem.

Proposition 1.10 (Lattice structure [48]). The set of Schnyder woods of a
fixed internally 3-connected map M is a distributive lattice, via the bijection with
α3-orientations of the derived map M ′. The flip operation consists in reversing
an essential clockwise circuit of the derived map, which is either the contour of an
inner (quadrangular) face of M ′, or satisfies one of the configurations illustrated in
Figure 18 page 80.

Definition. For each internally 3-connected suspended map M , the Schnyder
wood associated with the minimal α3-orientation of the derived map M ′ is called
the minimal Schnyder wood of M .

Remark. Given an internally 3-connected suspended map M endowed with a
Schnyder wood, the duality relation ensures that the contour of an inner face f
contains three particular edges e1(f), e2(f) and e3(f) such that (see Figure 14):

(1) for i ∈ {1, 2, 3}, ei(f) is either simply oriented in clockwise direction with
label i− 1 or in counterclockwise direction with label i+ 1, or bi-oriented
with label i− 1 in cw direction and label i+ 1 in ccw direction,

(2) the other edges of the contour are partitioned into three (possibly empty)
intervals, the edges of the interval between ei(f) and ei+1(f) being bi-
oriented with label i in cw direction and label i+ 1 in ccw direction.

6. Transversal structures

6.1. Introduction. In this section we define and investigate the so-called
transversal structures, which play a similar role for irreducible triangulations as
Schnyder woods for triangulations. Like Schnyder woods, the definition is local,
but there is also a global characterisation, as a partition of the edges into two
bipolar orientations (Proposition 1.11).

Transversal structures were originally introduced by Xin He [73], under the
name of regular edge-labeling, for the family of irreducible triangulations. This gives
rise to a nice algorithm of rectangular-dual drawing, which was recently applied to
the theory of cartograms [104, 35]. However, the authors of [78] did not provide a
combinatorial study. Our contribution in this section is to extend the definition to
any planar map, give conditions of existence, and provide a complete description of
the lattice property of transversal structures. Similarly as for bipolar orientations in
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Figure 15. The local conditions C1 and C2 for transversal struc-
tures (Fig.a), a planar mapM endowed with a transversal structure
(Fig.b), the bipolar orientations on red and blue edges (Fig.c).

Section 4, the description is derived from a bijection between transversal structures
of an irreducible triangulation T and α-orientations of the angular map of T . A first
application of our result is to optimize cartogram algorithms [104, 35]. Indeed, our
combinatorial study makes it possible to choose the best cartogram representation
via exhaustive generation of the transversal structures, as discussed in Section 6.6.

The plan is the following. We define transversal structures, show a characteri-
sation as a transversal pair of bipolar orientations, and prove that a triangulation
admits a transversal structure iff it is irreducible (i.e., has no filled 3-cycle). Then
we focus on the family T of irreducible triangulations. Using an alternative defini-
tion without orientation —called transversal edge-partition— we show that the set
of transversal edge-partitions of a fixed irreducible triangulation is a distributive
lattice (Theorem 14 page 39). In addition, we give a simple geometric formulation
of the flip operation. The application to cartogram representation is then discussed.

6.2. Definition of transversal structures. Let M be a planar map with
quadrangular outer face. Call N , E, S, and W the four outer vertices of M in
clockwise order around the outer face. A transversal structure is an orientation
and a partition of the inner edges of T into red and blue edges such that the
following two conditions are satisfied (see Figure 15(b) for an example):

C1 (Inner vertices): In clockwise order around each inner vertex of T , its
incident edges form: a non empty interval of outgoing red edges, a non
empty interval of outgoing blue edges, a non empty interval of ingoing red
edges, and a non empty interval of ingoing blue edges, see Figure 15(a).

C2 (Border vertices): All inner edges incident to N , E, S and W are
ingoing red, ingoing blue, outgoing red, and outgoing blue, respectively.

Remark. This structure is also defined in [78] under the name of regular edge
labeling, and I call it transversal pair of bipolar orientations in the article to be
published [58]. In the thesis, I prefer to use the terminology of transversal structures
and then give the characterisation as a transversal pair of bipolar orientations.

6.3. Characterisation. Recall that Schnyder woods have a nice formulation
as a triple of trees with specific incidence relations. A parallel formulation exists for
transversal structures, this time in terms of a transversal pair of bipolar orientations.
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Figure 16. Given a planar map endowed with a transversal struc-
ture, there are 4 internally vertex-disjoint paths connecting any
pair of inner vertices of M .

Proposition 1.11. Let M be planar map with quadrangular outer face and
endowed with a transversal structure. Then the orientation induced by the red
edges is a bipolar orientation on M\{W,E} with source S and sink N , and the
orientation induced by the blue edges is a bipolar orientation on M\{N,S} with
source W and sink E. Moreover, the two bipolar orientations are transversal: for
any pair (Pr, Pb), where Pr is a red oriented path from S to N and Pb is a blue
oriented path from W to E, the paths Pr and Pb meet at exactly one vertex, where
they cross.

Proof. If M has a monochrome circuit, consider a minimal monochrome circuit C,
i.e., no other monochrome circuit has its interior strictly contained in the interior
of C. Assume that C is clockwise red (the three other cases are treated similarly).
Condition C2 ensures that all vertices of C are inner vertices of M . Hence, any
vertex v on C satisfies Condition C1, ensuring that there is a blue path P starting
from v toward the interior of C. This path can not run into a circuit, by minimality
of C. Hence P reaches C at another vertex v′. As C is clockwise red, this contradicts
Condition C1 at the vertex v′. Hence there is no monochrome circuit, i.e., the
orientation of red edges and the orientation of the blue edges are acyclic. According
to Conditions C1 and C2, the unique minimum of the red acyclic orientation is S and
the unique maximum is N . Similarly, the unique minimum of the blue orientation
is W and the unique maximum is E. The proof that the two bipolar orientations
are transversal (as stated) follows similar arguments. A red path Pr from S to N
and a blue path Pb from W to E clearly meet at least once at a vertex v, where they
cross; and they can not meet again after crossing at v without breaking Condition
C1. �

Unfortunately, we have not been able to characterise the family of planar maps
that admit a transversal structure. We only provide here necessary conditions of
existence in terms of the degree of faces and the degree of connectivity. We provide
a precise condition of existence only for triangulations of the 4-gon, the condition
of existence being the absence of separating 4-cycle (irreducibility).

Fact 1.1 (Configuration of faces). Let M be a planar map with quadrangular
outer face and endowed with a transversal structure. Then all inner faces of M
have degree 3 or 4 and obey one of the configurations illustrated in Figure 18.

Proof. Define the blue-map Mb of M as the map obtained from M by deleting
red edges, coloring blue the 4 outer edges, and directing the outer edges from W
to E. Consider an inner face fb of the blue map. As the orientation of the blue
edges is bipolar (Proposition 1.11), there exists a source-vertex s and a sink-vertex
t incident to fb such that the contour of fb is partitioned into two paths Pl (Pr)
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Figure 17. A face of the blue-map split by the transversal red edges.

Figure 18. Possible configurations for an inner face of a map
endowed with a transversal structure.

that go from s to t with f on the right (on the left, respectively). Given Condition
C1 of transversal structures, each red edge inside fb goes from a vertex of Pr\{s, t}
to a vertex of Pl\{s, t}. In addition, Condition C1 ensures that each vertex of
Pl\{s, t} has at least one incident ingoing red edge inside fb and each vertex of
Pr\{s, t} has at least one incident outgoing red edge inside fb. Hence, as illustrated
in Figure 17, the red edges split fb into faces that obey one of the configurations
shown in Figure 18. �

Definition. Let M be a planar map with no loop nor multiple edge and with

quadrangular outer face. The augmented map M̂ of M is the map obtained by
adding a vertex in the outer face of M connected to the four outer vertices of M .

The map M is called internally 4-connected if M̂ is 4-connected.

Fact 1.2 (Connectivity condition). Let M be a planar map with quadrangular
outer face and endowed with a transversal structure. Then M is internally 4-
connected.

Proof. Given two vertices v and v′ of M , Proposition 1.11 ensures that there exist
red paths Pr(v) (Pr(v

′)) going from S to N and passing by v (by v′, respectively).
Using suitable concatenations of parts of these paths, it is easily shown that there
exist 4 internally vertex-disjoint paths connecting v and v′, see Figure 16 for an

example. Hence, Menger’s theorem ensures that M̂ is 4-connected, i.e., M is inter-
nally 4-connected. �

Proposition 1.12 (Characterisation). A triangulation T of the 4-gon admits
a transversal structure iff T is irreducible.

Proof. Let T be a triangulation of the 4-gon and let T̂ be the augmented map of T .
It is easily checked that the presence of a filled 3-cycle ∆ = {x, y, z} implies that
the triple {x, y, z} is separating in T because the deletion of {x, y, z} separates the
interior of ∆ from the exterior of ∆. Hence, Fact 1.2 ensures that a triangulation
has to be irreducible to admit a transversal structure. Conversely, Kant and He [78]
have proved constructively that each irreducible triangulation (of the 4-gon) admits
a transversal structure. (We will provide in Section 5 an alternative algorithm.) �
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Figure 19. The local conditions of transversal edge-partitions (a)
and a complete example (b). In parallel, the local conditions of
transversal structures (c) and a complete example (d).

The following proposition is of minor interest to our study, but presents itself
as parallel to the acyclicity property of Schnyder woods.

Proposition 1.13 (Acyclicity property). Given a map M endowed with a
transversal structure, the orientation of M (forgetting the colors) is acyclic. The
orientations obtained by reversing all red or all blue edges are also acyclic.

Proof. Consider an inclusion-minimal oriented circuit C. Clearly, C is not the
contour of a face, according to Figure 18. Hence, there is an edge e inside C. This
edge is extended to a path using the fact that each vertex of M has indegree and
outdegree at least 1. The path is simple inside C, otherwise it would run into a
circuit strictly inside C. Hence the extended path, considered inside C, is a chordal
oriented path of C, yielding an oriented circuit whose interior is strictly contained
in the interior of C, a contradiction. �

6.4. Transversal edge-partitions. We now focus on the family of irreducible
triangulations. According to Proposition 1.12, these are exactly the triangulations
of the 4-gon admitting a transversal structure. We give here a simplified definition
with no orientation, which proves more convenient to describe the lattice property
(Theorem 1.4 page 50).

Let T be an irreducible triangulation, and callW , N , E, and S its outer vertices
traversed in clockwise order. A transversal edge-partition of T is a partition of the
inner edges of T into blue and red edges, such that the following conditions are
satisfied, see Figure 19.

C1’ (Inner vertices): In clockwise order around each inner vertex, its in-
cident edges form: a non empty interval of red edges, a non empty interval
of blue edges, a non empty interval of red edges, and a non empty interval
of blue edges, see Figure 19(a).

C2’ (Border vertices): All inner edges incident to W and to E are blue
and all inner edges incident to S and to N are red.

Observe that the conditions for the colors of edges in a transversal structure and
in a transversal edge-partition are the same. Thus, transversal structures seem to
contain more informations, as the edges have in addition to be oriented in a specific
way. The following proposition ensures that the additional information given by
the orientation of edges is in fact redundant, which means that there is a unique
way to orient the edges of a transversal edge partition so as to yield a transversal
structure.
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Figure 20. Given an irreducible triangulation T endowed with a
transversal structure Z (Fig.a) and the induced transversal edge-
partition E = Φ(Z) (Fig.b), construction of the angular map Q(T )
and of the α4-orientation of Q(T ) image of E by the mapping Ψ
(Fig.d).

Proposition 1.14. Let T be an irreducible triangulation. To each transversal
structure of T corresponds a transversal edge-partition of T , obtained by removing
the direction of the edges. This correspondence is a bijection.

Proof. This bijection will be established in Proposition 1.15 as an intermediate
mapping of another bijection. �

Proposition 1.14 allows us to manipulate equivalently transversal structures
and transversal edge-partitions. While the first point of view is useful to describe
the straight-line drawing algorithm given in Chapter 5, the definition without ori-
entations is more convenient to describe the lattice structure and a bijection with
ternary trees given in Chapter 3.

6.5. Lattice property of transversal edge-partitions. We investigate on
the set E(T ) of transversal edge-partitions of a fixed irreducible triangulation T .
Kant and He [78] have shown that E(T ) is not empty and that an element of E(T )
can be computed in linear time. In this section, we prove that E(T ) is a distributive
lattice. This property is to be compared with the lattice property of euleration
orientations, bipolar orientations, and Schnyder woods. Our proof follows similar
lines as the proof of the lattice structure of bipolar orientations, as we prove that
transversal structures of an irreducible triangulation are in bijection with specific
α-orientations of the angular map.

6.5.1. Bijection with orientations of the angular map. Let T be an irreducible
triangulation and let Q(T ) be the angular map of T , where for convenience we
discard the white vertex corresponding to the outer face of T as well as its incident
edges, see Figure 20.

We consider the function α4 : VQ → N specified as follows,

• each black vertex v of Q(T ) corresponding to an inner vertex of T satisfies
α4(v) = 4,
• each white vertex v of Q(T ) satisfies α4(v) = 1,
• the outer black vertices satisfy {α4(N) = α4(S) = 2, α4(W ) = α4(E) =

0}.
Proposition 1.15. Given T an irreducible triangulation and Q(T ) the angular

map of T , the following sets are in bijection:

• transversal pairs of bipolar orientations of T ,
• transversal edge-partitions of T ,



6. TRANSVERSAL STRUCTURES 45

• α4-orientations of Q(T ).

In particular, Proposition 1.15 ensures that the definitions of transversal edge-
partition and of transversal structures are equivalent, i.e., the orientation of edges
is a redundant information once the colors are fixed.

Given T an irreducible triangulation andQ(T ) the angular map of T , we denote
by B the set of transversal pairs of bipolar orientations of T , E the set of transversal
edge-partitions of T , and O the set of α4-orientations of Q(T ). To prove Proposi-
tion 1.15, we introduce two mappings Φ and Ψ respectively from B to E and from
E to O.

Given Z ∈ B, Φ(Z) is simply the edge-bicoloration induced by Z, as illustrated
in Figure 20(a)-(b). It is straightforward that Φ(Z) ∈ E . In addition, Φ is clearly
injective. Indeed, starting from a transversal edge-partition, the directions of edges
of Q(T ) are assigned greedily so as to satisfy the local rules of a transversal struc-
ture. The fact that the propagation of edge directions is done without conflict is
not straightforward; it will follow from the surjectivity of the mapping Φ, to be
proved later.

Given X ∈ E , we define Ψ(X) as the following orientation of Q(T ). First,
color blue the four outer edges of T . Then, for each angle (v, f) of T , orient the
corresponding edge of Q(T ) out of v if (v, f) is bicolored, and toward v if (v, f) is
unicolored. (An angle (v, f) of T is called bicolored if it is delimited by two edges of
T having different colors, and is called unicolored otherwise.) Condition C1 implies
that all inner black vertices of Q(T ) have outdegree 4. In addition, Condition C2
and the fact that the four outer edges of T have been colored blue imply that E
and W have outdegree 0 and that N and S have outdegree 2.

The following lemma ensures that all white vertices have outdegree 1 in Ψ(X),
so that Ψ(X) is an α4-orientation.

Lemma 1.1. Let T be a planar map with quadrangular outer face, triangular
inner faces, and endowed with a transversal edge-partition, the four outer edges
being additionally colored blue. Then there is no mono-colored inner face, i.e., each
inner face of T has two sides of one color and one side of the other color.

Proof. Let Λ be the number of bicolored angles of T and let n be the number of
inner vertices of T . Condition C1 implies that there are 4n bicolored angle incident
to an inner vertex of T . Condition C2 and the fact that all outer edges are colored
blue imply that two angles incident to N and two angles incident to S are bicolored.
Hence, Λ = 4n+ 4.

Moreover, as T has quadrangular outer face and triangular inner faces, Euler’s
relation ensures that T has 2n+ 2 inner faces. For each inner face, two cases can
arise: either the three sides have the same color, or two sides are of one color
and one side is of the other color. In the first (second) case, the face has 0 (2,
respectively) bicolored angles. As there are 2n + 2 inner faces and Λ = 4n + 4,
the pigeonhole principle implies that all inner faces have a contribution of 2 to the
number of bicolored angles, which concludes the proof. �

Lemma 1.1 ensures that Ψ is a mapping from E to O. In addition, it is clear
that Ψ is injective. To prove Proposition 1.15, it remains to prove that Φ and Ψ
are surjective. As Φ is injective, it is sufficient to show that Ψ ◦ Φ is surjective.
Thus, given O ∈ O, we have to find Z ∈ B such that Ψ ◦ Φ(Z) = O.
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Computing the preimage of an α4-orientation. We now describe a method
to compute a transversal structure Z consistent with a given α4-orientation O, i.e.,
such that Ψ ◦ Φ(Z) = O. The algorithm makes use of a sweeping process to orient
and color the inner edges of T ; a simple (i.e., not self-intersecting) path P of inner
edges of T going from W to E is maintained, the path moving progressively toward
the vertex S (at the end, the path is P = W → S → E). We require that the
following invariants are satisfied throughout the sweeping process.

(1) Each vertex of P\{W,E} has two outgoing edges on each side of P for
the α4-orientation O.

(2) The inner edges of T already oriented and colored are those on the left of
P .

(3) Condition C1 holds around each inner vertex of T on the left of P .
(4) A partial version of C1 holds around each vertex v of P\{W,E}. The

edges incident to v on the left of P form in clockwise order: a possibly
empty interval of ingoing blue edges, a non-empty interval of outgoing red
edges, and a possibly empty interval of outgoing blue edges.

(5) All edges already oriented and colored and incident to N , E, S, W are
ingoing red, ingoing blue, outgoing red, and outgoing blue, respectively.

(6) The edges of T already colored (and oriented) are consistent with the
α4-orientation O, i.e., for each angle (v, f) delimited by two edges of T
already colored, the corresponding edge of Q(T ) is going out of v iff the
angle is bicolored.

At first we need a technical result ensuring that Invariant (1) is sufficient for a
path to be simple.

Lemma 1.2. Let T be an irreducible triangulation and Q(T ) be the angular map
of T , endowed with an α4-orientation O. Let P be a path of inner edges of T from
W to E such that each vertex of P\{W,E} has outdegree 2 on each side of P for
the α4-orientation. Then the path P is simple.

Proof. Assume that the path P loops into a circuit; and consider an inclusion-
minimal such circuit C = (v0, v1, . . . , vk = v0). We define n•, n◦ and e as the
numbers of black vertices (i.e., vertices of T ), white vertices and edges of Q(T )
inside C. As T is triangulated and C has length k, Euler’s relation ensures that
there are 2n• + k− 2 faces inside C, i.e., n◦ = 2n• + k− 2. Counting edges of Q(T )
inside C according to their incident white vertex gives (i) : e=3n◦ =6n•+3k−6.
Edges of Q(T ) inside C can also be counted according to their origin for the α4-
orientation. Each vertex of C —except possibly the self-intersection vertex v0—
has outdegree 2 in the interior of C for the α4-orientation. Hence, (ii) : e =
4n• + n◦ + 2k− 2 + δ = 6n• + 3k− 4 + δ, where δ ≥ 0 is the outdegree of v0 inside
C. Taking (ii)− (i) yields δ = −2, a contradiction. �

The path P is initialized with all neighbours of N , from W to E. In addition,
all inner edges incident to N are initially colored red and directed toward N , see
Figure 23(b). The invariants (1)-to-(6) are clearly true at the initial step.

Let us introduce some terminology in order to describe the sweeping process.
Thoughout the process, the vertices of P are ordered from left to right, with W as
leftmost and E as rightmost vertex. Given v, v′ a pair of vertices on P —with v on
the left of v′— the part of P going from v to v′ is denoted by [v, v′]. For each vertex
w on P , let f1, . . . , fk be the sequence of faces of T incident to w on the right of P ,
taken in counterclockwise order. The edge of Q(T ) associated to the angle (w, f1)
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P(v,v’)

Figure 21. An admissible pair v, v′ of vertices, and the matching
path P (v, v′).

v v’v v’

Figure 22. The update step of the iterative algorithm finding the
preimage of an α4-orientation.

(angle (w, fk)) is denoted by ǫleft(w) (by ǫright(w), respectively). A pair of vertices
v, v′ on P —with v on the left of v′— is called admissible if ǫright(v) is ingoing at
v, ǫleft(v

′) is ingoing at v′, and for each vertex w ∈ [v, v′]\{v, v′}, the edges ǫleft(w)
and ǫright(w) are going out of w. Clearly an admissible pair always exists: take
a pair v, v′ of vertices on P that satisfy {ǫright(v) ingoing at v, ǫleft(v

′) ingoing at
v′} and are closest possible. Notice that two vertices v, v′ forming an admissible
pair are not neighbours on P (otherwise the white vertex associated to the face on
the right of [v, v′] would have outdegree > 1). Let w0 = v, w1, . . . , wk, wk+1 = v′

(k ≥ 1) be the sequence of vertices of [v, v′]. The matching path of v, v′ is the path
of edges of T that starts at v, then visits the neighbours of w1, w2, . . . , wk on the
right of P , and finishes at v′. The matching path of v, v′ is denoted by P (v, v′).
Let P ′ be the path obtained from P when substituting [v, v′] by P (v, v′). As shown
in Figure 21, the path P ′ goes from W to E and each vertex of P ′\{W,E} has
outdegree 2 on each side of P ′ for the α4-orientation O. Hence the path P ′ is
simple according to Lemma 1.2. Moreover, by definition of P (v, v′), all edges of T
in the region enclosed by [v, v′] and P (v, v′) connect a vertex of [v, v′]\{v, v′} to a
vertex of P (v, v′)\{v, v′}, see Figure 22.

We can now describe the operations performed at each step of the sweeping
process, as shown in Figure 22.

• Choose an admissible pair v, v′ of vertices on P .
• Color blue and orient from left to right all edges of [v, v′].
• Color red all edges inside the area enclosed by [v, v′] and P (v, v′), and

orient these edges from P (v, v′) to [v, v′].
• Update the path P , the part [v, v′] being replaced by P (v, v′).

According to the discussion above, the path P is still simple after these operations,
and satisfies Invariant (1). All other invariants (2)-to-(6) are easily shown to remain
satisfied, as illustrated in Figure 22. At the end, the path P is equal toW → S → E.
Invariants (3) and (5) ensure that the directions and colors of the inner edges of
T form a transversal structure Z; and Invariant (6) ensures that Z is consistent
with the α4-orientation O, i.e., Ψ ◦ Φ(Z) = O, see also Figure 23 for a complete
execution of the algorithm. This concludes the proof of Proposition 1.15.

6.5.2. Essential circuits of an α4-orientation. Proposition 1.15 ensures that the
set E of transversal edge-partitions of an irreducible triangulation is a distributive
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Figure 23. The complete execution of the algorithm calculating
the preimage of an α4-orientation O. At each step, the vertices of
the matching path P (v, v′) are surrounded.

lattice, as E is in bijection with the distributive lattice formed by the α4-orientations
of the angular map. By definition, the flip operation on E is the effect of a flip
operation on O via the bijection. Recall that a flip operation on an α-orientation
consists in reversing a clockwise essential circuit (circuit with no chordal path).
Hence, to describe the flip operation on E , we have to characterise the essential
circuits of an α4-orientation. For this purpose, we introduce the concept of straight
path.

Consider an irreducible triangulation T endowed with a transversal structure.
Color blue the four outer edges of T and orient them from W to E. The conditions
C1 and C2 ensure that there are four possible types for a bicolored angle (e, e′) of
T , with e′ following e in cw order: (outgoing red, outgoing blue) or (outgoing blue,
ingoing red) or (ingoing red, ingoing blue) or (ingoing blue, outgoing red). The
type of an edge of Q(T ) corresponding to a bicolored angle of T (i.e., an edge going
out of a black vertex) is defined as the type of the bicolored angle. For such an
edge e, the straight path of e is the oriented path P of edges of Q(T ) that starts at
e and such that each edge of P going out of a black vertex has the same type as e.
Such a path is unique, as there is a unique choice for the outgoing edge at a white
vertex (each white vertex has outdegree 1).

Lemma 1.3. The straight path P of an edge e ∈ Q(T ) going out of a black
vertex is simple and ends at an outer black vertex of Q(T ).

Proof. Notice that the conditions of a transversal structure remain satisfied if
the directions of edges of one color are reversed and then the colors of all inner
edges are switched; hence the edge e can be assumed to have type (outgoing red,
outgoing blue) without loss of generality. Let v0, v1, v2, . . . , vi, . . . be the sequence
of vertices of the straight path P of e, so that the even indices correspond to black
vertices of Q(T ) and the odd indices correspond to white vertices of Q(T ). Observe
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that, for k ≥ 0, the black vertices v2k and v2k+2 are adjacent in T and the edge
(v2k, v2k+2) is either outgoing red or outgoing blue. Hence (v0, v2, v4, . . . , v2k, . . .)
is an oriented path of T , so that it is simple, according to Proposition 1.11. Hence,
P does not pass twice by the same black vertex, i.e., v2k 6= v2k+2 for k 6= k′; and P
neither passes twice by the same white vertex (otherwise v2k+1 = v2k+3 for k 6= k′

would imply v2k+2 = v2k+4 by unicity of the outgoing edge at each white vertex, a
contradiction). Thus P is a simple path, so that it ends at a black vertex of Q(T )
having no outgoing edge of type (outgoing red, outgoing blue), i.e., P ends at an
outer black vertex of Q(T ). �

Proposition 1.16. Given T an irreducible triangulation and Q(T ) its angu-
lar map endowed with an α4-orientation X, an essential clockwise circuit C of X
satisfies either of the two following configurations,

• The circuit C is the boundary of a (quadrangular) inner face of Q(T ), see
Figure 24(a).
• The circuit C has length 8. The four black vertices of C have no outgoing

edge inside C. The four white vertices of C have their unique incident edge
not on C inside C, see Figure 24(b) for an example.

Proof. First we claim that no edge of Q(T ) inside C has its origin on C; indeed
the straight path construction ensures that such an edge could be extended to a
chordal path of C, which is impossible. We define n•, n◦ and e as the number of
black vertices, white vertices and edges inside C. We denote by 2k the number
of vertices on C, so that there are k black and k white vertices on C. Euler’s
relation and the fact that all inner faces of Q(T ) are quadrangular ensure that
(i) : e = 2(n• + n◦) + k − 2. As each white vertex of Q(T ) has degree 3, a white
vertex on C has a unique incident edge not on C. Let l be the number of white
vertices such that this incident edge is inside C (notice that l ≤ k). Counting edges
inside C according to their incident white vertex gives (ii) : e = 3n◦+l. Edges inside
to C can also be counted according to their origin for the α4-orientation. As no edge
inside C has its origin on C, we have (iii) : e = 4n• + n◦. Taking 2(i)− (ii)− (iii)
yields l = 2k− 4. As k is a positive integer and l is a nonnegative integer satisfying
l ≤ k, the only possible values for l and k are {k = 4, l = 4}, {k = 3, l = 2}, and
{k = 2, l = 0}. It is easily seen that the case {k = 3, l = 2} would correspond
to a separating 3-cycle. Hence, the only possible cases are {k = 2, l = 0} and
{k = 4, l = 4}, shown in Figure 24(a) and 24(b), respectively. The first case
corresponds to a circuit of length 4, which has to be the boundary of a face, as the
angular map of an irreducible triangulation (more generally, of a 3-connected map)
is well known to have no filled 4-cycle. �

6.5.3. Flip operation on transversal structures. As we prove now, essential cir-
cuits of α4-orientations correspond to specific patterns on transversal structures,
making it possible to have a simple geometric interpretation of the flip operation,
formulated directly on the transversal structure.

Given T an irreducible triangulation endowed with a transversal edge-partition,
we define an alternating 4-cycle as a cycle C = (e1, e2, e3, e4) of length 4 of edges
of T that are color-alternating (i.e., two adjacent edges of C have different colors).
Given a vertex v on C, we call left-edge (right-edge) of v the edge of C starting from
v and having the exterior of C on its left (on its right, respectively).

Lemma 1.4. An alternating 4-cycle C in a transversal structure satisfies either
of the two following configurations.
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Figure 24. The two possible configurations of an essential clock-
wise circuit C of Q(T ). In each case, an alternating 4-cycle is
associated to the circuit; and reversing the circuit orientation cor-
responds to switching the edge colors inside the alternating 4-cycle.

• All edges inside C and incident to a vertex v of C have the color of the
left-edge of v. Then C is called a left alternating 4-cycle
• All edges inside C and incident to a vertex v of C have the color of the

right-edge of v. Then C is called a right alternating 4-cycle.

Proof. Let k be the number of vertices inside C. Condition C1’ ensures that there
are 4k bicolored angles incident to a vertex inside C. Moreover, Euler’s relation
ensures that there are 2k + 2 faces inside C. Hence Lemma 1.1 implies that there
are 4k + 4 bicolored angles inside C. As a consequence, there are four bicolored
angles inside C that are incident to a vertex of C. As C is alternating, each of the
four vertices of C is incident to at least one bicolored angle. Hence the pigeonhole
principle implies that each vertex of C is incident to one bicolored angle inside C.
Moreover, each of the four inner faces (f1, f2, f3, f4) inside C and incident to an
edge of C has two bicolored angles, according to Lemma 1.1. As such a face fi has
two angles incident to vertices of C, at least one bicolored angle of fi is incident
to a vertex of C. As there are four bicolored angles inside C incident to vertices
of C, the pigeonhole principle ensures that each face f1, f2, f3, f4 has exactly one
bicolored angle incident to a vertex of C. As each vertex of C is incident to one
bicolored angle inside C, these angles are in the same direction. If they start from C
in clockwise (counterclockwise) direction, then C is a right alternating 4-cycle (left
alternating 4-cycle, respectively). �

Theorem 1.4. The set of transversal edge-partitions of a fixed irreducible tri-
angulation is a distributive lattice. The flip operation consists in switching the
edge-colors inside a right alternating 4-cycle, turning it into a left alternating 4-
cycle.

Proof. The two possible configurations for an essential clockwise circuit of an α4-
orientation are represented respectively in Figure 24(a) and Figure 24(b). In each
case, the essential circuit of the angular map corresponds to a right alternating
4-cycle on the irreducible triangulation. Notice that a clockwise face of Q(T ) corre-
sponds to the vertex-empty alternating 4-cycle, whereas essential circuits of length
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Figure 25. The dual map of a rectangular layout is naturally
endowed with a transversal structure.

8 correspond to all possible alternating 4-cycles with at least one vertex in their
interior (Figure 24(a) gives an example). As shown in Figure 24, the effect of re-
versing a clockwise essential circuit of the angular map is clearly a color switch of
the edges inside the associated alternating 4-cycle. �

Definition. Given an irreducible triangulation T , the transversal structure of T
with no right alternating 4-cycle is called minimal, as it is at the bottom of the
distributive lattice.

6.6. Application to cartographic theory. The terminology of maps refers
to the classical notion of geographic map. Indeed, a geographic map G (e.g., the
map of Europe) consists of regions (the countries), two regions being adjacent if
they share a border. The topological information of a geographic map is thus rep-
resented by a (dual) planar map MG that has one vertex v for each region R of G.
Cartographic theory aims at finding embeddings of a map meeting specific require-
ments. Typical restrictions can be imposed on the size and on the shape of the
regions. Requirements on the size make it possible to have a visual representation
of variables such as the population of each country. Requirements on the shape
aim at keeping the complexity of the regions as small as possible, so as to make a
visual inspection easier.

Rectangular layouts from transversal structures. We focus here on so-called
rectangular layouts, i.e., all faces of the cartogram are rectangles and at most 3
rectangles meet at a point. This is a typical example of restriction on the shapes
of the regions. The following proposition reveals the close connection between
rectangular layouts and transversal structures, see Figure 25:

Proposition 1.17 ([78]). A map M admits a representation as a rectangular
layout with 4 rectangles on the boundary iff the dual of M is an irreducible trian-
gulation. Given a rectangular layout of M , color red and orient from bottom to
top the edges of M∗ that are dual to horizontal borders, and color blue and orient
from left to right the edges of M∗ that are dual to vertical borders. Then the in-
duced bicoloration and orientation of inner edges of M∗ is a transversal structure.
Conversely, given a transversal structure, a rectangular layout consistent with the
orientations and colors of the edges can be computed in linear time.

The algorithm computing a rectangular layout from a transversal structure has
been developed by Kant and He [78]. The idea is to consider the dual maps Mr

and Mb of the red map and blue map of T := M∗, the maps Mr and Mb being
endowed with the dual bipolar orientations. The abscissa (ordinate) of a vertex v
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is then computed as the length of the longest path from the source to v in Mr (Mb,
respectively).

In practice, a geographic map is mostly dual to a triangulated map, as the case
where more than 3 borders meet at a same point can be considered as degener-
ated and is avoided using ǫ-perturbations. Moreover, the outer face can be made
quadrangular by adding 4 regions N , S, W , and E, to the North, South, West,
and East, respectively. Finally the occurence of separating 3-cycles is mostly due
to vertices of degree 3 for instance Luxemburg is enclosed by Belgium, Germany,
and France. As described in [104], this difficulty is bypassed by simple merge/split
operations, for instance by considering Belgium and Luxemburg as a single region
and splitting them afterwards.

Rectangular cartograms. As discussed above, up to minor modifications, it is
possible to consider a geographic map M as the dual of an irreducible triangulation
T , and each transversal structure of T yields a rectangular layout of M . In the
literature, the terminology of rectangular cartograms refers to rectangular layouts
where several quality criteria of visualization are specified [35, 104]. For instance,
the area of each region S has to be close to a target-value AS (e.g. AS is the
population of S), and the presence of too thin rectangles has to be avoided. The
quality of a rectangular layout R is then measured by a function f(R) combining
the various aesthetic criteria to be met.

Optimizing the quality using exhaustive generation. The article by Speck-
mann and Van Kreveld describes several heuristics to optimize the layout. The
principle is to start from a transversal structure of T := M∗, compute the associ-
ated rectangular layout of M using the Kant-He algorithm, and then modify locally
the layout using techniques such as segment moving, so as to increase the value of
f(R). The algorithm is launched from several transversal structures of T := M∗.
These are obtained by trying all orientations and colorations of edges and then
keeping the ones satisfying the conditions of transversal structures. Even if the
authors limit the exhaustive search by discarding some edge-orientations, the dis-
advantage of the method is to try a lot of edge-bicolorations that are not transversal
structures. We propose another approach, based on our study of transversal struc-
tures. The key point is that the set S of transversal stuctures of T is a distributive
lattice, and there exist efficient procedures to generate exhaustively all elements of
a distributive lattice (see [48] for a discussion). The approach we propose is the
following:

(1) Generate exhaustively all the transversal structures of T , and compute
the corresponding rectangular layout in each case.

(2) Launch the optimization heuristics starting from all the corresponding
rectangular layouts, and keep the rectangular layout maximizing the value
of f(R).
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Conclusion. To sum up, we have presented in this chapter several combinatorial
structures that characterise well known families of planar maps. Here is the list:

Structure Family

Eulerian orientations Eulerian maps
Bipolar orientations 2-connected maps

Schnyder woods (edges) Triangulations
Schnyder woods (half-edges) Internally 3-connected maps

Transversal structures Irreducible triangulations

All these structures have a formulation as orientations with specified outdegree
distribution on the vertices; hence they satisfy the properties of α-orientations. In
particular, the set of structures of a fixed map is a distributive lattice. The structure
at the bottom of the lattice is called minimal, for instance we have defined the
minimal bipolar orientation of a rooted 2-connected map. Moreover, for each of the
combinatorial structures, the flip-flop operations of the distributive lattice have a
formulation as a simple pattern-switching operation on the map.





CHAPTER 2

Efficient computation

Introduction. In the first chapter, we have presented several combinatorial struc-
tures that characterise well known families of planar maps, namely Eulerian ori-
entations, bipolar orientations, Schnyder woods, and transversal structures. This
chapter focuses on their efficient computation. The first interest is to provide an
algorithmic proof of existence of the combinatorial structures associated to each
family of maps.

In addition to be correct, we require that the computation is efficient, i.e.,
proceeds in linear time. Indeed, as will be developed in Chapter 4 and 5, the com-
binatorial structures are directly used to carry out optimal encoding and compact
straight-line drawing of planar maps. Hence, a fast computation of the structures
allows us to have an algorithmics on planar maps both with a very good time
complexity and space complexity (in terms of compacity of the output).

Results obtained in this chapter. For each of the combinatorial structures
{Eulerian orientations, bipolar orientations, Schnyder woods, transversal struc-
tures}, a linear time algorithm of computation of the minimal structure is pre-
sented.

The algorithm for Eulerian orientations is very standard. It proceeds by shelling
and orienting outer cycles greedily. The algorithms computing bipolar orientations,
Schnyder woods, and transversal structures also proceed by augmenting the oriented
area, but the principle of augmentation is different. Instead of shelling a cycle, the
augmentation is done by pushing a front line; at each step a vertex or face incident
to the front line is selected, all its incident edges are oriented, and the front line
is pushed further away. In the case of bipolar orientations, this gives rise to a
simple algorithm due to de Fraysseix et al [36], which we recall in Section 3 and
reformulate on the associated quadrangulation (the angular map).

Our main contribution is to extend the algorithm computing the minimal
Schnyder wood of a triangulation —introduced by Brehm [25]— to all 3-connected
planar maps, with linear time complexity. A linear algorithm computing a Schnyder
wood of a 3-connected map is described in [3], but the minimal Schnyder wood is
not always reachable. Our algorithm relies on similar principles, suitably modified
so as to ouput the minimal Schnyder wood. The proof of correctness is difficult and
is delayed to the end of the chapter. Finally, we introduce a new algorithm com-
puting transversal structures, which is easily specified to output the minimal one in
linear time. Two other linear algorithms of computation of transversal structures
have been introduced by Kant and He [78], but they do not seem well adapted to
compute the minimal one.

Motivations. Computing the minimal Schnyder wood of a 3-connected map is a
key ingredient in two recent important algorithms on planar maps:

55
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(1) The first optimal encoder for 3-connected maps (presented in Chapter 4
Section 2.1), which correspond to the incidences vertices/edges/faces of
polygonal meshes with spherical topology.

(2) The currently most compact straight-line drawing algorithm for planar
maps, developed by Bonichon et al [16], and analysed in Chapter 5 Sec-
tion 3.1.

Similarly, computing the minimal transversal structure is crucial to obtain the
first optimal encoder for 4-connected triangulations, which correspond to the inci-
dence relations of triangular meshes with spherical topology and without separating
3-cycle. This application is developed in Chapter 4.

Let us mention that our encoders only deal with the combinatorial part of
the meshes (the geometric part, i.e., the coordinates of vertices, is to be encoded
separately).

1. Computation of α-orientations

Let us first describe a generic algorithm that, given a graph M = (V,E),
tests the feasibility of a function α : V → N and outputs an α-orientation if α is
feasible, in time O(|V |3/2) if the maximal outdegree is bounded. This algorithm
has been explained to me by Stefan Felsner, who describes an alternative algorithm
based on flows in [48]. Notice that the generic algorithm can be called to compute
the combinatorial structures presented in Chapter 1, as these have a formulation
as α-orientations. However, for these structures, we will describe more efficient
algorithms, which have linear time complexity and have the further advantage of
outputing directly the minimal structure (for the distributive lattice).

The algorithm. The idea is to associate a planar map M̃ to M , such that the
existence of an α-orientation in M is equivalent to the existence of a perfect match-

ing in M̃ . The map M̃ is constructed as follows. Each vertex v ∈ M gives rise

to α(v) copies in M̃ ; each edge e = {v, w} gives rise to a vertex ve, called an

edge-vertex, connected to the vertices of M̃ spawned from v and w. Hence M̃
has |E| edge-vertices, has

∑
v∈V α(v) vertices spawned from vertices of M , and has∑

e={v,w}∈E α(v)+α(w) edges. Notice that each edge of M̃ connects an edge-vertex

and a vertex spawned from a vertex of M , so that M̃ is bipartite.

Assume that M̃ is endowed with a perfect matching X . Then each edge-vertex
ve, which corresponds to an edge e = {v, w} of M , is incident to a unique edge of
X , this edge being either connected to a copy of v or to a copy of w. In the first
(second) case, v (w, respectively) is called the origin-vertex of e.

Given a perfect matching X of M̃ , the orientation Y of M such that each
edge is oriented outward of its origin-vertex is an α-orientation. Indeed, for each
vertex v ∈ M , the copies v1, . . . , vα(v) spawned from v are matched with edge-

vertices ve1 , . . . , veα(v)
of M̃ . Hence, v has outdegree α(v), the outgoing edges

being e1, . . . , eα(v).

Conversely, the same principles ensure that a perfect matching of M̃ can be
computed from an α-orientation of M . This yields the following result.

Lemma 2.1. The existence of an α-orientation in M is equivalent to the exis-

tence of a perfect matching in M̃ . An α-orientation of M can be computed in linear

time from a perfect matching of M̃ .
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Figure 1. Computation of the minimal Eulerian orientation of an
Eulerian map.

Proposition 2.1. Given a map M = (V,E) and a function α : V → N,
testing the feasibility of α and computing an α-orientation of M can be done in
time-complexity O(|E|1/2m), where m =

∑
e={v,w}∈E α(v) + α(w). In particular,

the complexity is O(|V |3/2) if the maximal outdegree of M has a fixed upper bound.

Proof. From Lemma 2.1, computing an α-orientation of M reduces to computing

a perfect matching of M̃ . An algorithm due to Hopcroft and Karp [75] outputs

a perfect matching of a bipartite graph (if it exists) in time O(|Ṽ |1/2|Ẽ|). We

have seen that |Ẽ| = ∑e={v,w}∈E α(v) + α(w). Moreover, Euler’s relation and the

necessary condition
∑

v α(v) = |E| imply that |Ṽ | = O(|E|). �

2. Computing Eulerian orientations

We describe a simple algorithm to compute the minimal Eulerian orientation
of an Eulerian map. We use the well known property that an Eulerian map has no
bridge (a bridge is an edge having the same face on both sides). The absence of
bridge ensures that an edge incident to the outer face on one side is incident to a
bounded face on the other side. Hence, the set Eout(M) of edges incident to the
outer face of M is partitioned into edge-disjoint simple cycles. In particular, each
vertex of M has even degree in Eout(M), hence M\Eout(M) is an Eulerian map.
Given all these observations, we introduce the following algorithm of orientation,
illustrated in Figure 1.

ComputeMinEulerian(M):

(1) Orient all edges of Eout(M) with the outer face on their right.
(2) Call ComputeMinEulerian(M\Eout(M)).

Proposition 2.2. Algorithm ComputeMinEulerian outputs the minimal
Eulerian orientation of an Eulerian map M and can be implemented to run in
linear time.

Proof. The proof is recursive, as the algorithm. We write shortlyM := M\Eout(M),
X := ComputeMinEulerian(M), and X := ComputeMinEulerian(M). Let
us first show that X is Eulerian. The set Eout(M) is partitioned into edge-disjoint
simple cycles, which are all oriented counterclockwise at Step 1) of the algorithm
ComputeMinEulerian(M). Hence, each vertex has the same outdegree as inde-
gree in Eout(M). By induction on the number of edges, X is Eulerian. Hence, the
orientation X , which is obtained as Eout(M) ∪X, is also Eulerian.

Now we prove recursively that X is equal to the minimal Eulerian orientation
Xmin(M) of M . The crucial point is that each edge e = {v, v′} of Eout(M) has
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the outer face on its right in Xmin(M) (indeed, any Eulerian orientation is strongly
connected due to the existence of an Eulerian tour; if e had the outer face on its left,
the cycle formed by e and a path from v′ to v would be clockwise, a contradiction.)
As a consequence, the edges of Eout(M) have the same orientation in X and in
Xmin(M). By induction on the number of edges, X = Xmin(M). Moreover, X is
the restriction of X to M and Xmin(M) is clearly the restriction of Xmin(M) to M .
Hence X and Xmin(M) coincide on every edge, i.e., X = Xmin(M). Finally, the
linear complexity is straightforward; using the half-edge data structure, the outer
face of the map formed by the unoriented edges is easily maintained. �

3. Computing bipolar orientations

3.1. Description of the algorithm. Bipolar orientations exist for any rooted
2-connected graph and can be explicitly computed in linear time [38]. We focus
here on the planar case, i.e., the computation of bipolar orientations of rooted 2-
connected maps. In the planar case, a simple algorithm has been introduced by De
Fraysseix et al [36], which we recall here. Given a rooted 2-connected map M with
root e = (s, t), the idea is to sweep the map M using an oriented path P going
from s to t, and moving P progressively to the right. At each step, we denote by
MP the map whose edges are on P or on the left of P .

To update the path P , we use the concept of admissible face. An admissible
face f is given by the following property: there exist two vertices v and v′ on the
contour ∂f of f such that the path P1(f) ⊂ ∂f going from v to v′ with f on its
right is a subpath of P , and the path P2(f) ⊂ ∂f going from v to v′ with f on its
left intersects P only at v and v′. The update operation consists in choosing an
admissible face f , orienting the path P2(f) from v to v′, and replacing P1(f) by
P2(f) in the path P .

Proposition 2.3. The orientation algorithm terminates and outputs a bipolar
orientation, for any choice of the admissible face at each step.

Proof. The existence of at least one admissible face at each step is an easy conse-
quence of the absence of separating vertex in M . Hence, the algorithm terminates.
It outputs a bipolar orientation, as the following invariant is easily shown to hold all
along the computation: “P is oriented from s to t, the edges of M already oriented
are those of MP , and the induced orientation of MP is bipolar”. �

3.2. Computing the minimal bipolar orientation. At each step, the ver-
tices of P are ordered from left to right, with s as leftmost and t as rightmost
vertex. Clearly, admissible faces inherit the left-to-right order.

Proposition 2.4 ([92]). In the algorithm computing bipolar orientations, the
choice of the rightmost admissible face at each step yields the minimal bipolar ori-
entation (for the distributive lattice), and the algorithm can be implemented to run
in linear time.

Proof. Omited. The proof of minimality when choosing the rightmost admissible
face is given in [92]; arguments are close to the ones we will use to prove minimal-
ity for our algorithm computing the minimal transversal structure of an irreducible
triangulation (see Section 5.2). The linear time complexity is justified in [36]; argu-
ments are similar to the ones ensuring that our algorithm computing the minimal
transversal structure has linear time complexity (see Section 5.3). �
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Figure 2. Computation of the minimal bipolar orientation of a
rooted 2-connected map M (top figure). In the middle figure, the
angular map Q is oriented simultaneously. This gives a procedure
for computing the minimal 2-orientation of Q, which can be for-
mulated directly on Q by shrinking a cycle (bottom figure).

3.3. Equivalent orientation algorithm on the angular map. Let M be a
rooted 2-connected map and Q be its angular map. The generic algorithm presented
in Section 3.1 to compute a bipolar orientation of M gives rise to an algorithm A

computing the associated 2-orientation of Q: we orient each edge e of Q once the
two edges of the associated angle of M have been oriented, see Figure 2 (middle).
Recall that e is oriented toward its incident black vertex if the angle is extremal,
and outward of its incident black vertex if the angle is lateral.

Let us mention that Algorithm A can be formalized directly as an orientation
algorithm on Q using a terminology only dealing with the quadrangulation Q, i.e.,
without using the underlying bipolar orientation. Write v∞ for the white vertex
of Q corresponding to the outer face of M . A cycle C of edges of Q containing
the outer vertices {s, t, v∞} is maintained, such that the only separating vertices
of C can be white vertices, and the edges already oriented are those outside of C.
A white vertex on C\{v∞} is said to be admissible if it is not separating and not
incident to an internal chord of C (in fact, an admissible white vertex corresponds to
an admissible face of M). At each step, an admissible white vertex v is chosen, the
two incident edges of v on C are oriented outward of v, and all edges incident to v
inside C are oriented toward v, see Figure 3(a)-(b). Then C is updated, by removing
all faces incident to v from the interior of C. Observe that some edges outside of C
might not be oriented yet. Such edges correspond to legs pending from C and with
a black extremity outside of C. We orient these edges outward of their black vertex,
see Figure 3(b)-(c), where there are two such legs. According to Proposition 2.4,
the choice of the rightmost admissible white vertex at each step yields the minimal
2-orientation of Q. To sum up, the principle of the algorithm is to push a front-
line —the path C\{v∞}— by choosing at each step a so-called admissible vertex
v on the front-line and orienting the edges incident to v. Moreover, the choice of
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Figure 3. A generic step of the algorithm computing a 2-
orientation of a quadrangulation.

the rightmost admissible vertex on the front line at each step yields the minimal
2-orientation. These general features are common to all algorithms of orientation
presented in the sequel of this chapter, for the computation of Schnyder woods in
Section 4 and of transversal structures in Section 5.

4. Computing Schnyder woods

The main contribution of this chapter is a linear algorithm computing the min-
imal Schnyder wood of a 3-connected map. Our starting point is an algorithm in-
troduced by Brehm to compute the minimal Schnyder wood of a triangulation [25].
We first recall the algorithm of Brehm, which is simple and captures the main ideas
that are used in the extension to 3-connected maps.

4.1. Computing Schnyder woods of triangulations. The algorithm of
Brehm follows the same lines as the algorithm computing the minimal 2-orientation
of a quadrangulation, sketched in Section 3.3. It proceeds iteratively; the area not
oriented yet is delimited by a cycle and shrinks progressively. The difference is that
no vertex bicoloration has to be taken into account, which makes the algorithm
presented here simpler.

The algorithm. Let T be a triangulation, with a1, a2, and a3 the outer vertices
in clockwise order. The principle of the algorithm is to maintain a simple cycle C
containing the edge (a2, a3), called the base edge. We always imagine the triangu-
lation as drawn in the plane with the base edge down and the opposite vertex a1

on top. The vertices of C are ordered from left to right, with a3 as leftmost and
a2 as rightmost vertex. A vertex of C\{a2, a3} is said to be admissible if it is not
incident to an internal chord of C. The cycle C is initialized with a2, a3, and all
inner neighbours of a1. In addition, we label 1 the inner edges incident to a1 and
orient them toward a1, see Figure 4(b).

At each step, an admissible vertex v is chosen. We orient outward the two edges
incident to v on C, giving label 2 to the edge going to the right and label 3 to the
edge going to the left; and we orient inward all edges incident to v inside C, giving
label 1 to all these edges. The cycle C is updated by removing from the interior
of C all faces incident to v. As v is not incident to any internal chord, the update
of C is either a simple cycle or is reduced to the base-edge (a2, a3). Moreover, as
the map is a triangulation, it is easily shown that there exists an admissible vertex
at each step, i.e., the algorithm terminates, the cycle C being shrinked until it is
reduced to the base-edge, see Figure 4.

Proposition 2.5 ([25]). Given a triangulation T , the algorithm of orientation
outputs a Schnyder wood of T , for any choice of the admissible vertex at each step.

Proof. The following invariants are maintained all along the computation:

(1) The edges already oriented are those outside of C.
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Figure 4. Computation of the minimal Schnyder wood of a triangulation.

(2) Each vertex outside of C satisfies the Schnyder condition.
(3) Each vertex v on C satisfies the following partial version of Schnyder con-

dition (see Figure 6(b)); one edge incident to v outside of C is outgoing,
and has label 1; all edges incident to v between the outgoing edge and the
edge connected to the left neighbour of v are ingoing with label 2, and all
edges incident to v between the outgoing edge and the edge connected to
the right neighbour of v are ingoing with label 3.

At the end, C is reduced to the base-edge (a2, a3) and the invariants are true; hence,
the structure computed is a Schnyder wood, as illustrated in Figure 4.

Proposition 2.6 ([25]). Given a triangulation T , the choice of the rightmost
admissible vertex at each step yields the minimal Schnyder wood of T . In that case,
the algorithm can be implemented to run in linear time.

Proof. Let X be the Schnyder wood computed by choosing the rightmost admissible
vertex at each step. Recall that essential circuits of Schnyder woods are circuits
of length 3 (Proposition 1.7), so the presence of a clockwise circuit in X implies
the presence of a clockwise circuit of length 3. Assume there exists a clockwise
triangle ∆ = (x, y, z). As shown in the proof of Proposition 1.7, no edge inside ∆
has its origin on ∆. Hence, the Schnyder conditions ensure that the edges of ∆
in clockwise order have labels {1, 2, 3}. We assume that the edge with label 1 is
(z, x). Clearly, the labels of (x, y), (y, z), and (z, x) imply that x is treated before
y and z. Consider the step when x is treated (see Figure 5), and let C0 be the state
of the cycle at this step. The right neighbour of x on C0 is the extremity of the
edge going out of x with label 2, i.e., is the vertex y. As y is on the right of the
rightmost admissible vertex x, y is not admissible, hence is incident to an internal
chord. Take e as the internal chord of C0 incident to y and whose other extremity w
is leftmost possible. Consider the (closed) area A delimited by C0\{a2, a3} and the
chord e. As T is triangulated, it is easily shown that the area A contains at least
one admissible vertex. This property ensures that w is on the left of x on the cycle
(otherwise, the admissible vertex in A would be on the right of x, a contradiction).
In particular, the vertex x is in A. As (z, x) has label 1, the vertex z is inside C0
when x is treated, hence is above the chord {z, w}, see Figure 5. Clearly, e will
cease to be an internal chord once all vertices in A\{y, w} are treated. At this
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Figure 5. The presence of a clockwise 3-cycle yields the contra-
diction that a vertex has two outgoing edges with label 3.

step, all vertices on the right of y are still blocked, so that y will be the rightmost
admissible vertex at this step, with w as left neighbour on C. Hence, the outgoing
edge of y with label 3 is (y, w), i.e., w = z. This contradicts the fact that z is
above {y, w}. Finally, the linear time complexity will be justified for the extended
algorithm computing the minimal Schnyder wood of a 3-connected map, see the
paragraph on implementation page 72. �

4.2. Extension to 3-connected maps. We describe in this section a linear-
time algorithm to compute the minimal Schnyder wood of an outer-triangular 3-
connected map G. Recall that the minimal Schnyder wood of G corresponds by
definition to the minimal α3-orientation of the derived map G′. In addition, using
the rules illustrated in Figure 13, the minimal Schnyder wood of G is mapped to
the minimal Schnyder wood of its dual map G∗. As any suspended internally 3-
connected map is the dual of an outer-triangular 3-connected map, restricting our
attention to outer-triangular 3-connected maps is sufficient in order to compute the
minimal Schnyder wood of any suspended internally 3-connected map.

In itself our algorithm for 3-connected maps is only slightly more involved than
the algorithm for triangulations, and is close to an algorithm due to Di Battista [3],
which computes a Schnyder wood of a 3-connected map, but might not reach the
minimal one. The correctness proof is much more involved than for triangulations
(see the discussion in the beginning of Section 6).

4.2.1. Principle of the algorithm. Let G be an outer-triangular 3-connected
planar map and let G′ be its derived map and G∗ its dual map. We denote by
a1, a2 and a3 the outer vertices of G in clockwise order around G. The idea for
the orientation algorithm is again to maintain a simple cycle of edges of G. At
each step k, the cycle, denoted by Ck, is shrinked by choosing a so-called admissible
vertex v on Ck, and by removing from the interior of Ck all faces incident to v. The
admissible vertex is always different from a2 or a3, so that the edge (a2, a3), called
base-edge, is always on Ck. The edges of G′ ceasing to be on Ck or in the interior of
Ck are oriented so that the following invariants remain satisfied.

Orientation invariants:

• For each edge e of G outside of Ck, the 4 edges of G′ incident to the edge-
vertex ve associated to e have been oriented at a step j < k and ve has
outdegree 1.
• All other edges of G′ are not oriented yet.

Moreover, the edges of G′ that correspond to half-edges of G also receive a label in
{1, 2, 3}, so that the following invariants for labels remain satisfied:

Label invariants:
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Figure 6. The invariants for the labels of the half-edges of G
maintained during the algorithm.

• At each step k, every vertex v of G outside of Ck has one outgoing half-
edge for each label 1, 2 and 3 and these outgoing edges appear in clockwise
order around v. In addition, all edges between the outgoing edges with
labels i and i+ 1 are incoming with label i− 1, see Figure 6(a).
• Let v be a vertex of G on Ck having at least one incident edge of G′ outside

of Ck. Then exactly one of these edges, denoted by e′1, is going out of v. In
addition it has label 1. The edges of G′ incident to v and between e′1 and
its left neighbour on Ck are incoming with label 2; and the edges incident
to v in G′ between e′1 and its right neighbour on Ck are incoming with
label 3, see Figure 6(b).
• For each edge e of G outside of Ck, let e′ be the unique outgoing edge of

its associated edge-vertex ve. Two cases can occur:
– If e′ is a half-edge of G then the two edges of G′ incident to ve and

forming the edge e are identically labelled. This corresponds to the
case where e is “simply oriented”.

– If e′ is a half-edge of G∗, we denote by 1 ≤ i ≤ 3 the label of the edge
of G′ following e′ in clockwise order around ve. Then the edge of G′

following e′ in counter-clockwise order around ve is labelled i+1, see
Figure 6(c). This corresponds to the case where e is “bi-oriented”.

Actually, these labels, which are the labels of the Schnyder wood of G, are
not needed to perform the algorithm of orientation, but they will be very useful to
prove that it really computes the minimal α3-orientation.

In the following, we write Gk for the submap of G obtained by removing all
vertices and edges outside of Ck (at step k). In addition, we order the vertices of Ck
from left to right, with a3 as leftmost vertex and a2 as rightmost vertex. In other
words, a vertex v ∈ Ck is on the left of a vertex v′ ∈ Ck if the path of Ck going from
v to v′ without passing by the edge (a2, a3) has the interior of Ck on its right.

4.2.2. Description of the main iteration. Let us now describe the kth step of the
algorithm, during which the cycle Ck is shrinked so that the invariants for orientation
and labelling remain satisfied. The description requires some definitions.

Definitions. A vertex of Ck is said to be active if it is incident to at least one
edge of G\Gk. Otherwise, the vertex is said to be passive. By convention, before
the first step of the algorithm, the vertex a1 is considered as active and its incident
half-edge directed toward the infinite face is labelled 1.
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For each pair of vertices v1, v2 of Ck ordered so that v1 is on the left of v2, the
path on Ck going from v1 to v2 without passing by the edge (a2, a3) is denoted by
[v1, v2]. We also use the notation ]v1, v2[= [v1, v2]\{v1, v2}.

A pair (v1, v2) of vertices of Ck is separating if there exists an inner face f of Gk

such that v1 and v2 are incident to f but the edges of [v1, v2] are not all incident
to f . Such a face is called a separating face and the triple (v1, v2, f) is called a
separator. The area delimited by the border path [v1, v2] and by the path of edges
of f going from v1 to v2 with the interior of f on its right is called the separated
area of (v1, v2, f) and denoted by Sep(v1, v2, f).

A vertex v on Ck is said to be blocked if it belongs to a separating pair. It is
easily checked that a vertex is blocked iff it is incident to a separating face of Gk. In
particular, a non blocked vertex does not belong to any separating pair of vertices.
By convention, the vertices a2 and a3 are always considered as blocked. A vertex
v on Ck is admissible if it is active and not blocked.

Finally, for each vertex v of Ck, we define its left-connection vertex left(v) as the
leftmost vertex on Ck such that the vertices of ]left(v), v[ all have only two incident
edges in Gk. The path [left(v), v] is called the left-chain of v and the first edge
of [left(v), v] is called the left-connection edge of v. Similarly, we define the right-
connection vertex, the right-chain, and the right-connection edge of v. An important
remark is that all vertices of ]left(v), v[ and of ]v, right(v)[ are active. Indeed, these
vertices have two incident edges in Gk but they have at least 3 incident edges in G
because G is 3-connected. Hence, they have at least one incident edge in G\Gk.

Operations of step k. First, we choose the rightmost admissible vertex of Ck
and we call v(k) this vertex. (We will prove in Lemma 2.3 that there always exists
an admissible vertex on Ck as long as Gk is not reduced to the edge (a2, a3).) Notice
that this admissible vertex can not be a2 nor a3 because a2 and a3 are blocked.

We denote by f1, . . . , fm the bounded faces of Gk incident to v(k) from right to
left. We also denote by e1, . . . , em+1 the edges of Gk incident to v(k) from right to
left. Hence, for each 1 ≤ i ≤ m, fi corresponds to the sector between ei and ei+1.

An important remark is that the right-chain of v(k) is reduced to one edge.
Indeed, if there exists a vertex v in ]v(k), right(v(k))[, then v is active as already
explained. In addition, v is incident to only one inner face of Gk, which is f1. As
f1 is incident to v(k) and as v(k) is non blocked, f1 is not separating. Hence v is
not blocked. Thus v is admissible and is on the right of v(k), in contradiction with
the fact that v(k) is the rightmost admissible vertex on Ck.

We perform the following operations on the edges of G′ incident to the edge-
vertices on the left-chain of v(k) and on the edges e1, . . . em, see Figure 7:

• Inner edges: For each edge ei with 2 ≤ i ≤ m, we denote by vei the
corresponding edge-vertex of G′. Orient the two edges of G′ forming ei

toward v(k) and give label 1 to these two edges. Orient the two other
incident edges of vei toward vei , so that vei has outdegree 1.
• Left-chain: For each edge e of the left-chain of v(k) —traversed from
v(k) to left(v(k))— different from the left-connection edge, bi-orient e and
give label 3 (resp. label 2) to the first (resp. second) traversed half-edge.
Choose the unique outgoing edge of the edge-vertex ve associated to e to
be the edge going out of e toward the interior of Ck
• Left-connection edge: If left(v(k)) is passive, bi-orient the left-connection

edge e of v(k), give label 1 to the half-edge incident to left(v(k)) and la-
bel 3 to the other half-edge, and choose the unique outgoing edge of the
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Figure 7. The operations performed at step k of the algorithm,
whether left(v(k)) and right(v(k)) are passive-passive (Fig. a) or
active-passive (Fig. b) or passive-active (Fig. c) or active-active
(Fig. d). Active vertices are surrounded.

edge-vertex ve to be the edge going out of ve toward the exterior of Ck.
If left(v(k)) is active, label 3 and orient toward left(v(k)) the two edges of
G′ forming e, and orient the two other incident edges of ve toward ve.
• Right-connection edge: The edge e1, which is the right-connection edge

of v(k), is treated symmetrically as the left-connection edge. If right(v(k))
is passive, bi-orient e1, give label 1 to the half-edge incident to right(v(k))
and label 2 to the other half-edge, and choose the unique outgoing edge
of the edge-vertex ve1 to be the edge going out of ve1 toward the exterior
of Ck. If left(v(k)) is active, label 2 and orient toward right(v(k)) the two
edges of G′ forming e1, and orient the two other incident edges of ve1

toward ve1 .

After these operations, all faces incident to v(k) are removed from the interior
of Ck, producing a (shrinked) cycle Ck+1. As a2 and a3 are blocked on Ck, Ck+1

still contains the edge (a2, a3). In addition, if Ck+1 is not reduced to (a2, a3), the
property of 3-connectivity of G and the fact that the chosen vertex v(k) is not
incident to any separating face easily ensure that Ck+1 is a simple cycle, i.e., it does
not contain any separating vertex.

It is also easy to get convinced from Figure 6 and Figure 7 that the operations
performed at step k maintain the invariants of orientation and labeling.

The purpose of the next two lemmas is to prove that the algorithm terminates.

Lemma 2.2. Let (v1, v2, f) be a separator on Ck. Then there exists an admissible
vertex in ]v1, v2[.

Proof. Let (v′1, v
′
2, f

′) be a minimal separator for the (non empty) set of separa-
tors whose separated area is included or equal to the separated area of (v1, v2, f)
(minimality being with respect to the inclusion-relation on the separated areas).
Observe that v′1 and v′2 are in [v1, v2].

Assume that no vertex of ]v′1, v
′
2[ is active. Then the removal of v′1 and v′2

disconnects Sep(v′1, v
′
2, f) from G\Sep(v′1, v

′
2, f). This is in contradiction with 3-

connectivity of G, because these two sets are easily proved to contain at least one
vertex different from v′1 and v′2.



66 2. EFFICIENT COMPUTATION

Hence, there exists an active vertex v in ]v′1, v
′
2[, also in ]v1, v2[. If v was incident

to a separating face, this face would be included in the separated area of (v′1, v
′
2, f

′),
which is impossible by minimality of (v′1, v

′
2, f

′). Hence, the active vertex v is not
blocked, i.e., is admissible.

Lemma 2.3. As long as Ck is not reduced to (a2, a3), there exists an admissible
vertex on Ck.
Proof. Assume that there exists no separating pair of vertices on Ck. In this case,
an active vertex on Ck different from a2 and a3 is admissible. Hence we just have to
prove the existence of such a vertex. At the first step of the algorithm, there exists
an active vertex on C1\{a2, a3} because a1 is active by convention. At any other
step, there exists an active vertex on Ck\{a2, a3}, otherwise the removal of a2 and
a3 would disconnect Gk\{a2, a3} from G\Gk, in contradiction with 3-connectivity
of G.

If there exists at least one separator (v1, v2, f), Lemma 2.2 ensures that there
exists an admissible vertex v in ]v1, v2[.

Last step of the algorithm. Lemma 2.3 implies that, at the end of the iterations,
only the edge e = {a2, a3} remains. To complete the orientation, bi-orient e and
label 3 (resp. label 2) the half-edge of e whose origin is a2 (resp. a3); the outgoing
edge of the edge-vertex ve (associated to e) is chosen to be the edge going out of ve

toward the infinite face. We also label respectively 2 and 3 the half-edges incident
to a2 and a3 and directed toward the infinite face.

Figure 8 illustrates the execution of the algorithm on an example. On this
figure, the edges of Ck are black and bolder. In addition, the active vertices are
surrounded and the rightmost admissible vertex is doubly surrounded.

Theorem 2.1. The algorithm computes the minimal α3-orientation of the de-
rived map.

Section 6 is dedicated to the proof of this theorem.
Remark. As stated in Theorem 2.1, our orientation algorithm computes a par-

ticular α3-orientation, namely the minimal one. The absence of clockwise circuit
is due to the fact that among all admissible vertices, the rightmost one is chosen
at each step. The algorithm is easily adapted to other choices of admissible ver-
tices: the only difference is that the right-connection chain of the chosen admissible
vertex might not be reduced to an edge, in which case it must be dealt with in a
symmetric way as the left-connection chain (that is, 2 becomes 3 and left becomes
right in the description of edge labellings and orientations). This yields a “generic”
algorithm that can produce any α3-orientation of G′. Indeed, given a particular
α3-orientation X of G′, it is easy to prove the existence of a scenario (i.e., a suit-
able choice of the admissible vertex at each step) that outputs X . In contrast,
some α3-orientations of G′ —in particular the minimal one— might be missed by
the algorithm developed by Di Battista et al [3]. Their algorithm is close to ours,
however the operations allowed at each step are more limited; with our terminology,
each update is either such that the left-connection chain is reduced to one edge or
such that the chosen vertex v(k) is incident to a unique inner face of Gk.

Remark. Observe that the triple made of a2, a3, and the inner face of G incident
to (a2, a3) is a separator until the last-but-one step of the algorithm. Only at this
particular step, we need to state that a2 is blocked by convention, so that only the
edge (a2, a3) remains at the last step. In the following proofs (in particular that of
Lemma 2.8), a blocked vertex (even a2 and a3) will always be assumed to belong to
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Figure 8. Execution of the algorithm computing the minimal
Schnyder wood of an outer-triangular 3-connected map.
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a separator and we leave to the reader the easy verification that the proofs remain
correct by dealing with the particular case of the last but one step.

Implementation. Following [77] (see also [25] for the case of triangulations),
an efficient implementation is obtained by maintaining, for each vertex v ∈ Ck, the
number s(v) of separating faces incident to v. Thus, a vertex is blocked iff s(v) > 0.
Notice that a face f is separating iff the numbers v(f) and e(f) of vertices and edges
(except (a2, a3)) incident to f and belonging to Ck verify v(f) > e(f) + 1. Thus,
it is easy to test if a face is separating, so that the parameters s(v) are also easily
maintained. The data structure we use is the half-edge structure, which allows
us to navigate efficiently in the graph. The pointer is initially on a1, which is
the rightmost admissible vertex at the first step. During the execution, once the
vertex v(k) is treated, the pointer is moved to v the right neighbour of v(k) on
Ck. The crucial point is that, if v is blocked, then no vertex on the right of v can
be admissible (because of the nested structure of separating faces). Thus, in this
case, the pointer is moved to the left until an admissible vertex is encountered.
Notice also that v is active after v(k) is treated. Thus, if v is not blocked, then v
is admissible at step k + 1. In this case, the nested structure of separating faces
ensures that the rightmost admissible vertex at step k + 1, if not v, is either the
right-connection vertex v′ of v, or the left neighbour of v′ on Ck+1 (in the case
where v′ is not admissible). Notice that, in the case where v is not blocked, the
pointer is moved to the right but the edges traversed will be immediately treated
(i.e., removed from Ck+1) at step k+1. This ensures that an edge can be traversed
at most twice by the pointer: once from right to left and later once from left to
right. Thus, the complexity is linear.

5. Computing transversal structures

Let us now describe a simple iterative algorithm to compute the minimal
transversal structure of an irreducible triangulation. Two different algorithms com-
puting such transversal structures were already presented in [78]. The advantage
of our algorithm is that it is easily specified to output the minimal transversal
structure for the distributive lattice described in Section 6. We will need the mini-
mal transversal structure in the encoding algorithm for 4-connected triangulations
(Section 2.2) and analysing the straight-line drawing algorithm for irreducible tri-
angulations (Section 2.3).

5.1. Description of the algorithm. As the previously presented algorithms
of orientation, we proceed iteratively by augmenting the area oriented. The prin-
ciple is to maintain and iteratively shrink a cycle C of edges of T such that the
following invariants are satisfied at each step:

• The cycle C contains the two edges (S,W ) and (S,E).
• No edge interior to C connects two vertices of C\{S}
• All inner edges of T outside of C are colored and oriented such that Con-

dition C1 is satisfied for each inner vertex of T outside of C.
• For each inner vertex v of T on C, a partial version of C1 holds: in

clockwise order around v, the edges incident to v and exterior to C form:
a (possibly empty) interval of ingoing blue edges, a non empty interval
of outgoing red edges, and a (possibly empty) interval of outgoing blue
edges.
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N
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W

Figure 9. An example of execution of the algorithm computing
the minimal transversal structure. Vertices of the rightmost ad-
missible path are surrounded.

We initialise the cycle C with vertices S, W , E and all inner neighbours of N ,
color red all inner edges incident to N and orient them toward N , see Figure 9(b).
Observe that the vertices of C different from S can be ordered from left to right
with W as leftmost and E as rightmost vertex. For two vertices v and v′ of C\{S}
with v on the left of v′, we write [v, v′] for the unique path on C that goes from v
to v′ without passing by S.

To explain how to update (shrink) C at each step, we need a few definitions. An
internal path of C is a path P of connecting two vertices of C via vertices inside C.
We write CP the concatenation of P and [v, v′]. The path P is said to be admissible
if the following conditions are satisfied:

• The paths P and [v, v′] have both at least two edges.
• Each edge interior to CP connects a vertex of P\{v, v′} to a vertex of

[v, v′]\{v, v′}. In particular, the interior of CP contains no vertex.
• The cycle C′ obtained from C by replacing [v, v′] by P is such that no

interior edge of C′ connects two vertices of C′\{S}.
The update operation is the following: find an admissible internal path P of

C and write v and v′ for its left extremity and right extremity on C; then, color
each internal edge of CP in red and orient it toward [v, v′]\{v, v′}. Color all edges
of [v, v′] in blue and orient them from v to v′; finally update C by replacing in C
the path [v, v′] by the path P .

It is shown in Lemma 2.4 (which uses the absence of separating 3-cycles of T )
that the algorithm terminates, i.e., that at each step the cycle C has an admissible
internal path and can be updated (shrinked). After the last update operation, C is
empty and the invariants are satisfied, which implies that the obtained orientation
and coloration of inner edges of T is a transversal structure. Figure 9 illustrates
the complete execution of the algorithm on an example.

This generic algorithm can easily be adapted to obtain an algorithm, called
ComputeMinimal(T ), which computes the minimal transversal structure. Ob-
serve that, at each step of the algorithm, admissible paths of C can be ordered from
left to right, by saying that P1 ≥ P2 if the left extremity and the right extremity
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of P1 are (weakly) on the left respectively of the left extremity and of the right
extremity of P2. Although this order is only partial, it can easily be shown to
admit a unique minimum, called rightmost admissible path of C. Algorithm Com-
puteMinimal(T ) consists in choosing the rightmost admissible path at each step
of the iterative algorithm described above, see also Figure 9, where the execution
respects this choice.

Proposition 2.7. Given an irreducible triangulation T , ComputeMinimal(T )
outputs the minimal transversal structure of T . In addition, ComputeMinimal(T )
can be implemented to run in linear time.

The next section focuses on the proof that the computed transversal edge-
partition is the minimal one. Then, Section 5.3 details how the implementation
can be done with a linear time complexity.

5.2. Correctness of the algorithm. First we prove in Lemma 2.4 that the
generic algorithm terminates, hence it outputs a transversal structure. Then we
prove in Proposition 2.7’ that the transversal structure given by ComputeMini-
mal(T ) is minimal, i.e., has no alternating 4-cycle.

Lemma 2.4. At each step of the generic algorithm, the cycle C has an admissible
path. Hence the algorithm terminates.

Proof. If there is no vertex interior to C, we are at the last step of the algorithm,
represented on Figure 9(g). At this step, the path made of the two edges (W,S)
and (S,E) is clearly admissible.

If there is a vertex interior to C, we define a 2-chord of C as a path of two
edges inside C connecting two vertices v and v′ of C\{S}. Given an internal path
P , we call associated cycle of P the cycle made of the concatenation of P and of
[v, v′], where v and v′ are respectively the left and the right extremity of P . A
2-chord is said separating if the interior of its associated cycle contains at least
one vertex. Observe that the set of separating 2-chords is not empty because the
associated cycle of the 2-chord (W,S,E) is the whole cycle C, whose interior has
at least one vertex. Let P be a minimal separating 2-chord, i.e., the interior of the
associated cycle C(P) of P does not contain the interior of the associated cycle of
any other separating 2-chord. Let wl and wr be the left and right extremity of P .
Observe that [wl, wr]\{wl, wr} contains at least one vertex, otherwise C(P) would
be a separating 3-cycle. Consider a vertex v of [wl, wr]\{wl, wr}. Let v1, . . . , vk be
the neighbours of v in the interior of C(P) and in counterclockwise order around v.
It is easy to see that v1, . . . , vk are in the interior of C(P), by minimality of P . Let
eleft be the leftmost incident edge of v1 connected to a vertex of C\{S} and eright

be the rightmost incident edge of vk connected to a vertex of C\{S}. Let vleft and
vright be the respective extremities of eleft and eright on C\{S}. Consider the path
Pv made of the concatenation of eleft, of the chain connecting v1 → v2 . . . → vk,
and of eright, see Figure 10.

We now prove that Pv is admissible, i.e., that it satisfies the three conditions
defined in Section 5.1. The first condition is clearly satisfied. If the second condition
was not satisfied, then vleft → v1 → v or v → vk → vright would be a separating
2-chord, contradicting the minimality of P . Assume that the third condition is not
satisfied. Then the cycle C′ obtained from C by replacing [vleft, vright] by Pv contains
an internal chord e. As C contains no internal chord, e is incident to at least one
of the interior neighbours of v and is exterior to the cycle delimited by Pv and by
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Figure 10. There exists an admissible internal path in the interior
of a cycle associated to a separating 2-chord.

[vleft, vright]. In fact, e can not connect two interior neighbours of v. Otherwise, let i
and j be the indices of these two neighbours, with i < j. First observe that i < j+1
because vi and vi+1 are already adjacent on Pv and a triangulation has no multiple
edges. Thus the 3-cycle made of e, {v, vi} and {v, vj} is separating because its
interior contains the vertex vi+1. Hence e connects an interior neighbour vi (with
1 ≤ i ≤ k) of v to a vertex v on C\{S}. Then two cases can occur: if v is on the
left or equal to vleft, then the origin vi of e can not be v1 because the leftmost edge
connecting connecting v1 to C is eleft, which belongs to Pv. Hence the 2-chord made
of e and of {vi, v} is separating because its associated cycle contains the vertex v1.
This is in contradiction with the minimality of P . Similarly the case where e is
on the right or equal to vright is excluded. Finally, Pv is admissible, so that there
exists at least one admissible path.

Now we concentrate on the proof that the transversal structure computed by
ComputeMinimal(T ) is minimal.

Lemma 2.5. Let X be a transversal structure of T and let P be an oriented
blue path connecting W to E. Then there can be no edge exterior to P connecting
two vertices of P.

Proof. Condition C1 of transversal structures ensures that such an edge e has to be
colored blue. By acyclicity of the orientation of the blue edges, e has to be oriented
in the parallel direction of P . Assume that e is parallel to P on the left of P (the
other case is treated similarly). Let Pe be the part of P between the origin and the
end-vertex of e, and let Ce be the cycle delimited by e and Pe. Then Pe has length
at least 2, otherwise T would have a double edge. Let v be a vertex of Pe different
from the two extremities of e. Then Proposition 1.11 ensures that there exists a
simple red path from v to N that starts into the interior of Ce. As the path goes
to N , it has to reach Ce at another vertex, in a way that contradicts Condition C1
(the reason is that all vertices on Ce are also on Pe). �

Remark. With the terminology of partial orders, this lemma states that the acyclic
graph on blue edges (and the same holds for red edges) has no transitive edges, i.e.,
it is the Hasse diagram of the partial order induced on the vertices of T \{S,N}.

Lemma 2.6. Let X be a transversal structure of T and let P be an oriented blue
path connecting W to E, with its associated cycle C(P) defined as the concatenation
of P and of the path E → S → W . Then, for any inner face f of the blue-map
Tb of T having its left lateral path included in P, the right lateral path of f is an
admissible path for C(P), as defined in Section 5.1.

Proof. Let v and v′ be the origin and end-vertex of the right lateral path Pr(f) of
f . Observe that the part of P between v and v′, which we denote by [v, v′], is the
left lateral path of f . We have to check that the three conditions of an admissible
path are satisfied by Pr(f). The fact that Pr(f) and [v, v′] have at least two edges
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ee

P1R RP0

Figure 11. The presence of a right alternating 4-cycle inX0 yields
the presence of an admissible path on the right of the chosen path.

(first condition) and the fact that the replacement of [v, v′] by Pr(f) in the path P
creates no internal chord (third condition) are a direct consequence of Lemma 2.5.
The second condition is immediately checked by transversality of the two bipolar
orientations. �

Remark. This result ensures in particular that any transversal structure X of
T can be computed by the generic algorithm, by making a suitable choice of the
admissible path at each step. Indeed, any sweeping of the inner faces of the blue
map of T (for the transversal structure X) yields a possible execution of the generic
algorithm, where the right lateral path of the swept face of Tb is chosen at each
step.

Proposition 2.7’. Given an irreducible triangulation T , ComputeMinimal(T )
outputs the minimal transversal structure of T .

Proof. We denote by X0 the transversal structure computed by ComputeMi-
nimal(T ). Assume that X0 has a right alternating 4-cycle R. Let X1 be the
transversal structure obtained from X0 by switching the colors of the edges interior
to R and orienting these edges so that Condition C1 is satisfied, see Figure 11. Let
e be the (oriented) blue edge of R having the interior of R on its right. We consider
the step of ComputeMinimal(T ) during which e is treated (i.e., colored, oriented
and removed from C). Denote by Tb(X0) the blue-map of T for the transversal
structure X0. Let P0 be the right lateral path of the face of Tb(X0) on the right of
e. Similarly, consider the blue-map Tb(X1) of T for X1; and denote by P1 the right
lateral path of the face of Tb(X1) on the right of e. Lemma 2.6 ensures that, at the
step where e is treated by ComputeMinimal(T ), P0 and P1 are both admissible
paths. As the transversal structure output by ComputeMinimal(T ) is X0, P0 is
the admissible path used to update C at the step where e is treated. Hence, by
definition of ComputeMinimal(T ), P0 is the rightmost admissible path on C. As
illustrated in Figure 11, the fact that R is a right alternating 4-cycle ensures that
P1 is more on the right than P0, yielding a contradiction. �

5.3. Implementation. We explain here how to implement ComputeMini-
mal(T ) so that the complexity is linear. Let us first give a brief overview. The
idea is to maintain a list of nested paths incident to the (iteratively shrinked) cycle
C, such that a path of the list becomes the rightmost admissible path as soon as
all paths which it encloses are treated. The nested structure of the paths indicates
that the suitable data structure to store them is a stack.

In all this section, we use the same notations as in Section 5.1. In particular, we
denote by C the cycle iteratively shrinked so as to compute the minimal transversal
structure; and for two vertices v and v′ of C\{S} with v on the left of v′, we denote
by [v, v′] the path on C\{S} going from v to v′.
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Figure 12. The matching path of a vertex v (a). The nested
arrangement of admissible matching paths (b). The vertices of the
righmost admissible path are surrounded.

We now introduce the terminology of matching path. Let v be a vertex of C\{S}
different from W and from the right neighbour of W on C\{S}. Denote by w the
left neighbour of v on C\{S} and write w1, . . . , wk for the neighbours of w in the
interior of C, taken in cw-order. Let 1 ≤ i ≤ k be the smallest index such that wi

is connected by an edge to a vertex of C\{S} on the left of w (such an index exists
because wk is connected to the left neighbour of w). Denote by v′ the leftmost
vertex of C\{S} connected to wi by an edge. Then the path v, w1, . . . , wk, v

′ is
called the matching path of v, see Figure 12(a). The vertices w1, . . . , wk are called
the internal vertices of the matching path. The matching path of a vertex v is said
to be admissible if it does not share any internal vertex with the matching path of a
vertex on the right of v on C\{S}. As a consequence, admissible matching paths do
not share any internal vertex, so that they are nested, as illustrated in Figure 12(b).
An important remark is that the rightmost admissible path is the matching path
of its right extremity. In addition, it is admissible. Precisely, as illustrated in
Figure 12(b), the rightmost admissible path is the rightmost one among admissible
matching paths that enclose no other admissible matching path.

The implementation of ComputeMinimal we present here uses a list L of
vertices and a stackK of admissible matching paths, so that the following invariants
are maintained throughout the execution of the algorithm:

• The list L contains the vertices of C\{S} ordered from right to left, and
there is a pointer on a vertex of the list.
• The stackK contains the admissible matching paths whose right extremity

is on the right (on C\{S}) of the currently marked vertex of L.

As in Section 5.1, the cycle C is initialized with vertices S, W , E and all interior
neighbours of N . In addition, all inner edges incident to N are initially colored red
and oriented toward N . The list L is initialized with all neighbours of N ordered
from E to W and the pointed vertex of L is E. The stack K is initially empty.

At each step, the pointed vertex v of L is considered. Two cases can arise. If
K is not empty and v is the left extremity of the admissible path P on top of K,
then P is the rightmost admissible path. Then we perform the following operations,
where w denotes the right extremity of P : 1) Color blue and orient the edges of
[v, w] from v to w. 2) Color red and orient from P to [v, w] the edges inside the
cycle delimited by P and [v, w]. 3) Replace [v, w] by P in the list L (according to
the right-to-left order). 4) Move the pointer of L to the right extremity of P . 5)
Pop out the path P from the stack K.
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If K is empty or v is not the left extremity of the admissible path on top of K,
we perform the following operations: 1) Compute the matching path of v and mark
as visited all internal vertices of the matching path; if, during the computation, an
already visited vertex is encountered inside C, stop at once. 2) If no visited vertex
has been encountered inside C, add the matching path at the top of K. 3) Move
the pointer of L to the vertex following v in the list (i.e., the left neighbour of v on
C\{S}).

Figure 13 shows the complete execution of the algorithm on the triangulation
that was already used as example in Figure 9. It is easily checked that the invariants
are maintained and that the algorithm terminates (indeed each step either shrinks
C or moves the marked vertex of L to the left).

Proposition 2.7”. Algorithm ComputeMinimal(T ) can be implemented to run
in linear time.

Proof. Each blue edge of T is traversed twice: the first time on an admissible
matching path, the second time on the cycle C. Each red edge is traversed at
most once, as an edge of a matching path whose computation is interrupted. Euler
relation ensures that a triangulation with n vertices has 3n− 7 edges, so that the
complexity is also linear in the number of vertices. �

6. Appendix: proof of Theorem 2.1

Let G be an outer-triangular 3-connected map. We denote by X0 the α3-orientation
of the derived map G′ computed by the algorithm presented in Section 4. The aim of the
whole section is to show Theorem 2.1, i.e., that X0 is the minimal α3-orientation of the
derived map G′.

Our proof follows the principle of the proof by Brehm [25] for triangulations, see
Proposition 2.5. Recall that, for a triangulation, the argument is the following (see the
proof of Proposition 1.7): the presence of a clockwise circuit implies the presence of an
essential clockwise circuit which is, in the case of a triangulation, a 3-circuit (x, y, z). Then
the clockwise orientation of (x, y, z) determines unambiguously (up to rotation) the labels
of the 3 edges of (x, y, z). These labels determine an order of treatment of the 3 vertices
x, y and z not compatible with the fact that the admissible vertex chosen at each step is
the rightmost one.

In the general case of 3-connected maps, which we consider here, the proof is more
involved but follows the same lines. This time there is a finite set of configurations for
an essential circuit of an α3-orientation (for a triangulation this set is restricted to the
triangle). A common caracteristic is that the presence of a clockwise circuit C for each of
these configurations implies the presence of three paths P1, P2, P3 of edges of G whose
concatenation forms a simple cycle in G (in the case of a triangulation, the three paths are
reduced to one edge). In addition, the fact that C is clockwise determines unambiguously
the labels and orientations of the edges of P1, P2 and P3. Writing v1, v2 and v3 for the
respective origins of these three paths, our proof (as in the case of triangulations, but
with quite an amount of technical details) relies on the fact that the labels of P1, P2, P3

imply an order of processing of v1, v2 and v3 which is not compatible with the fact that
the admissible vertex chosen at each step is the rightmost one.

6.1. The algorithm outputs an α3-orientation. By construction of the orien-
tation, each primal vertex of the derived map G′ has one outgoing edge for each label
1, 2 and 3, hence it has outdegree 3. By construction also, each edge-vertex of G′ has
outdegree 1. Hence, to prove that X0 is an α3-orientation, it just remains to prove that
each dual vertex of G′ has outdegree 3 in X0.
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Figure 13. The complete execution of the linear time implemen-
tation of ComputeMinimal on an example. At each step, the
edges of C are bold black, the pointed vertex of L is surrounded,
and the admissible paths that are in the stack K are bordered by
small arrows and have a label indicating their position in the stack.
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Figure 14. The dual vertex of a face f has one outgoing edge
connected to the lower path of f .

Let f be an inner face of G and vf the corresponding dual vertex in G∗. Let k be
the step during which f has been merged with the infinite face of G. During this step, a
sequence of consecutive edges of f has been removed. This path of removed consecutive
edges is called the upper path of f . The path of edges of f that are not in the upper path
of f is called the lower path of f . By construction of the orientation (see Figure 7), exactly
two edges of G′ connecting vf to an edge-vertex of the upper path of f are going out of
vf : these are the edge-vertices corresponding to the two extremal edges of the upper path.

Hence it just remains to prove that exactly one edge of G′ connecting vf to an edge-
vertex of the lower path of f is going out of vf . First, observe that the lower path P of
f is a non empty path of edges on Ck+1, such that the two extremities vl and vr of the
path are active and all vertices of ]vl, vr[ are passive on Ck+1, see Figure 7. The fact that
exactly one edge of G′ connecting vf to an edge-vertex of P is going out of vf is a direct
consequence of the following lemma, see Figure 14.

Lemma 2.7. At a step k of the algorithm, let v1 and v2 be two active vertices on Ck

such that all vertices of ]v1, v2[ are passive. Then the path [v1, v2] on Ck is partitioned into

• A (possibly empty) path [v1, v] whose edges are bi-oriented in the finally computed
orientation X0, the left half-edge having label 2 and the right half-edge label 1.

• An edge e = [v, v′] that is, in X0, either simply oriented with label 2 from v to
v′, or simply oriented with label 3 from v′ to v, or bi-oriented, with label 2 on
the half-edge incident to v and label 3 on the half-edge incident to v′.

• A (possibly empty) path [v′, v2] such that, in X0, each edge of [v′, v2] is bi-
oriented, with label 1 on the left half-edge and label 3 on the right half-edge.

Proof. The proof is by induction on the length of [v1, v2]. Assume that this length is equal
to 1. Then [v1, v2] is reduced to an edge. If v1 is removed at an earlier step than v2, then
the edge {v1, v2} is simply oriented with label 2 from v1 to v2. If v2 is removed at an
earlier step than v1, then the edge {v1, v2} is simply oriented with label 3 from v2 to v1.
If v1 and v2 are removed at the same step, then {v1, v2} is bi-oriented, with label 2 on
v1’s side and label 3 on v2’s side, see Figure 7.

Assume that the length of [v1, v2] is at least 2. Observe that the outer path [v1, v2]
remains unchanged as long as none of v1 or v2 is removed. This remark follows from the
fact that all vertices of ]v1, v2[ are passive, so that no vertex of [v1, v2] can be treated as
long as none of v1 or v2 is treated.

Then, two cases can arise: if v1 is removed before v2, the right neighbour v of v1

becomes active and the edge {v1, v} is bi-oriented, with label 2 on v1’s side and label 1
on v’s side, see Figure 7. Similarly if v2 is removed before v1, the left neighour v of v2

becomes active and the edge {v, v2} is bi-oriented with label 3 on v2’s side and label 1 on
v’s side.

The result follows by induction, with a recursive call to the path [v, v2] in the first
case and to the path [v1, v] in the second case.

6.2. The algorithm outputs the minimal α3-orientation.

6.2.1. Definitions and preliminary lemmas. Let us first define what we call maximal
bilabelled paths. Let v be a vertex of G. For 1 ≤ i ≤ 3, the i-path of v is the unique path
P i

v = (v0, . . . , vm) of edges of G starting at v and such that each edge (vp, vp+1) is the
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Figure 15. The two possible configurations related to the next
active vertex on the right of v(k).

outgoing edge of vp with label i (i.e., the edge of G containing the outgoing half-edge of
vp with label i). Acyclicity properties of Schnyder woods ensure that P i

v ends at the outer
vertex ai, see [48]. For 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3 with i 6= j, we define the maximal i− j

path starting at v as follows. Let l ≤ m be the maximal index such that the subpath
(v0, . . . , vl) of P i

v only consists of bi-oriented edges with labels i − j. Then the maximal
i− j path starting at v is defined to be the path (v0, . . . , vl) and is denoted by P i−j

v .

At a step k ≥ 2, let v(k) be the chosen vertex, i.e., the rightmost admissible vertex
on Ck. First, observe that there exists an active vertex on the right of v(k). Indeed, the
rightmost vertex a2 is active as soon as k ≥ 2. In addition a2 is non admissible on Ck

because it is blocked, so that a2 is different from v(k). Hence, a2 is an active vertex on
the right of v(k).

We define the next active vertex on the right of v(k) as the unique vertex v on the
right of v(k) on Ck such that all vertices of ]v(k), v[ are passive.

Lemma 2.8. At a step k ≥ 2, let v(k) be the chosen vertex. Let v be the next active
vertex on the right of v(k). Let vprec be the left neighbour of v on Ck. Then, in the finally

computed orientation X0, each edge of [v(k), vprec] is bi-oriented, with label 2 on its left
side and label 1 on its right side. The edge e = {vprec, v} is either simply oriented with
label 2 from vprec to v or bi-oriented, with label 2 on vprec’s side and label 3 on v’s side.

In other words, P 2−1

v(k) = [v(k), vprec] and the outgoing edge of vprec with label 2 is (vprec, v).

Proof. To prove this lemma, using the result of Lemma 2.7, we just have to prove that
{vprec, v} is neither bi-oriented with label 1 on vprec’s side and label 3 on v’s side, nor
simply oriented with label 3 from v to vprec, see Figure 14.

First, as the active vertex v is on the right of v(k), it can not be admissible, so that
v is blocked. As a consequence there exists a vertex v′ and a face f such that v, v′ and
f form a separator. Lemma 2.2 ensures that there exists an admissible vertex in ]v′, v[.

Hence the vertex v′ is on the left of v(k) on Ck, otherwise v(k) would not be the rightmost
admissible vertex. Let P be the path of f going from v to v′ with the interior of f on its
left. Two cases can arise: 1) the first edge of P is different from (v, vprec), so that vprec is
above P , see Figure 15(a). Clearly, v remains blocked as long as all vertices above P have
not been treated. Hence, vprec will be treated at an earlier step that v. As v is active,
it implies (see Figure 7) that (vprec, v) is simply oriented with label 2 from vprec to v. 2)
the first edge of P is (v, vprec), see Figure 15(b). Observe that vprec can not be equal to

v′. Indeed v is on the right of v(k), so that vprec is on the right or equal to v(k), whereas

v′ is on the left of v(k). Hence, P has length greater than 1. As a consequence, when f

will cease to be separating, vprec will only be incident to f . Figure 7 ensures that, when
such a vertex is treated, the edge connecting this vertex to its right neighbour is always
bi-oriented and bi-labelled 2-3, which concludes the proof.

Lemma 2.9. At a step k ≥ 2, let v(k) be the rightmost admissible vertex and v the
next active vertex on the right of v(k). Let v3−2 be the extremity of P 3−2

v in X0 and e the
outgoing edge of v3−2 with label 3. If e is bi-oriented, it is bi-labelled 3-1 and we define
v1 = v3−2. Otherwise, e is simply oriented and we define v1 as the extremity of e.
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Figure 16. The path between v and v3−2 will consist of bi-
oriented edges bilabelled 3-2.

Then v1 belongs to Ck and is on the left of v(k).

Proof. First, observe that each vertex v′′ such that the pair {v′′, v} is separating is on the

left of v(k), otherwise, Lemma 2.2 ensures that there exists an admissible vertex in ]v′′, v[,

in contradiction with the fact that v(k) is the rightmost admissible vertex.
Observe also that the set of separators (v′′, v, f) involving v and endowed with the

inclusion-relation on the separated areas is not only a partial order but a total order. In
particular, for two separators (v′′

1 , v, f1) and (v′′
2 , v, f2), if v′′

1 is on the left of v′′
2 , then

the separated area of (v′′
2 , v, f1) is strictly included in the separated area of (v′′

1 , v, f2). In

addition, this set is non empty because v is the next active vertex on the right of v(k),
hence v is blocked.

Let (v′, v, f) be the maximal separator for this totally ordered set. Then the separated
area of (v′, v, f) contains all separating faces incident to v except f . Let P (f) be the path
of edges of f going from v to v′ with the interior of f on its left. We denote by B the

separated area of (v′, v, f). Let fGk be the submap of G obtained by removing B from Gk.

Let fCk be the contour of fGk.
We claim that f is not separating in fGk. Otherwise, there would exist a vertex v2

on the right of v such that (v, v2, f) is a separator or there would exist a vertex v3 on the
left of v′ such that (v3, v

′, f) is a separator: the first case is in contradiction with the fact
that all separators {v, v2} involving v are such that v is on the right of v2. The second
case is in contradiction with the fact that (v′, v, f) is the maximal separator involving v.

We claim that only vertices of B will be removed from step k on, until all vertices of
B are removed. Indeed, all separating faces incident to vertices on the right of v are faces

of fGk, hence they will remain separating as long as not all vertices of B are removed. As
all vertices on the right of v are either blocked or passive, it is easy to see inductively that
all these vertices will keep the same status until all vertices of B are removed.

Let k0 be the first step where all vertices of B have been removed. Then Gk0 = fGk.

Hence f is not separating anymore on Ck0 , but all other faces of fGk that are separating at
step k are still separating at step k0. We have seen that the separating faces incident to v

at step k are the face f and faces in B. In addition, all faces of Gk0 , except f , have kept
their separating-status between step k and step k0. Hence v is admissible on Ck0 , and the

rightmost admissible vertex v(k0) at step k0 is a vertex incident to f . It is either v or a
vertex of f on the right of v (on Ck0) such that [v, v(k0)] only consists of edges incident to

f (otherwise f would be separating), see Figure 16, where v(k0) is the right neighbour of
v.

Moreover, the left-connection vertex of v(k0) is v′. Otherwise there would be a vertex

of f on fCk and on the left of v′. This vertex would also be on Ck (because only vertices of

B are removed to obtain fGk from Gk), in contradiction with the fact that (v′, v, f) is the
maximal separator of Ck involving v.

Then two cases can arise whether v′ is passive or active on Ck0 : 1) v′ is passive on Ck0 .
Then v′ is not incident to any edge of G\Gk0 . In particular v′ is not incident to any edge
of B\Gk0 . Hence the right neighbour of v′ on Ck0 and on Ck are the same vertex, that
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Figure 17. Configuration of a face f of G′ whose contour is a
clockwise circuit and such that the outgoing edge of the unique
primal vertex of f has label 1 (Fig. a) and label 3 (Fig. b).

is, the vertex v1 preceding v′ on P . Observe that v1 is on the left of v(k) on Ck (indeed,

v1 can not be equal to v(k) at step k because v1 is incident to f , which is separating at
this step). Then, by definition of v1 and by construction of the orientation (see Figure 7),

P 3−2

v(k0) is equal to [v1, v
(k0)] taken from right to left, and (v1, v

′) is bi-oriented bi-labelled

3− 1 from v1 to v′. As v ∈ [v1, v
(k0)] on Ck0 , [v, v(k0)] ⊂ [v1, v

(k0)], so that P 3−2
v is equal

to [v, v(k0)] taken from right to left. As {v1, v
′} is bi-oriented bi-labelled 3− 1 from v1 to

v′, this concludes the proof for the first case (i.e., v1 = v3−2).
2) v′ is active on Ck0 . In this case, upon taking v1 to be the vertex v′, a similar argument

as for the previous paragraph applies: indeed v1 is a vertex on Ck on the left of v(k), and
P 3−2

v is the path on Ck0 going from v to the right neighbour of v1 on Ck0 , and the edge
connecting the right neighbour of v1 to v1 is simply oriented with label 3 toward v1 (see
Figure 7).

Lemma 2.10. The vertices a1, a2 and a3 can not belong to any clockwise circuit.

Proof. Let us consider a1 (the cases of a2 and a3 can be dealt with identically). The
outgoing edge of a1 with label 1 is directed toward the infinite face. The outgoing edges of
a1 with labels 2 and 3 connect respectively a1 to two edge-vertices whose unique outgoing
edge is directed toward the infinite face. Hence each directed path starting at a1 finishes
immediately in the infinite face.

6.2.2. Possible configurations for a minimal clockwise circuit of X0.

Lemma 2.11. Let f be an inner face of G′. Then the contour of f is not a clockwise
circuit in X0.

Proof. Assume that the contour of f is a clockwise circuit. We recall that the contour of f

has two edge-vertices, one dual vertex, and one primal vertex v. Let i be the label of the
edge e′ of f going out of v. The edge e′ is the first half-edge of an edge e of G. We denote
by ve the edge-vertex of G′ associated to e and by v′ the vertex of G such that e = {v, v′}.
As the contour of f is a clockwise circuit, the unique outgoing edge of ve follows the edge
{ve, v} in counter-clockwise order around ve. Hence, according to Figure 6(c), the edge
e is bi-oriented and the second half-edge of e has label i + 1. We denote by enext the
edge of G following e in clockwise order around v. The edge e′next of G′ following e′ in
clockwise order around v is the edge of f directed toward v. Hence, the rules of labelling
(Figure 6(a)) ensure that e′next has label i − 1. As e′next is the second half-edge of enext,
this ensures that enext is simply oriented with label i− 1 toward v.

We now deal separately with the three possible cases i = 1, 2, 3:
— Case i = 1: The edge e is bi-labelled 1-2 from v to v′ and enext is simply oriented

with label 3 toward v, see Figure 17(a). Let k be the step of the algorithm during which
the vertex v′ is removed from Gk. Figure 7 ensures that, if v′ is not equal to the rightmost
admissible vertex v(k), then the outgoing edge with label 2 of v′ is bi-oriented, with label
3 on the other half-edge, which is not the case here. Hence v′ = v(k). In addition, as
{v′, v} is bi-labelled 2-1 from v′ to v, the vertex v is passive on Ck. Hence, writing ev→
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Figure 18. The possible configurations for a minimal clockwise
circuit of X0.

for the edge of Ck whose left extremity is v, there is no edge of G\Gk between e and ev→

in clockwise order around v, so that ev→ = enext.
We claim that k ≥ 2. Otherwise v′ would be equal to a1. As e = {v, v′} is bi-labelled

1-2 from v to v′, v would be equal to a2. But according to Lemma 2.10, a2 can not belong
to any clockwise circuit.

Hence k ≥ 2 and we can use Lemma 2.8. In particular, this lemma ensures that ev→

is the outgoing edge of v with label 2. We obtain here a contradiction with the fact that
enext is going toward v with label 3 and that ev→ = enext.

— Case i = 2: The edge e is bi-labelled 2-3 from v to v′ and enext is simply oriented
with label 1 toward v. Let k be the step during which v is removed from Gk. By construc-
tion of the orientation (see Figure 7), at step k the vertex v belongs to ]left(v(k)), v(k)[
and enext is the outgoing edge of v with label 3. This is in contradiction with the fact that
enext is simply oriented toward v with label 1.

— Case i = 3: The edge e is bi-labelled 3-1 from v to v′ and enext is simply oriented
with label 2 toward v, see Figure 17(b). Let v be the origin of enext and let k be the step
during which v is removed from Gk. As enext is simply oriented with label 2 from v to
v, we have v = v(k) and v = right(v(k)). Lemma 2.8 ensures that v is the next active

vertex on the right of v(k) on Ck. In addition, k ≥ 2, otherwise v(k) = a1, in contradiction
with the fact that the outgoing edge of a1 with label 2 is bi-oriented. Hence, we can use
Lemma 2.9: in our case, the next active vertex on the right of v(k) is v and the path P 3−2

v

is empty because the outgoing edge with label 3 of v is bi-labelled 3-1. Hence the vertex
denoted by v1 in the statement of Lemma 2.9 is here v. Lemma 2.9 ensures that v is a
vertex of Ck on the left of v(k), in contradiction with the fact that v is the right neighbour
of v(k) on Ck. �

Lemma 2.12 (Felsner [48]). The possible configurations of an essential circuit of X0

are illustrated in Figure 18.

Proof. Felsner [48, Lem.17] shows that an essential circuit C of an α3-orientation has no
inner edge whose origin is on C. In addition, if C is not the contour of a face, he shows
that all edge-vertices have either one incident edge or two incident edges inside C, which
implies that the length of C is 6, 8, 10, or 12. The only possible configurations are those
listed in Figure 18. As X0 has no clockwise circuit of length 4 according to Lemma 2.11,
this concludes the proof. �

6.2.3. No configuration of Figure 18 can be a clockwise circuit of X0. We have re-
stricted the number of possible configurations for a clockwise circuit of X0 to the list
represented in Figure 18. In this section, we give a method which ensures that the pres-
ence of a clockwise circuit for each configuration of Figure 18 yields a contradiction. The
method is based on the use of Lemma 2.8, of Lemma 2.9, and of the following lemma:
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Lemma 2.13. At a step k, let v and v′ be two vertices on Ck such that v is on the left
of v′. Assume that there exists a path P = (v0, . . . , vl) of edges of G such that v0 = v,
vl = v′, and for each 0 ≤ i ≤ l− 1, the edge (vi, vi+1) is the outgoing edge of vi with label
1 in X0. Then P = [v, v′] on Ck and all edges of P are bi-oriented bilabelled 1-3.

Proof. Proving that P = [v, v′] comes down to proving that all edges of P are on Ck.
By construction of the orientation (see Figure 7), for each vertex w of G, the extremity
w1 ∈ G of the outgoing edge of w with label 1 is removed at an earlier step than w.
Moreover, a vertex in G\Gk is removed at a step j < k. Hence, if w is in G\Gk, then w1

is also in G\Gk. Hence, if P passes by a vertex outside of Gk, it can not reach Ck again.
By definition of an active vertex of Ck, the extremity of its outgoing edge with label 1 is a
vertex of G\Gk. Hence none of the vertices v0, . . . vl−1 can be active, otherwise P would
pass by a vertex outside of Gk and could not reach Ck again, in contradiction with the
fact that P ends at a vertex of Ck.

Hence, all vertices of Ck encountered by P before reaching v′ are passive. It just
remains to prove that the outgoing edge with label 1 of each passive vertex of Ck is an
edge of Ck and will be bi-oriented and bilabelled 1-3 in X0.

Let w be a passive vertex of Ck and let wl and wr be respectively the left and the
right neighbour of w on Ck. We claim that the outgoing edge of w with label 1 is the
edge (w, wl) if wl will be removed before wr and is the edge (w, wr) if wr will be removed
before wl. Indeed, as long as none of wl or wr is removed, w remains passive and keeps
wl and wr as left and right neighbour. Let k0 be the first step where wl or wr is removed.
By construction of the orientation, two vertices v1 and v2 on the contour of Ck0 such that
]v1, v2[ contains a passive vertex can not be removed at the same step. Hence, at step k0,
either wl or wr is removed. Assume that the removed vertex at step k0 is wl. Then, at
step k0, (w, wl) is given a bi-orientation and receives label 1 on w’s side and label 2 on
wl’s side, see Figure 7. Similarly, if the removed vertex is wr then, at step k0, (w, wr) is
bi-orientated and receives label 1 on w’s side and label 3 on wr’s side.

Finally, it is easy to see that only this second case can happen in the path P , because
the starting vertex of P is on the left of the end vertex of P on Ck. �

Lemma 2.14. None of the configurations of Figure 18 can be the contour of a clockwise
circuit in X0.

Proof. We take here the example of the third configuration of the case {n
(3)
e = 2, n

(4)
e = 2}

of Figure 18 and show why this configuration can not be a clockwise circuit in X0. Let C be
a clockwise circuit corresponding to such a configuration. Then C contains two successive
dual edges e∗1 and e∗2 —in counter-clockwise order around C— and a unique primal vertex
which we denote by vC . Let M ′ be the submap of G′ obtained by removing all edges and
vertices outside of C. Let M be the submap of G obtained by keeping only the edges whose
associated edge-vertex belongs to M ′ and by keeping the vertices incident to these edges.
As C is an essential circuit, no edge inside C has its origin on C, see [48, Lem.17]. The rules
of labelling (see Figure 6), the fact that all edge-vertices have outdegree 1, and the fact
that no edge goes from a vertex of C toward the interior of C determine unambiguously
the labels and orientations of all the edges of the contour of M in X0, up to the label of
the outgoing edge of vC on C. Figures 19(a), 19(b) and 19(c) represent the respective
configurations when the label of the outgoing edge of vC on C is 1, 2 or 3.

First, we deal with the case of Figure 19(a). Let v̂ (resp. bv0) be the primal vertex

outside of C and adjacent to the edge-vertex associated to e∗2 (resp. e∗1). Let bv′ be the
primal vertex inside of C and adjacent to the edge-vertex associated to e∗2. Let k be the
step at which v̂ is removed from G. As already explained in preceding proofs (for example
in the proof of Lemma 2.11), it is easy to see that k ≥ 2 and that v̂ is the chosen vertex

v(k). Hence we can use Lemma 2.8 and Lemma 2.9. Lemma 2.8 and the configuration of

Figure 19(a) ensure that bv′ is the right neighbour of v̂ on Ck and that bv0 is the next active
vertex on the right of v̂ on Ck. Moreover, the configuration of Figure 19(a) ensures that
bv1 corresponds to the vertex v1 in the statement of Lemma 2.9. Hence Lemma 2.9 ensures
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Figure 19. The 3 possible cases for the contour of the map M

associated to the third configuration of the case {n(3)
e = 2, n

(4)
e =

2} in Figure 18.

that bv1 is on Ck on the left of v̂. We see on Figure 19(a) that there is an oriented path P

going from bv1 to bv such that each edge of the path is leaving with label 1. Lemma 2.13

ensures that all edges of P are bilabelled 1-3, in contradiction with the fact that (bv′, v) is
bilabelled 1-2.

We deal with the case of Figure 19(b) similarly. We define v̂ := vC and denote by bv0

the primal vertex outside of C and adjacent to the edge-vertex associated to e∗2. We denote
by bv1 the primal vertex inside of C and adjacent to the edge-vertex associated to e∗1. Let
k be the step where v̂ is removed. Then it is easy to see that k ≥ 2 and v̂ = v(k). Hence
we can use Lemma 2.8 and Lemma 2.9. Lemma 2.8 and the configuration of Figure 19(b)
ensure that bv0 is the next active vertex on the right of v̂ on Ck. Then we see on Figure 19(b)
that the vertex bv1 corresponds to the vertex v1 of the statement of Lemma 2.9. Hence,
Lemma 2.9 ensures that bv1 is on Ck on the left of v̂. We see on Figure 19(b) that there
exists an oriented path P going from bv1 to v̂ such that each edge of P leaves with label 1.
But we see that the last edge of P is simply oriented, in contradiction with Lemma 2.13.

Finally, the case of Figure 19(c) can be treated similarly (the vertices bv0, bv1 and v̂

are indicated on the picture).
A similar treatment ensures that none of the other configurations of Figure 18 can be

the contour of a clockwise circuit of X0. �

Finally, Theorem 2.1 follows from Lemma 2.14 and from the fact that all possible

configurations for a clockwise circuit of X0 are listed in Figure 18.

Conclusion. For each of the combinatorial structures {Eulerian orientations, Bipo-
lar orientations, Schnyder woods, Transversal structures}, there exists a linear time
algorithm computing the minimal structure of a given map (the structure at the
bottom of the distributive lattice).

These algorithms (except for Eulerian orientations) are similar. At each step,
a vertex is chosen on a front line, and its incident edges are directed, making the
area oriented larger. The systematic choice of the rightmost admissible vertex on
the front line yields the minimal structure.

Notice that no generic linear algorithm is known to compute the minimal α-
orientation of a planar map, given a feasible function α as input. It seems that the
principles we use for our specific combinatorial structures do not generalise easily.



CHAPTER 3

Bijective counting of maps

Introduction. Many families of (rooted) planar maps have strikingly simple enu-
meration formulas. For instance, the number of rooted triangulations with n + 2
vertices satisfies

(4) cn =
2(4n− 3)!

n!(3n− 1)!
.

The pioneer method to obtain such formulas has been developed by Tutte and goes
back to the 60’s [113]. It consists of two steps: 1) the maps are decomposed at the
root, yielding an equation satisfied by the associated generating functions; 2) the
equation is solved using clever algebraic manipulations (a unified method for solving
such equations is described in [21]). Nevertheless, the simplicity of the formulas
such as (4) asks for a direct combinatorial interpretation. A nice bijective method
has been introduced by G. Schaeffer in his PhD thesis [99]. In each case, a family of
rooted maps is in bijection with a family of rooted trees. The principle consists in
performing local operations on the tree, so as to close faces progressively and obtain
a rooted map of the corresponding family. The method has been applied successfully
to count bijectively several families of planar maps [64, 93, 93, 95, 98]. It appears
in the bijection with rooted triangulations [95] that the concept of minimal α-
orientation is crucial to recover the tree from the map. As shown in this chapter,
the principle can be generalized, making it possible to recover and reformulate
several bijections in a unified framework.

Results obtained in this chapter. In Section 1, we present a general method
to count bijectively a family of rooted maps using the concept of minimal α-
orientation. In this way, we unify four bijections: with the families of (rooted)
Eulerian maps, triangulated maps, triangulations, and quadrangulations. The first
description of these bijections has been given in [56, 93, 95, 98], respectively.

The bijective method presented in Section 1 seems difficult to apply to the fam-
ilies of 3-connected maps and irreducible triangulations. However, by using some
orientations derived from minimal α-orientations, we find another type of bijections
to enumerate these two families. Even if the principle is also based on local closure
operations on a tree, these bijections are truly of another type, as they work with
unrooted objects. In particular, if a tree has a rotation symmetry, the associated
map inherits the symmetry. The advantage is that these bijections yield enumer-
ation formulas for unrooted maps (as well as for rooted maps) of the considered
family. In this way, we get the first bijective proof of the nice formula giving the
number of unrooted plane triangulations with n vertices (Proposition 3.5), found
by Brown [27].

83
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Motivations. This chapter provides bijective proofs of enumerative formulas on
planar maps already known from the earlier works of Tutte [111] and his collab-
orators [90]. As mentioned above these formulas are surprisingly simple. The
advantage of our bijective proofs is to give a direct interpretation of the formulas,
where binomial coefficients systematically appear. In addition, our bijections re-
veal some deep combinatorial properties of planar maps, in particular the crucial
role played by minimal α-orientations combined with spanning tree decompositions.
Finally, the advantage of bijective proofs is that they often give rise to a very effi-
cient algorithmics on the family of objects considered. These applications will be
described in the next chapter.

1. Bijections using root-accessible α-orientations

In this section, we present a general method to associate a family of rooted
trees to a family of rooted maps in a bijective way. The method works for families
of maps characterized by α-orientations satisfying an accessibility property. For
such a family M, the tree associated to a map M ∈ M is an enriched spanning
tree of M computed using the minimal α-orientation of M .

Our presentation defines root-accessible α-orientations, describes the bijective
method, and then applies it to unify four bijections under one roof, related to
rooted Eulerian maps, quadrangulations, triangulated maps, and triangulations,
respectively.

1.1. The bijective method. Root-accessible α-orientations. Consider a
rooted map M = (V,E) and a feasible function α : V → N. Let r be the origin of
the root of M , called the root-vertex of M . An α-orientation of M is said to be root-
accessible if, for any vertex v, there exists an oriented path from v to r. In this case,
any other α-orientation is also root-accessible, as the accessiblity is an invariant of
the function α. Hence, the notion of root-accessibility only depends on the function
α; accordingly a feasible function α whose α-orientations are root-accessible is also
called root-accessible. Root-accessible orientations have been defined and considered
by Olivier Bernardi to derive a general bijective method for counting tree-rooted
maps [7] (i.e., maps endowed with a spanning tree).

Opening edge-bipartition of a map. In the sequel, each family M of rooted
maps we consider is such that a specific function α is feasible and root-accessible for
each map ofM. Examples of such families are Eulerian maps endowed with Euler-
ian orientations, triangulations endowed with 3-orientations, quadrangulations en-
dowed with 2-orientations (root-accessibility is obtained by orienting the outer face
ccw), as we have seen in Chapter 1. Given a map M = (V,E) ∈ M endowed with
its minimal α-orientation, we define an opening edge-partition of M as a partition
(H,H) of the edge-set E such that the following conditions are satisfied.

(1) The edges of H form a spanning tree of M oriented to the root-vertex r.
(2) For each edge e ∈ H , let Ce be the unique cycle formed by e and edges of

H . Then e has the interior of Ce on its left.

Notice that the root edge is in H. The following result is an easy consequence
of a bijection of Bernardi between root-accessible orientations and spanning trees
of a planar map [7]. Whereas the purpose of [7] is to count maps endowed with
a spanning tree (called tree-rooted maps), we will make use of it to count rooted
maps.
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a) b)

Figure 1. A rooted plane tree (Fig.a) and a rooted blossoming
tree (Fig.b).

Theorem 3.1 (Bernardi [7]). A rooted map M = (V,E) endowed with its min-
imal root-accessible α-orientation admits a unique opening edge-partition (H,H).
The spanning tree formed by edges of H is called the opening spanning tree of M .

This theorem is a powerful tool to count maps. Indeed, it ensures that enumer-
ating the family M is equivalent to counting opening edge-partitions of maps in
M. The idea is that much information on the opening edge-partition is contained
in the opening spanning tree, so that we get the flavour of a tree-counting problem.
In all examples treated later, an opening edge-partition is encoded by a so-called
blossoming tree, which are obtained from the opening spanning tree by addition of
half-edges.

Definition. A blossoming tree is a rooted plane tree T —the edges of T being
oriented toward the root— which carries additional half-edges called stems, see
Figure 1. A stem is always oriented outward of its incident vertex and end-vertices
of stems are not considered as nodes of the tree (such trees have been introduced
by Gilles Schaeffer in his PhD [99]). In other words, a blossoming tree is a rooted
plane tree with some arrows going out of nodes.

In each of the next four sections, we use Theorem 3.1 to recover four bijections
(one in each section) between families of blossoming trees and the four families of
rooted tetravalent maps, quadrangulations, triangulated maps, and triangulations.
For each familyM of rooted maps endowed with a specific root-accessible function
α, the main difficulty of our bijective method is to encode the opening edge-partition
in a simple way. In each case treated here, the edge-partition is encoded by a
blossoming tree. Then we use the outdegree information (i.e., the function α) to
characterise and count the trees.

Let us start with the example of tetravalent maps, i.e., the family of maps whose
vertices have degree 4. Our presentation is a little sketchy, as we only reformulate
bijections that are already known.

1.2. Bijection with rooted tetravalent maps. The family of α-orientations
characterising tetravalent maps are Eulerian orientations, i.e., each vertex has inde-
gree 2 and outdegree 2. Notice that these α-orientations are root-accessible because
the existence of an Eulerian circuit ensures strong connectivity.

Given a rooted tetravalent map M , let (H,H) be the opening edge-partition
of M , with H the opening spanning tree of M . As H is a spanning tree of M
oriented to the root, each vertex different from the root node has outdegree 1 in
H and the root node r has outdegree 0 in H . As all vertices have outdegree 2,
each vertex v 6= r has outdegree 1 in H, and r has outdegree 2 in H . We now
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a) b) c)

Figure 2. Opening of a rooted tetravalent map.

perform the following surgery operations. We cut each non-root edge e = (v, v′)
of H at the middle. The resulting half-edge incident to v is considered as a stem
going out of v, and the ingoing half-edge incident to v′ is considered as a true
edge, precisely a pending edge going out of a new leaf. The root-edge is also cut
at its middle, with the difference that the two resulting half-edges are considered
as pending edges incident to new leaves. In this way, we obtain a blossoming tree,
precisely a tree rooted at a leaf and such that each vertex has degree 3 and carries
one stem. Indeed, each vertex has its two ingoing edges leading to its two sons, one
outgoing edge leading to its father, and one outgoing edge turned into a stem. Such
a tree is called a blossoming binary tree. Another way of constructing a blossoming
binary tree is to start from a rooted binary tree and place an outgoing stem in one
of the 3 angles of each node. Hence the number of blossoming binary trees with n
nodes is 3n multiplied by the number of rooted binary trees with n nodes, which is
well known to be (2n)!/(n!(n+ 1)!) the nth Catalan number.

(5) 3nCn, where Cn :=
(2n)!

n!(n+ 1)!
is the nth Catalan number.

Conversely, starting from a blossoming binary tree B, we construct an opening
edge-partition of a tetravalent map using the following closure-operations.

Closure of a blossoming binary tree. Traverse the contour of B in ccw order
(imagine an ant walking around the tree with the outer face on its right), and
associate a cyclic parenthesis word to B, writing an opening parenthesis when
a stem is crossed and a closing parenthesis when a leaf is traversed. Clearly a
blossoming n-node binary tree has n+ 2 leaves (including the root-leaf) and has n
stems. Hence the word has two more )’s than (’s. It is an easy exercise to show
that there exists a unique pair of closing parentheses )1 and )2 such that the word
between )1 and )2 and the word between )2 and )1 are parenthesis words. For each
matching (↔), merge the stem corresponding to ( and the 1-leg corresponding to
) into an edge oriented like the original stem. Finally, let l1 be the pending edge
corresponding to )1 and let l2 be the pending edge corresponding to )2. If B is
rooted at l1 or l2, then the tree is called balanced. If l1 is the root, match l1 with
l2 so as to form an edge e oriented from l1 to l2. The edge e is taken as root-edge.
The same operation is done if l2 is the root, upon exchanging the role of l1 and l2.

Lemma 3.1. The map obtained by performing the closure of a balanced blos-
soming binary tree with n nodes is a rooted n-vertex tetravalent map endowed with
an opening edge-partition (H,H), where H is the set of original inner edges of the
tree (i.e., stems and pending edges are not counted).
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Proof. The outdegree condition of blossoming binary trees ensures that the rooted
map M = Closure(T ) is tetravalent and is endowed with an Eulerian orientation.
Moreover, the obtained orientation is minimal (proof: there is no clockwise circuit
in the beginning, and each closure-edge has the outer face on its right when it
is closed, so that no cw circuit can result from a local closure). Finally, as each
closure-edge has the outer face on its right when it is closed, the partition (H,H)
defined in the statement of the lemma is an opening edge-partition. �

Clearly, the opening procedure (from a blossoming binary tree to a rooted
tetravalent map endowed with an opening edge-partition) and the closure procedure
are mutually inverse. This results from the fact that inner edges of a blossoming
binary tree correspond to the edge-set H in the opening edge-partition (H,H) of
the associated rooted tetravalent map. As each rooted tetravalent map admits a
unique opening edge-partition, we obtain the following result.

Proposition 3.1 (Recover bijection of [98]). There is a bijection between
rooted tetravalent maps with n vertices and balanced blossoming binary trees with n
nodes. As a consequence, the number tn of rooted tetravalent maps with n vertices
satisfies

(6) tn = 2 · 3n (2n)!

n!(n+ 2)!
.

Proof. The bijection being already justified, it remains to count balanced blos-
soming binary trees. We have seen in the description of the closure that, among
the n+ 2 leaves of a n-node blossoming binary tree, exactly two of them lead to a
(rooted) balanced blossoming binary trees. Accordingly, the proportion of balanced
blossoming binary trees is 2/(n+ 2). The result follows from Formula (5). �

Remark. Our formulation of the bijection differs from the original article [98]
by the use of minimal orientations to calculate the tree from the map. In the
original article, the tree is recovered by traversing the outer face and breaking non-
disconnecting edges until the remaining figure is a tree. Equivalently, as explained
in [94], perform a left-to-right breadth-first traversal on the dual map. The formu-
lation of the bijection using minimal orientations is already given in my Masters
thesis [56], however without using the concept of opening edge-partition.

The same principle can be extended to count any family of rooted Eulerian
maps with prescribed distribution of vertex degrees, recovering the general bijective
results obtained in [98].

1.3. Bijection with rooted quadrangulations. To describe the bijection
with rooted quadrangulations, it proves more convenient to work with rooted quad-
rangulations such that the outer vertex following the root vertex in clockwise order
around the outer face has degree 2, see Figure 3(b). Such rooted quadrangulations
are called complete. This is a minor modification, because rooted quadrangulations
with (n + 2) vertices are in bijection with rooted complete quadrangulations with
(n+ 3) vertices. Indeed, a rooted quadrangulation is made complete by adding an
outer path of length 2 connecting the root vertex to its opposite outer vertex, see
Figure 3(a)-(b). Recall that the α-orientations associated with the family of quad-
rangulations are the 2-orientations, i.e., orientations of the inner edges such that
each inner vertex has outdegree 2 and the outer vertices have outdegree 0. Given a
rooted complete quadrangulation endowed with its minimal 2-orientation, we first
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a) b) c) d)

Figure 3. Opening of a rooted complete quadrangulation.

make the orientation root-accessible by orienting the outer edges so as to form a
counter-clockwise circuit. As we have seen in Section 4, the contour of the outer
face is accessible from any inner vertex of a quadrangulation endowed with a 2-
orientation; hence, orienting the outer face counterclockwise makes the orientation
root-accessible, while still having no clockwise circuit.

Similarly as for tetravalent maps, the bijection to count quadrangulations con-
sists in encoding an opening edge-partition by a blossoming tree. This procedure
is called the opening mapping.

Opening mapping. Let Q be a rooted complete quadrangulation with n + 3
vertices and endowed with its minimal 2-orientation. Orient the outer face of Q
counter-clockwise and consider the opening edge-partition (H,H) of Q. Then per-
form the following operations, see Figure 3(c)-(d).

(1) For each edge e of H , delete the ingoing half-edge of e, and specify the
outgoing half-edge of e as a stem.

(2) Delete the non-root outer edges of Q as well as the non-root outer vertices,
see Figure 3(d).

Moreover, specify the root stem as the outgoing half-edge of the root.

Definition. A rooted 1-stem plane tree is a plane tree such that each node carries
one stem, the tree being rooted at a stem.

Lemma 3.2. The opening of a rooted complete quadrangulation with n+ 3 ver-
tices is a rooted 1-stem plane tree with n nodes.

Proof. Each inner vertex has two outgoing edges: one in H (because a non-root
vertex has outdegree 1 in a tree oriented to the root), and one in H. Hence, each
inner vertex carries one stem at the end of the opening. �

The inverse mapping is based on closure operations, in a similar way as for
tetravalent maps.

Local closure. Let T be a rooted 1-stem plane tree. Each time we find a succession
(stem,edge,edge,edge) in a ccw traversal around the tree, we merge the stem with
the extremity of the third edge, so as to close a quadrangular face, see Figure 4(a).
At each step of the closure, the contour of the outer face consists of a succession of
unmatched stems and edges. Accordingly, the contour of the outer face is encoded
by a (cyclic) word: during a ccw traversal of the outer face, write a letter s when a
stem is crossed and a letter e when traversing an edge. In the beginning this cyclic
word w has thus n letters s and 2n − 2 letters e. Then each closure consists in
searching a factor seee and replacing it by a letter e. In other words, local closures
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a) b) c)

Figure 4. Closure of a balanced rooted 1-stem tree into a rooted
complete quadrangulation.

correspond to the parenthesis matchings of the word, with an opening parenthesis
of weight 3 for each letter s and a closing parenthesis of weight 1 for each letter
e. As for tetravalent maps, this ensures that the figure obtained by performing
greedily local closures does not depend on the order of the closures.

When all local closures have been performed greedily, the cyclic word w contains
no factor seee. In fact it is easily shown, based on simple counting arguments 1,
that w is now of the form w = se(see)∗se(see)∗, i.e., contains two factors se sepa-
rated by two sequences of factors see, see Figure 4(b). We write {s1, s2} for the two
occurences of s followed by a unique e. Then, we add a branch of length 3 carrying
no stem as the rightmost branch of the tree, i.e., the branch is attached to the root
vertex in the angle incident to the outer face and delimited to the left by the root
stem. Accordingly, in the cyclic word w, we add three letters eee just before the let-
ter s corresponding to the root stem (the added final pattern eee corresponding to
the three left sides of the edges of the added branch). It is easily proved that all re-
maining stems can be closed greedily, yielding a rooted quadrangulation. Moreover
the obtained rooted quadrangulation is complete iff the root stem corresponds to
s1 or s2, see Figure 4(c). In this case the tree is called balanced. Similar arguments
as for rooted tetravalent maps ensure that the opening and closure mapping are
mutually inverse, yielding a bijection between balanced rooted 1-stem plane trees
and rooted complete quadrangulations endowed with an opening edge-partition.

Proposition 3.2 (Recover bijection of [56]). Rooted quadrangulations with
n+ 2 vertices are in bijection with balanced rooted 1-stem plane trees with n nodes.
As a consequence, the number qn of rooted quadrangulations with n + 2 vertices
satisfies

(7) qn = 2
(3n− 3)!

n!(2n− 1)!
.

Proof. A rooted 1-stem plane tree with n nodes is encoded by a word in the following
way. Walk around the tree in counter-clockwise order, starting from the angle to
the left of the root stem. Write a letter a each time an edge is traversed from top
to bottom, and write a letter b each time a stem is crossed or an edge is traversed
from bottom to top. Finish the word with a letter b corresponding to the root
stem. Then the obtained word W clearly contains (n− 1) a’s and (2n− 1) b’s. In
addition, by giving weight 2 to each letter a and weight −1 to each letter b, the tree
structure ensures that the weight of W is -1 and the weight of each strict prefix

1The number of letters s decreases by 1 and the number of letters e decreases by 2 for each
local closure, hence 2|w|s − |w|e remains equal to 2 during the closure.
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a) b) c) d)

Figure 5. Opening of a rooted triangulated map.

of W is nonnegative. Conversely, any word in S(an−1b2n−1) satisfying this prefix
condition gives rise to a rooted 1-stem plane tree, and the two mappings are inverse
of one another. Finally, each cyclic class of words in S(an−1b2n−1) contains 3n− 2
words, and contains exactly one word satisfying the prefix condition. Hence, the
number of rooted 1-stem trees with n nodes is |Fn| = 1

3n−2

(
3n−2
n−1

)
. Finally, as we

have seen, a 1-stem plane tree with n nodes (hence n stems) has exactly two stems
(s1 and s2 in the discussion above) whose rooting yields a balanced tree. Hence the
proportion of balanced trees in Fn is 2/n. The result follows. �

Remark. Our formulation of the bijection is quite close to the original bijec-
tion [56], which already makes use of the minimal 2-orientation. The difference is
that we make the orientation root-accessible by orienting the outer face ccw, and we
slightly change the family of quadrangulations, considering complete ones, in order
to have a simple conjugation principle for the trees (as we have seen, a proportion
2/n is balanced). The end of the closure procedure is also different: addition of two
vertices receiving remaining stems in [56], addition of a branch of length 3 in our
construction.

1.4. Bijection with rooted triangulated maps. Recall that a triangulated
map is a loopless map such that all faces have degree 3. The difference with
triangulations is that multiple edges are allowed. When all faces have degree 3, a
simple argument ensures that the absence of loop is equivalent to the absence of
separating vertex. Hence, a triangulated map is a 2-connected map such that all
faces have degree 3.

Lemma 3.3. Rooted triangulated maps with n vertices are in bijection with the

family Q(3)
n of rooted quadrangulations with n black vertices, all inner white vertices

of degree 3, and the two outer white vertices of degree 2.

Proof. According to Theorem 1.2 (angular mapping), rooted triangulated maps
with n vertices are in bijection with rooted quadrangulations with n black vertices
and such that all white vertices have degree 3. Upon adding two paths of length 2
in the outer face (see Figure 5(b)), these quadrangulations are in turn in bijection

with the family Q(3)
n . �

Let Q ∈ Q(3)
n be endowed with its minimal 2-orientation. Orient ccw the outer

face of Q (so as to make the orientation root-accessible) and let (H,H) be the
opening edge-partition of Q for this orientation. Then we obtain a blossoming tree
by performing the following operations.

Opening mapping.
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a) b)

Figure 6. The two types of local closure in the bijection related
to triangulated maps.

(1) For each edge e = (v, v′) ∈ H , delete the ingoing half-edge of e, the
remaining half-edge is specified as a stem going out of v.

(2) Delete the non-root outer edges and the 3 non-root outer vertices (see
Figure 5(c)).

(3) For each white vertex v having indegree 0 in H , delete v and the edge of
H going out of v.

In addition, specify the root stem as the outgoing half-edge of the root. Operations
1 and 2 are the same as the opening of a rooted complete quadrangulation, as
described in Section 1.3. The obtained rooted 1-stem tree has the particular feature
that white vertices either have one neighbour, i.e., they are leaves, or have two
neighbours, i.e., they can be seen as the middle of an edge connecting two black
nodes. As explained later in the description of the closure mapping, the information
given by the white leaves is not needed to encode the opening edge-partition. These
vertices are thus deleted in the further step 3.

Definition. Let F (3) = ∪nF (3)
n be the family of bicolored 1-stem plane trees such

that the root stem is incident to a black node and each white vertex has degree 2.
These trees are counted with respect to the number n of black nodes.

Lemma 3.4. The opening of a bicolored rooted quadrangulation Q ∈ Q(3)
n+1 is in

F (3)
n .

Proof. Before Step 3 of the opening, the tree H is in the family Fn defined in
Section 1.3. As all white vertices have degree 3 in Q, the nodes of H either have
indegree 1 or indegree 0 in H . As the nodes of indegree 0 are deleted at Step 3, the

tree finally obtained is in F (3)
n . �

Again the inverse procedure consists in performing greedily local closure oper-
ations, this time of two different types, (see Figure 6):

Local closures. Let T be a rooted tree in F (3)
n .

• If a stem s incident to a white node is followed by (at least) 3 edges in
a ccw walk around the tree, create an opposite half-edge to s incident to
the extremity of the third edge, so as to close a quadrangular face, see
Figure 6(a).
• If a stem s incident to a black node is followed by (at least) 2 edges in a

ccw traversal around the tree, create a white vertex v carrying a stem and
connected by a 1-leg to the extremity of the second edge. Then create an
opposite half-edge to s incident to v so as to close a quadrangular face,
see Figure 6(b).
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partial
closure

complete
closure

v∞

s

a) b) c)

Figure 7. Partial closure and then complete closure of a blossom-
ing tree.

The figure F obtained after greedy application of these local closure operations
is called the partial closure of T . Then we perform a complete closure operation

in order to get a map in Q(3)
n+1. Consider the sequence of unmatched stems in a

ccw traversal around the outer face of F . Clearly two consecutive stems si, si+1 are
separated by at most two edges if si is incident to a white vertex and are separated
by one edge if si is incident to a black vertex. Moreover, a simple counting argument
ensures that the number of 1-edge intervals is equal to two, all other intervals being
2-edge intervals. Then the fact that the colors of vertices alternate ensures that
the two 1-edge intervals are consecutive and separated by a stem s incident to a
black node, and that all other unmatched stems are incident to white nodes. This
particular stem is surrounded in Figure 7. The tree is called balanced if the root
stem is s.

Complete closure. The complete closure consists in the following operations (see
Figure 7); create a black vertex v∞ in the outer face, connect to v∞ all unmatched
stems incident to white vertices, and delete the stem s. Finally, add two paths of
length 2 connecting the root vertex to the opposite outer vertex so that the two
paths form the new contour of the outer face, and orient the outer face ccw. In

this way we obtain a quadrangulation Q ∈ Q(3)
n endowed with its opening edge-

partition. We obtain a bijective construction, as the tree T encodes (via the closure
operations) the opening edge-partition of the obtained quadrangulation Q; and,
conversely, the tree associated to the quadrangulation is read from the opening
edge-partition using the opening mapping.

Proposition 3.3 (Recover bijection of [93]). Rooted triangulated maps with

n+1 vertices are in bijection with balanced trees of the family F (3)
n . As a consequence

the number t
(2)
n of rooted triangulated maps with n+ 1 vertices satisfies

(8) t(2)n =
2n−1(3n− 3)!

(2n− 1)!n!
.

Proof. The bijection is already justified in the preceding discussion. Thus it remains

to count balanced rooted trees in F (3)
n . Clearly, a tree of F (3)

n can be seen as a rooted
1-stem plane tree with n nodes colored black, where a white vertex is put at the
middle of each edge, the white vertex carrying a stem on either side of the edge.

Hence, |F (3)
n | is equal to 2n−1|Fn| = 2n−1(3n− 3)!/((2n− 1)!(n− 1)!). Finally, as

we have seen in the description of the closure, exactly one stem (among the n stems
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incident to black nodes) yields a balanced tree. Hence, the proportion of balanced

rooted trees in F (3)
n is 1/n. The result follows. �

Remark. Our bijection is very different from the original bijection, which operates
on the dual map of the triangulated map (we operate on the angular map) and does
not use orientations. In addition, only the mapping from trees to triangulated maps
is explicitly given in [93], the bijectivity being proved by induction. Let us mention
that Bernardi has found an extremely elegant (and very different) method to count
triangulated maps, while simultaneously counting the so-called Kreweras walks [9].

1.5. Bijection with rooted triangulations. The bijection to count rooted
triangulations is very similar to the one used to count rooted quadrangulations, the
3-orientations of triangulations playing the same role as 2-orientations for quad-
rangulations. First, it is more convenient to work with rooted triangulations of
the 4-gon such that the vertex following the root vertex in clockwise order around
the outer face has degree 2. Such triangulations of the 4-gon are called complete.
This is a minor change, as there is a bijection between rooted triangulations with n
vertices and rooted complete triangulations of a 4-gon with n+ 1 vertices. Indeed,
starting from a rooted triangulation T , the completion-step consists in adding an
outer path of length 2 connecting the root vertex r to the vertex following r in
clockwise order around the outer face. The outer edge of T now covered by the
path of length 2 is called the covered edge.

Given a rooted triangulation T endowed with its minimal 3-orientation, we
perform the completion step M := Complete(T ), orient the outer (quadrangular)
face counter-clockwise, and orient the covered edge out of the root vertex. In this
way, the inner vertices have outdegree 3, the root vertex has outdegree 2, and the
non-root outer vertices have outdegree 1. We consider the opening edge-partition
(H,H) associated with this orientation and define the following opening procedure:

Opening mapping.

(1) For each edge e ∈ H , delete the ingoing half-edge of e.
(2) Delete the non-root outer edges of Q as well as the non-root outer vertices.

Definition. A rooted 2-stem plane tree is plane tree such that each node carries
two stems, the tree being rooted at a stem.

Lemma 3.5. The opening of a rooted complete triangulation of the 4-gon with
n+ 3 vertices is a rooted 2-stem plane tree with n nodes.

Proof. This is an easy consequence of the outdegree condition and the way we have
defined the opening, see Figure 3. �

Conversely, starting from a so-called balanced rooted 2-stem plane tree (bal-
anced being defined similarly as in the bijection with quadrangulations), one obtains
a rooted complete triangulation of the 4-gon in a very similar way as described for
quadrangulations. Figure 8 illustrates the main steps (details are ommited).

Proposition 3.4 (Recover bijection of [95]). Rooted triangulations with n +
2 vertices are in bijection with balanced 2-stem plane trees with n nodes. As a

consequence, the number t
(3)
n of rooted triangulations with n+ 2 vertices satisfies

(9) t(3)n = 2
(4n− 3)!

n!(3n− 1)!
.
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a) b) c)

Figure 8. Closure of a balanced rooted 2-stem tree into a
rooted complete triangulation of the 4-gon: local closure opera-
tion (Fig.a), the generic figure obtained after greedily performing
local closures (Fig.b), and complete closure (Fig.c). The two stems
whose rooting yields a balanced tree are surrounded in Fig.b.

Proof. Rooted triangulations with n+ 2 vertices are in bijection with rooted com-
plete triangulations of the 4-gon with n + 3 vertices. These are in bijection with
balanced rooted 2-stem plane trees with n nodes. In a similar way as in the proof
of Proposition 3.2, the number of rooted 2-stem plane trees with n nodes is shown
to be (4n−3)!/((n−1)!(3n−1)!), and the proportion of balanced ones is 2/n. The
result follows. �

Remark. Our formulation is close to the original bijection [95]. As for quadran-
gulations (Proposition 3.2), the difference is that we make the orientation root-
accessible and slightly change the family in order to have a simple argument to
count the family of trees, considering complete triangulations of the 4-gon instead
of triangulations. The end of the closure procedure is also different: addition of
two vertices receiving remaining stems in [95], addition of a branch of length 3 in
our construction.

2. Bijections not depending on a root

In Section 1, we have presented a general method, based on root-accessible
α-orientations, to establish bijections between families of rooted maps and families
of blossoming trees. As we have seen, the most difficult part is often to find a
simple characterisation of the family T of blossoming trees, in order to count these
trees. In this section, we focus on the families of 3-connected maps and irreducible
triangulations of the 4-gon. These two families are both characterised by specific
α-orientations (on the derived map), as we have seen in Chapter 1, and slight
modifications in the outer face make these orientations root-accessible. Hence, the
method of Section 1 can be applied, but unfortunately we have not been able to
find a simple characterisation of the obtained families of blossoming trees.

We overcome this difficulty by introducing bijections of another type to handle
these two classes of maps. The originality of these bijections is that they work for
unrooted objects, so that they have the advantage of yielding enumeration formulas
for the number of unrooted (as well as rooted) maps of the family. The mapping
from trees to maps still relies on local closures; however the inverse mapping does
not work directly with α-orientations but with associated orientations of the half-
edges. The two bijective correspondences we present in this section are very similar;
the first one is from binary trees to irreducible quadrangulated dissections of the
hexagon (which are closely related to 3-connected maps), the second one is from
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ternary trees to irreducible triangulations. In contrast to Section 1, we first describe
the mapping from trees to maps, and then explain how to recover the tree from the
map. We also provide more details than in Section 1, as the bijections described
here are new.

2.1. Bijection between binary trees and some dissections.
2.1.1. Closure mapping: from trees to dissections. Binary trees are plane trees

whose vertices have degrees in {1, 3}. The vertices of degree 3 are called nodes, and
the vertices of degree 1 are called leaves. Edges incident to a leaf are called stems,
and the other are called closed edges. A rooted binary tree is a binary tree rooted
at a stem. The root-edge of a rooted binary tree thus connects a node, called the
root-node, to a leaf, called the root-leaf. With this definition of rooted binary trees,
upon drawing the tree in a top down manner starting with the root-leaf, every
node (including the root-node) has a father, a left son and a right son. This (very
minor) variation on the usual definition of rooted binary trees will be convenient
later on. For n ≥ 1, we denote respectively by Bn and B′

n the sets of binary and
rooted binary trees with n nodes (they have (n+ 2) leaves, as proved by induction
on n). These rooted trees are well known to be counted by the Catalan numbers:
|B′

n| = 1
n+1

(
2n
n

)
.

The nodes of a binary tree can be greedily bicolored (say in black or white)
so that adjacent nodes have distinct colors. The bicoloration is unique up to the
choice of the color of the first node. As a consequence, rooted bicolored binary
trees are either black-rooted or white-rooted, depending on the color of the root
node. The sets of black-rooted (white-rooted) binary trees with i black nodes and
j white nodes is denoted by B•

ij (by B◦
ij , respectively); and the whole set of rooted

bicolored binary trees with i black nodes and j white nodes is denoted by B′
ij .

It will be convenient to view each closed edge of a tree as a pair of opposite
half-edges (each one incident to one extremity of the edge), and to view each stem as
a single half-edge (incident to the node holding the stem). More generally we shall
consider maps that have closed edges (made of two half-edges) and stems (made of
only one half-edge). It is then also natural to associate one face to each half-edge
(say, the face on its right). In the case of trees, there is only the outer face, so that
all half-edges get the same associated face.

Let us recall the definition of irreducible dissections of the hexagon, which are
central here. An irreducible dissection of the hexagon —shortly called irreducible
dissection— is a planar map with outer face of degree 6, inner faces of degree 4 and
no separating 4-cycle. Rooted irreducible dissections are naturally endowed with
the unique bicoloration of vertices in black and white such that the origin of the root
is black. The set of (rooted) irreducible dissections with n inner vertices is denoted
by Dn (D′

n, respectively), and the set of (rooted) irreducible dissections with i inner
black vertices and j inner white vertices is denoted by Di,j (D′

i,j , respectively).

Local and partial closure. Given a map with closed edges and stems (for in-
stance a tree), we define a local closure operation, which is based on a counter-
clockwise walk around the map: this walk alongside the border of the outer face
visits a succession of stems and closed edges, or more precisely, a sequence of half-
edges having the outer face on their right-hand side. When a stem is immediately
followed in this walk by three closed edges, its local closure consists in the creation
of an opposite half-edge for this stem, which is attached to farthest endpoint of the
third inner edge: this amounts to completing the stem into a closed edge, so as to
create (or close) a quadrangular face. This operation is illustrated by Figure 9(b).
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(a) A binary tree, (b) a local closure, (c) and its partial closure.

Figure 9. The partial closure.
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(a) Generic case when r = 2 and s =
2.

(b) Case of the binary tree of Fig-
ure 9(a).

Figure 10. The complete closure.

Given a binary tree T , the local closure can be performed greedily until no
more local closure is possible. Each local closure creates a new closed edge, maybe
making a new local closure possible. It is easy to see that the final map, called the
partial closure of T , does not depend on the order of the local closures. Indeed, a
cyclic parenthesis word is associated to the counter-clockwise contour of the tree,
with an opening parenthesis (of weight 3) for a stem and a closing parenthesis for
a side of closed edge; then the future local closures correspond to matchings of the
parenthesis word. An example of partial closure is shown in Figure 9(c).

Complete closure. Let us now complete the partial closure operation to obtain
a dissection of the hexagon with quadrangular faces. An outer closed half-edge is a
half-edge belonging to a closed edge and incident to the outer face. Observe that
a binary tree T with n nodes has n + 2 stems and 2n− 2 outer closed half-edges.
Each local closure decreases by 1 the number of stems and by 2 the number of
outer closed half-edges. Hence, if k denotes the number of (unmatched) stems in
the partial closure of T , there are 2k − 6 outer closed half-edges. Moreover, stems
delimit intervals of inner half-edges on the contour of the outer face, with length at
most 2, otherwise a local closure would be possible. Let r be the number of such
intervals of length 1 and s be the number of such intervals of length 0 (that is,
the number of nodes incident to two unmatched stems). Then r and s are clearly
related by the relation r + 2s = 6.

The complete closure consists in completing all unmatched stems with half-
edges incident to vertices of the hexagon in the unique way (up to rotation of the
hexagon) that creates only quadrangular bounded faces. Figure 10(a) illustrates
the complete closure for the case (r = 2, s = 2), and a particular example is given
in Figure 10(b).
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(a) A tri-oriented binary tree, (b) and its tri-oriented closure.

Figure 11. Examples of tri-orientations.

Lemma 3.6. The closure of a binary tree is an irreducible dissection of the
hexagon.

Proof. Assume that there exists a separating 4-cycle C in the closure of T . Then
there are m ≥ 1 vertices in its interior, and 2m edges according to Euler’s relation.
Let v be a vertex of T that belongs to the interior of C after the closure. Consider
the orientation of edges of T away from v (only for the sake of this proof). Then
nodes of T have outdegree 2, except v, which has outdegree 3. This orientation
naturally induces an orientation of inner edges of the closure with the same property
(except that vertices of the hexagon have outdegree 0). Hence there are at least
2m+1 edges in the interior of C, in contradiction with the counting given by Euler’s
relation. �

2.1.2. Tri-orientations and opening.
Tri-orientations. In order to define the inverse operation of the closure, we need

a better description of the structure induced on the dissection by the original tree.
Let us consider orientations of the half-edges of a map (in contrast to the usual
notion of orientation, where edges are oriented). a half-edge is said to be inward if it
is oriented toward its origin and outward if it is oriented out of its origin. If a map is
endowed with an orientation of its half-edges, the outdegree of a vertex v is naturally
defined as the number of its incident half-edges oriented outward. The (unique)
tri-orientation of a binary tree is defined as the orientation of its half-edges such
that any node has outdegree 3, see Figure 11(a) for an example. A tri-orientation
of a dissection is an orientation of its inner half-edges (half-edges belonging to inner
edges) such that outer and inner vertices have respectively outdegree 0 and 3, and
such that two half-edges of a same inner edge can not both be oriented inward,
see Figure 11(b). An edge is said to be simply oriented if its two half-edges have
same direction (that is, one is oriented inward and the other one outward), and
bi-oriented if they are both oriented outwards.

Let D be a dissection endowed with a tri-orientation. A clockwise circuit of D
is a simple cycle C consisting of edges that are either bi-oriented or simply oriented
with the interior of C on their right.

Lemma 3.7. A tri-orientation of an element of Dn has n− 1 bi-oriented edges
and n+ 2 simply oriented edges.

If a tri-orientation of a dissection has no clockwise circuit, then its bi-oriented
edges form a tree spanning the inner vertices of the dissection.
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Proof. Let D ∈ Dn, endowed with a tri-orientation, and let s and r denote the
numbers of simply and bi-oriented edges of D. According to Euler’s relation (using
the degrees of the faces), D has 2n+ 1 inner edges, i.e., 2n+ 1 = r + s. Moreover,
as all inner vertices have outdegree 3, 3n = 2r+ s. Hence r = n− 1 and s = n+ 2.

If the tri-orientation has no clockwise circuit, the subgraph T induced by the bi-
oriented edges has r = n−1 edges, no cycle (otherwise the cycle could be traversed
clockwise, as all its edges are bi-oriented), and is incident to at most n vertices,
which are the inner vertices of D. According to a classical result of graph theory,
T is a tree spanning the n inner vertices of D. �

Closure-tri-orientation of a dissection. Let D be a dissection obtained as the
closure of a binary tree T . The tri-orientation of T clearly induces via the clo-
sure operation a tri-orientation of D, called closure-tri-orientation. On this tri-
orientation, bi-oriented edges correspond to inner edges of the original binary tree,
see Figure 11(b).

Lemma 3.8. A closure-tri-orientation has no clockwise circuit.

Proof. Since the vertices of the hexagon have outdegree 0, they can not belong to
any circuit. Hence clockwise circuits may only be created during a local closure
(not during the complete closure). However closure edges are simply oriented with
the outer face on their right, hence may only create counterclockwise circuits. �

This property is indeed quite strong: the following theorem ensures that the
property of having no clockwise circuit characterises the closure-tri-orientations. It
also ensures the existence of such a tri-orientation for any irreducible dissection.
The proof of this theorem is delayed to Section 3.

Theorem 3.2. Any irreducible dissection has a unique tri-orientation without
clockwise circuit.

Recovering the tree: the opening mapping. Lemma 3.7 and the present section
give all necessary elements to describe the inverse mapping of the closure, which
is called the opening. Let D be an irreducible dissection endowed with its (unique
by Theorem 3.2) tri-orientation without clockwise circuit. Then the opening of D
is the binary tree consisting of the inner vertices and the half-edges of D that are
oriented outwards.

2.1.3. The closure is a bijection. In this section, we show that the opening is
the inverse mapping of the closure. By construction of the opening, the following
lemma is straightforward:

Lemma 3.9. Let D ∈ Dn be an irreducible dissection obtained as the closure of
a binary tree T ∈ Bn. Then the opening of D is T .

Lemma 3.10. Let T ∈ Bn be a binary tree obtained as the opening of an irre-
ducible dissection D ∈ Dn. Then the closure of T is D.

Proof. The proof relies on the definition of an order for removing inward half-edges.
Start with the half-edges incident to outer-vertices (that are all oriented inward):
this clearly inverses the completion step of the closure. Each further removal must
correspond to a local closure, that is, the removed half-edge must have the outer
face on its right.

Let Mk be the submap of the dissection induced by remaining half-edges after
k removals. Then Mk covers the n inner vertices, and, as long as some inward
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half-edge remains, it has at least n edges (see Lemma 3.7). Hence, it has at least a
cycle, and a simple one can be extracted from the contour of the outer face of Mk.
Since there is no clockwise circuit, at least one of its edges is simply oriented with
the interior of the cycle on its left, and the corresponding inward half-edge can be
selected for the next removal. �

Assuming Theorem 3.2, the bijection follows from Lemma 3.9 and Lemma 3.10:

Theorem 3.3 (bijection). The closure mapping is a bijection between the set
Bn of binary trees with n nodes and the set Dn of irreducible dissections with n
inner vertices. The inverse mapping of the closure is the opening.

We can state three analogous versions of Theorem 3.3 for rooted objects:

Theorem 3.4 (bijection, rooted versions). The closure mapping induces the
following bijections between sets of rooted objects:

B′
n × {1, . . . , 6} ≡ D′

n × {1, . . . , n+ 2},
B′

ij × {1, 2, 3} ≡ D′
ij × {1, . . . , i+ j + 2},

B•
ij × {1, 2, 3} ≡ D′

ij × {1, . . . , 2i− j + 1}.

Proof. We define the set D′′
n of so-called bi-rooted irreducible dissections of the

hexagon. An object of D′′
n is an object of D′

n endowed with its tri-orientation
without clockwise circuit and where a simply oriented edge is marked. Opening
and rerooting on the corresponding stem defines a surjection from D′′

n onto B′
n, for

which each element of B′
n has clearly 6 preimages since the dissection could have

been rooted at any edge of the hexagon. Moreover, erasing the mark clearly defines
a surjection from D′′

n to D′
n, for which each element of D′

n has n + 2 preimages,
according to Lemma 3.7. Hence, the closure defines a (n+2)-to-6 mapping between
B′

n and D′
n. The proof of the (i+ j + 2)-to-3 correspondence between B′

ij and D′
ij

is the same.
The (2i−j+1)-to-3 correspondence between B•

ij and D′
ij induced by the closure

can be proved similarly, with the difference that the marked simply oriented edge
has to have a black vertex as origin. Then the result follows from the fact that
an object of D′

ij endowed with its tri-orientation without clockwise circuit has
(2i− j + 1) simply oriented edges whose origin is a black vertex. �

Let us mention that the (i+ j+2)-to-3 correspondence between B′
ij and D′

ij is
a key ingredient to the planar graph generators presented in Section 4.

The coefficient |B′
n| is well-known to be the n-th Catalan number 1

n+1

(
2n
n

)
, and

refinements of the standard proofs yield |B•
ij | = 1

2j+1

(
2j+1

i

)(
2i
j

)
, as detailed below

(Section 2.1.5). Theorem 3.4 thus implies the following enumerative results:

Corollary 3.1 (counting rooted dissections). The coefficients counting rooted
irreducible dissections have the following expressions,

(10) |D′
n| =

6

n+ 2
|B′

n| =
6

(n+ 2)(n+ 1)

(
2n

n

)
,

and

(11) |D′
ij | =

3

2i− j + 1
|B•

ij | =
3

(2i+ 1)(2j + 1)

(
2j + 1

i

)(
2i+ 1

j

)
.
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These enumerative results have already been obtained by Mullin and Schellen-
berg [90] using algebraic methods. Our result provides a bijective interpretation of
these numbers for m = 2.

Notice that the cardinality of D′
n is S(n, 2)/2 where S(n,m) = (2n)!(2m)!

n!m!(n+m)! is

the nth super-Catalan number of order m (these numbers are discussed by Gessel
in [67]). Our bijection gives an interpretation of these numbers for m = 2.

2.1.4. Counting triangulations. A nice feature of the closure mapping is that
it specializes to a bijection between plane triangulations and a simple subfamily of
binary trees. In this way, we get the first bijective proof of the formula giving the
number of unrooted plane triangulations with n vertices, found by Brown [27], and
recover the counting formula for rooted triangulations, already obtained in [95, 111]
and in Section 1.5.

Theorem 3.5. The closure mapping induces a bijection between the set Tn of
(unrooted) plane triangulations with n inner vertices and the set Sn of bicolored
binary trees with n black nodes and no stem (i.e., leaf) incident to a black node.

The closure-mapping induces the following correspondence between the set T ′
n

of rooted triangulations with n inner vertices and the set S′n of rooted trees in Sn:

S′n × {1, 2, 3} ≡ T ′
n × {1, . . . , 3n+ 3}.

Proof. Plane triangulations are exactly 3-connected planar maps such that all faces
have degree 3. The angular dissection of a triangulation T is the dissection of
the hexagon obtained from the angular map of T by splitting the white vertex
corresponding to the outer face of T into three white vertices, one in front of each
outer edge of T , see Figure 12 such that the three outer white vertices have degree
2 and all inner white vertices have degree 3. It is in fact easily checked that this
mapping is a bijection between Tn and the set of bicolored irreducible dissections
with n inner black vertices and with all inner white vertices having degree 3 and
the outer white vertices having degree 2. In a tri-orientation, the indegree of each
inner white vertex v is deg(v) − 3 and the indegree of each outer white vertex v is
deg(v)−2, so that the dissections considered here have no ingoing half-edge incident
to a white vertex. Hence the opening of the dissection (by removing ingoing half-
edges) is a binary tree with no stem incident to a black node. Conversely, starting
from such a binary tree, the half-edges created during the closure mapping are
opposite to a stem. As all stems are incident to white vertices, the half-edges
created are incident to black vertices. Hence the degree of each white vertex does
not increase during the closure mapping, i.e., it remains equal to 3 for inner white
vertices and equal to 2 for outer white vertices. This concludes the proof of the
bijection Sn ≡ Tn.

The bijection S′n × {1, 2, 3} ≡ T ′
n × {1, . . . , 3n+ 3} follows easily (see the proof

of Theorem 3.4), using the fact that a tree of Sn has 3n+ 3 leaves. �

The bijection, illustrated in Figure 12, makes it possible to count plane unrooted
and rooted triangulations, as the subfamily of binary trees involved is easy to
enumerate.

Proposition 3.5 (counting triangulations). For n ≥ 0, the number of rooted
triangulations with n inner vertices is

|T ′
n| = 2

(4n+ 1)!

(n+ 1)!(3n+ 2)!
.
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a) b) c) d)

Figure 12. The bijection between triangulations and bicolored
binary trees with no leaf incident to a black node.

The number of unrooted plane triangulations with n inner vertices is

|Tn| =
2

3

(4n+ 1)!

(n+ 1)!(3n+ 2)!
if n ≡ 2 mod 3,

|Tn| =
2

3

(4n+ 1)!

(n+ 1)!(3n+ 2)!
+

4

3

(4k + 1)!

k!(3k + 2)!
if n ≡ 1 mod 3 [n = 3k + 1],

|Tn| =
2

3

(4n+ 1)!

(n+ 1)!(3n+ 2)!
+

2

3

(4k)!

k!(3k + 1)!
if n ≡ 0 mod 3 [n = 3k].

Proof. Let S′ = ∪nS′n be the set of rooted binary trees with no leaf incident
to a black node and let R′ = ∪nR′

n be the set of rooted binary trees where the
root leaf is incident to a black node and all other leaves are incident to white
nodes. Let S(x) and R(x) be the generating functions of S′ and R′ with respect
to the number of black nodes. Clearly the two subtrees at the (white) root node
of a tree of S′ are either empty or in R′. Hence S(x) = (1 + R(x))2. Similarly,
a tree in R′ decomposes at the (black) root node into two trees in S′, so that
R(x) = xS(x)2. Hence, R(x) = x(1 + R(x))4 is equal to the generating function
of quaternary trees, and S(x) = (1 + R(x))2 is equal to the generating function
of pairs of quaternary trees (the empty tree being allowed). Using a Lukasiewicz
encoding and the cyclic lemma, the number of pairs of quaternary trees with a

total of n nodes is easily shown to be 2
4n+2

(4n+2)!
n!(3n+2)! . This expression of |S′n| and

the (3n+ 3)-to-3 correspondence between S′n and T ′
n yield the expression of |T ′

n|.
Let us now prove the formula for |Tn| = |Sn|. Clearly, the only possible non-

trivial symmetry of a bicolored binary tree is a rotation of order 3. Let Ssym
n be the

set of trees of Sn with a rotation symmetry and let Sasy
n be the set of trees of Sn

with no symmetry. Let S ′asy
n and S ′sym

n be the sets of trees of Sasy
n and Ssym

n that
are rooted. It is easily shown that a tree in Sn has 3n+ 3 leaves. Clearly the tree
gives rise to 3n+3 rooted trees if it is asymmetric and gives rise to n+1 rooted trees
if it is symmetric. Hence |Sasy

n | = |S
′asy
n |/(3n + 3) and |Ssym

n | = |S ′sym
n |/(n + 1).

Using |Sn| = |Ssym
n |+ |Sasy

n | and |S′n| = |S
′sym
n |+ |S ′asy

n |, we obtain

|Sn| =
1

3n+ 3
|S′n|+

2

3
|Ssym

n |.

The centre of rotation of a tree in Ssym
n is either a black node, in which case

n = 3k + 1, or is a white node, in which case n = 3k. In the first case, a tree
τ ∈ Ssym

n is obtained by attaching to a black node 3 copies of a tree in S′k. Hence

|Ssym
3k+1| = |S′k| = 2 (4k+1)!

k!(3k+2)! . In the second case, a tree τ ∈ Ssym
n is obtained by
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A•◦ A• A◦

δ = 3 δ = 1 δ = 1 δ=−1 δ=−1

Figure 13. The three alphabets for words associated to bicolored
binary trees.

Φ

Ψ w•◦ =

w• =

w◦ =

Figure 14. A bicolored rooted binary tree, and the corresponding
words w•◦, w•, and w◦.

attaching to a white node 3 copies of a tree in R′
k. Hence |Ssym

3k | = |R′
k| = (4k)!

k!(3k+1)! .

The result follows. �

2.1.5. Appendix of Section 2.1: counting, coding and sampling rooted bicolored binary
trees. This section provides a proof of the counting formula for the number of black-rooted
bicolored binary trees with i black nodes and j white nodes. We use well-known methods of
tree-encoding by parenthesis words in several parameters. The advantage of such encoding
methods is to make it possible to perform random generation and encoding of bicolored
binary trees, which will be useful later to encode and sample rooted 3-connected maps.

From a bicolored tree to a pair of words. This section adapts to the family of bicol-
ored binary trees some general methods to encode a family of trees specified by several
parameters. Let T be a rooted bicolored binary tree with i black nodes and j white nodes.
Doing a depth-first traversal of T from left to right, we obtain a word w•◦ of length (2j+1)
on the alphabet A•◦ represented on Figure 13 (left), see Figure 14 for an example, the
mapping being denoted by Ψ. It is easy to see that the sum of the weights δ of the letters
of any strict prefix of w•◦ is nonnegative and the sum of the weights of the letters of w•◦

is equal to -1. In addition, w•◦ is the unique word in its cyclic equivalence-class that has
these two properties.

Then w•◦ is mapped to a pair (w•, w◦) := Φ(w•◦) of words such that:

• w• is a word of length (2j + 1) on the alphabet A• (represented in Figure 13
middle) with i black-node-letters.

• w◦ is a word of length 2i on the alphabet A◦ (represented in Figure 13 right)
with j white-node-letters.

Figure 14 illustrates the mapping Φ on an example.
Inverse mapping: from a pair of words to a tree. Conversely, let (w•, w◦) be a pair

of words such that w• is of length (2j + 1) on A• with i black-node-letters and w◦ is of
length 2i on A◦ with j white-node-letters. First, we associate to this pair a word ew•◦ of
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d)c)b)a)

Figure 15. Closure of a ternary tree into an irreducible triangu-
lation of the 4-gon.

length (2j +1) on A•◦ by doing the inverse of the mapping Φ (represented on the right of
Figure 14). This word has the property that the sum of the weights of its letters is equal
to -1. There is a unique word w•◦ in the cyclic equivalence-class of ew•◦ such that the sum
of the weights of the letters of any strict prefix is nonnegative. We associate to w•◦ the
binary tree of B•

ij obtained by doing the inverse of the mapping Ψ shown in Figure 14.
This method allows us to sample uniformly objects of B•

ij in linear time and ensures
that

(12) |B•
ij | =

1

2j + 1

 
2j + 1

i

! 
2i

j

!
.

2.2. Bijection between ternary trees and irreducible triangulations.
The second bijection of the unrooted type we present is from ternary trees to ir-
reducible triangulations. This bijection is very similar to the bijection with binary
trees described in the preceding section. It has been the starting point of our dis-
covery of transversal structures. Indeed, as we will see, a natural edge-bicoloration
of a ternary tree is transported to the minimal transversal structure of the associ-
ated triangulation. In all this section, the set of (rooted) irreducible triangulations
is denoted by Tn (T ′

n, respectively).
2.2.1. Closure mapping from ternary trees to irreducible triangulations. We de-

fine ternary trees similarly as binary trees in Section 2.1. A ternary tree is a plane
tree whose vertex degrees are in {1, 4}. Vertices of degree 4 are called nodes and
vertices of degree 1 are called leaves. An edge of A connecting two nodes is called
an closed edge and consists of two half-edges, one at each extremity of the edge. An
edge of the tree connecting a node to a leaf is called a stem. We consider stems as
consisting of a unique half-edge incident to the node and having not (yet) an oppo-
site half-edge. A ternary tree can be rooted by marking one of its leaves. The root
allows us to distinguish the 4 neighbours of each node, taken in ccw-order, into a
parent (the neighbour in the direction of the root), a left-child, a middle-child, and
a right-child. Thus, what we call rooted ternary trees correspond to the classical
definition, where each node is either a leaf or has 3 ordered children.

Like the bijection with binary trees, the mapping from ternary trees to irre-
ducible triangulations consists of three main steps: local closure, partial closure and
complete closure. Perform a counterclockwise traversal of a ternary tree A. If a
stem s and then two closed edges e1 and e2 are successively encountered during the
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traversal, create a half-edge opposite to the stem s and incident to the farthest ex-
tremity of e2, so as to close a triangular face. This operation is called local closure,
see Figure 15(b).

Now we can restart a counterclockwise traversal around the new figure F , which
is identical to A, except that it contains a triangular face and, more important, the
stem s has become an closed edge (i.e., an edge with two half-edges). Each time we
find a succession (stem, closed edge, closed edge), we perform a local closure, update
the figure, and restart, until no local closure is possible. This greedy execution of
local closures is called the partial closure of A, see Figure 15(c). It can easily be
shown that the figure F obtained by partial closure of A does not depend on the
order of execution of the local closures.

At the end of the partial closure, the number ns of unmatched stems and the
number ne of sides of closed edges incident to the outer face of F satisfy the relation
ns − ne = 4. Indeed, this relation is satisfied on A because a ternary tree with n
nodes has n−1 closed edges and it can be proved inductively on n that it has 2n+2
leaves (so that ns = 2n+ 2 and ne = 2n− 2); and the relation ns− ne = 4 remains
satisfied throughout the partial closure because a local closure decreases ns and ne

by 1, so that ns−ne is unchanged. When no local closure is possible anymore, two
consecutive unmatched stems on the contour of the outer face of F are separated
by at most one side of closed edge. Hence, the relation ns = ne +4 implies that the
unmatched stems of F are partitioned into four intervals I1, I2, I3, I4, where two
consecutive stems of an interval are separated by a side of closed edge, and where
the last stem of Ii is incident to the same vertex as the first stem of I(i+1)mod 4, see
Figure 15(c).

The last step of the closure mapping, called complete closure consists of the fol-
lowing operations: draw a 4-gon (v1, v2, v3, v4) outside of F ; then, for i ∈ {1, 2, 3, 4},
create a half-edge for each stem s of the interval Ii, this new half-edge being oppo-
site to s and incident to the vertex vi. Clearly, this creates only triangular faces,
so that the obtained object is a triangulation of the 4-gon, see Figure 15(d).

Now we explain how the closure mapping is related to transversal edge-partitions.
The edges of a ternary tree A (both closed edges and stems) can be colored blue or
red so that any angle incident to an node of A is bicolored, see Figure 15(a). This
bicoloration, unique up to the choice of the colors, is called the edge-bicoloration
of A. The following invariant (I) is maintained throughout the partial closure: any
angle incident to the outer face is bicolored. By definition of the edge-bicoloration,
Invariant (I) is true on A. It remains satisfied after a local closure. Indeed, let
(s, e1, e2) be the succession (stem, closed edge, closed edge) intervening in the local
closure. Invariant (I) implies that s and e2 have the same color. As we give to the
new created half-edge h the same color as its opposite half-edge s (in order to have
unicolored edges), s and e2 have the same color. The effect of the local closure on
the angles of the outer face is the following, where we write v for the incident vertex
of h and h′ for the ccw-follower of e2 around v: the angle (e1, e2) disappears from
the outer face, and the angle (e2, h

′) is replaced by the angle (h, h′). As e2 has the
same color as h, the bicolored angle (e2, h

′) is thus replaced by the bicolored angle
(h, h′), so that (I) remains true after the local closure.

It also follows from this proof that the condition for inner vertices (i.e., the
incident edges form four intervals alternating in color) remains satisfied throughout
the closure, because the number of bicolored angles around a vertex is not increased,
and is initially equal to 4. At the end of the partial closure, Invariant (I) ensures
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that all stems of the intervals I1 and I3 are of one color, and all stems of the intervals
I2 and I4 are of the other color. Hence, the condition of transversal edge-partitions
for outer vertices is satisfied after the complete closure, see Figure 15(d). Thus,
the closure mapping transports the edge-bicoloration of A into a transversal edge-
partition of the associated triangulation of the 4-gon. The following lemma makes
this statement more precise.

Proposition 3.6. The closure of a ternary tree A with n nodes is an irreducible
triangulation T with n inner vertices.

The closure transports the edge-bicoloration of A into the minimal transversal
edge-partition of T .

Proof. As explained above, T is endowed with a transversal edge-partition by the
closure mapping. Assume a contrario that T has a separating 3-cycle ∆. Observe
that Lemma 1.1 page 45 was stated and proved without the irreducibility condition.
Hence, when the four border edges of T are colored blue, each inner face of T has
exactly two bicolored angles. Let k ≥ 1 be the number of vertices inside ∆. Then
Euler’s relation implies that there are 2k + 1 faces inside ∆, so that there are
4k+2 bicolored angles inside ∆. Moreover, Condition C1 implies that there are 4k
bicolored angles incident to a vertex in the interior of ∆. Hence there are exactly
two bicolored angles inside ∆ incident to a vertex of ∆. However, for each of the
three edges {e1, e2, e3} of ∆, the incident face of ei inside ∆ has at least one of its
two bicolored angles incident to ei. Hence, we have the contradiction that there
are at least three bicolored angles inside ∆ and incident to a vertex of ∆.

Now we show that the transversal edge-partition of T transported by the closure
mapping is minimal, i.e., has no right alternating 4-cycle. Let C be an alternating
4-cycle of T . This cycle has been closed during a local closure involving one of
the four edges of C. Let e be this edge and let v be the origin of the stem whose
completion has created the edge e. The fact that the closure of a stem is always
performed with the infinite face on its right ensures that e is the right-edge of v
on C, as defined in Section 6. A second observation following from Invariant (I) is
that, when a stem s is merged, the angle formed by s and by the edge following s
in counterclockwise order around the origin of s is a bicolored angle. This ensures
that C is a left alternating 4-cycle. �

2.2.2. Inverse mapping: the opening. In this section, we describe the inverse
of the closure mapping, so as to recover a ternary tree from an irreducible trian-
gulation. As we have seen in the proof of Invariant (I), during a local closure, the
new created half-edge h is such that the cw-consecutive half-edge has the same
color as h. Hence, throughout the closure of a ternary tree endowed with its edge-
bicoloration, the following invariants are maintained for an half-edge h incident to
an inner vertex of T :

• If the angle formed by h and its cw-consecutive half-edge is unicolored,
then h has been created during a local closure.
• If the angle is bicolored, then h is one of the 4 original half-edges of A

incident to v.

These invariants indicate how to inverse the closure. Given an irreducible
triangulation T of the 4-gon, the opening of T consists of the following steps, see
Figure 16 for an example:

(1) Endow T with its minimal transversal edge-partition.
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a) b) c) d)

Figure 16. The opening algorithm performed on an example.

(2) Remove the outer quadrangle of T and all half-edges of T incident to the
quadrangle.

(3) Remove all half-edges whose clockwise-consecutive half-edge has the same
color.

The opening mapping has been defined so that the following lemma is satisfied.

Lemma 3.11. Let A be a ternary tree and let T be the irreducible triangulation
obtained by doing the closure of A. Then the opening of T is A.

Hence, the closure Φ and the opening Ψ are such that Ψ◦Φ = Id. To prove that
the opening is the inverse of the closure, it remains to prove that Φ◦Ψ = Id, which
is more difficult. First, we will show that the opening of an irreducible triangulation
T is always a ternary tree. Then, we will prove that the closure of this ternary tree
is T .

First we need a few definitions. Let T be an irreducible triangulation endowed
with its minimal transversal edge-partition. Let h be a half-edge of T belonging to
an inner edge of T and let v be the origin of h. Then we orient h using the following
rules:

• If v is an outer vertex of T , orient h toward v.
• If v is an inner vertex of T , orient h outward of v if the angle formed by
h and its cw-consecutive half-edge h is a bicolored angle; orient h toward
v if the angle is unicolored.

Each inner vertex of T clearly has outdegree 4 for this orientation (because
exactly 4 of the incident angles are bicolored). We call this orientation of the
inner half-edges of T the 4-orientation of T . By definition of the 4-orientation, the
opening of a triangulation can be seen equivalently as the operation of removing
the outer 4-gon and all ingoing half-edges.

Let e be an inner edge of T . An important remark is that the two half-edges
of e can can not be simultaneously directed toward their respective origin. Indeed,
assume a contrario that there is such an edge e, and consider the cycle C bordered
by the two triangular faces f1 and f2 incident to e. Condition C2’ implies easily
that both extremities of e are inner vertices, so that the 4 edges of C are inner
edges of T . The fact that f1 and f2 have two bicolored angles (Lemma 1.1) implies
that the 4-cycle bordering the two triangular faces incident to e would be a right
alternating 4-cycle, which is impossible.

Hence, only two cases arise:

• If exactly one half-edge of e is ingoing, then e is called a stem-edge. In
this case the other half-edge of e is outgoing, so that the two half-edges
of e have the same direction.
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Figure 17. The existence of a clockwise cycle on the 4-orientation
of T implies the existence of a clockwise cycle on the minimal α4-
orientation of Q(T ).

• Otherwise the preceding discussion ensures that the two half-edges of e
are outgoing. In this case e is called a tree-edge. A tree-edge can be
considered as a bi-oriented edge for the 4-orientation of T .

We define a clockwise circuit of the 4-orientation of T as a simple cycle C of
inner edges of T such that each edge e of C is either a tree-edge (i.e. a bi-oriented
edge) or a stem-edge having the interior of C on its right.

Lemma 3.12. The 4-orientation of T has no clockwise circuit.

Proof. Assume that there is a clockwise circuit C in the 4-orientation of T . For a
vertex v on C, denote by hv the half-edge of C going out of v when doing a clockwise
traversal of C. As C is a clockwise cycle for the 4-orientation of T , hv is directed
outward of v. Hence the angle A formed by hv and its clockwise-consecutive half-
edge around v is a bicolored angle for the minimal transversal edge-partition of
T . Hence, the edge of Q(T ) associated with the angle A is going out of v for the
α4-orientation Omin of Q(T ) with no cw circuit (so-called minimal). We denote this
edge by ev. Note also that, in the interior of C, ev is the ccw-most edge of Q(T )
incident to v.

We use this observation to build iteratively a clockwise circuit of Omin (see
Figure 17), yielding a contradiction. Let v0 be a vertex on C and let Pv0 be the
straight path (see the definition in page 48) starting at ev0 for the α4-orientation
Omin. Lemma 1.3 ensures that P(v0) can not pass twice by the same vertex and
must end at E or W . In particular, P(v0) has to reach C at a vertex v1 different
from v0. We denote by P1 the part of P(v0) between v0 and v1. We denote by
Λ1 the part of the clockwise circuit C between v1 and v0 and we call C1 the cycle
obtained by concatenating P1 and Λ1. Then, let P(v1) be the straight path starting
at ev1 . The fact that ev1 is the most counterclockwise incident edge of v1 in the
interior of C ensures that P(v1) starts in the interior of C1. Then the path P(v1)
has to reach C1 at a vertex v2 6= v1. We denote by P2 the part of the path P(v1)
between v1 and v2. If v2 belongs to P1, then the concatenation of the part of P1

between v2 and v1 and of the part of P2 between v1 and v2 is a clockwise circuit,
in contradiction with the minimality of Omin. Hence v2 is on Λ1 strictly between
v1 and v0. We denote by P 2 the concatenation of P1 and P2; and denote by Λ2 the
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part of C going from v2 to v0. As v2 is strictly between v1 and v0, Λ2 is strictly
included in Λ1. Finally, we denote by C2 the cycle made of the concatenation of P 2

and Λ2. Similarly as for the path Pv1 , the path Pv2 must start in the interior of C2.
Then we continue iteratively, see Figure 17. At each step k, we consider the

straight path P(vk) starting at evk
. This path starts in the interior of the cycle

Ck. It reaches again Ck at a vertex vk+1. The vertex vk+1 can not belong to
P k, otherwise a clockwise circuit of Omin would be created. Hence vk+1 is strictly
between vk and v0 on C, i.e., it is on Λk\{vk, v0}. In particular the path Λk+1 going
from vk+1 to v0 on C, is strictly included in the path Λk going from vk to v0 on
C. Thus, Λk shrinks strictly at each step. Hence, there must be a step k0 where
P(vk0) reaches Ck0 at a vertex on P k0 , thus creating a clockwise circuit of Omin and
yielding a contradiction. �

Lemma 3.13. The tree-edges of T form a spanning tree of the inner vertices of
T .

Proof. Denote by H the graph consisting of the tree-edges of T and their incident
vertices. A first observation is that H has no cycle because such a cycle of (bi-
oriented) edges of T would be a clockwise circuit in the 4-orientation of T , which
is impossible according to Lemma 3.12. Let n be the number of inner vertices of
T . Observe that H can not be incident to the border vertices of T , so that H can
cover at most the set of inner vertices of T . A well-known result of graph theory is
the following: if an acyclic graph H covers a subset of a set E of n vertices and if
H has (n − 1) edges, then H is a tree covering exactly all vertices of E. Hence it
remains to show that H has (n−1) edges. Let s be the number of stem-edges and t
be the number of tree-edges of T . As T has n inner vertices, there are 4n outgoing
half-edges in the 4-orientation of T . Moreover, each stem-edge has contribution 1
to the number of outgoing half-edges and each tree-edge has contribution 2 to the
number of outgoing half-edges. Hence, s+ 2t = 4n. Finally, Euler relation ensures
that T has (3n+1) inner edges, so that s+ t = 3n+1. These two equalities ensure
that t = n − 1, which concludes the proof that H is a spanning tree of the inner
vertices. �

Lemma 3.14. The opening of an irreducible triangulation T is a ternary tree.

Proof. As we have seen from the definition of the 4-orientation, the opening of a
triangulation can be seen as the operation of removing the outer 4-gon and then
removing all ingoing half-edges. The obtained figure consists of the tree-edges,
which form a spanning tree according to Lemma 3.13, and of the half-edges that
have lost their opposite half-edge. The edges of the first and second type correspond
respectively to the inner edges and to the stems of the obtained tree. In addition,
after removing all ingoing half-edges, each vertex has degree 4, so that the obtained
tree satisfies the degree-conditions of a ternary tree. �

To prove that the closure-mapping is a bijection whose inverse is the closure,
it remains to prove the following lemma:

Lemma 3.15. Let T be an irreducible triangulation and let A be the ternary
tree obtained by doing the opening of T . Then the closure of A is T .

Proof. First it is clear that the operation of complete closure (transition between
Figure 15(c) and Figure 15(d)) is the inverse of Step 2 of the opening algorithm.
Let F be the figure obtained from T after Step 2 of the opening mapping.
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To prove that the partial closure of A is F , it is sufficient to find a chronological
order of deletion of the ingoing half-edges of F (for the 4-orientation) such that the
inverse of each half-edge deletion is a local closure. This is done in a way similar
to the proof of Lemma 3.10. �

Finally Lemma 3.11 and Lemma 3.15 yield the following theorem:

Theorem 3.6 (bijection). The closure mapping is a bijection between the set
of ternary trees with n nodes and the set of irreducible triangulations of the 4-gon
with n inner vertices. The inverse mapping of the closure is the opening.

Theorem 3.7 (bijection, rooted version). The closure mapping induces a 4-
to-(2n+ 2) correspondence between the set A′

n of rooted ternary trees with n nodes
and the set T ′

n of rooted irreducible triangulations with n inner vertices. In other
words,

A′
n × {1, . . . , 4} ≡ T ′

n × {1, . . . , 2n+ 2}.
Proof. It can easily be proved by induction on the number of nodes that a ternary
tree with n nodes has 2n+2 leaves. Hence, when rooting the ternary tree obtained
by doing the opening of an object of T ′

n, there are 2n+ 2 possibilities to place the
root. Conversely, starting from a rooted ternary tree with n nodes, there are four
possibilities to place the root on the object of T ′

n obtained by doing the closure of
the tree, because the root has to be placed on one of the four border edges. �

Proposition 3.7 (counting irreducible triangulations). For n ≥ 0, the number
of rooted irreducible triangulations of the 4-gon with n inner vertices is

|T ′
n| = 4

(3n)!

n!(2n+ 2)!
.

The number of unrooted irreducible triangulations with n inner vertices is

|Tn| =
(3n)!

n!(2n+ 2)!
+

1

2

(3k)!

k!(2k + 1)!
if n ≡ 0 mod 2 [n = 2k]

|Tn| =
(3n)!

n!(2n+ 2)!
+

1

2

(3k + 1)!

k!(2k + 2)!
+

1

2

(3k′)!

k′!(2k′ + 1)!
if n ≡ 1 mod 4

[n = 2k + 1 = 4k′ + 1],

|Tn| =
(3n)!

n!(2n+ 2)!
+

1

2

(3k + 1)!

k!(2k + 2)!
if n ≡ 3 mod 4 [n = 1 + 2k].

Proof. The enumerative formula follows from |T ′
n| = 4

2n+2 |A′
n| and from the well

known fact that |A′
n| = (3n)!/((2n + 1)!n!) (which can be derived from Lagrange

inversion formula applied to the generating function A(z) = z(1 + A(z))3). The
formula for |Tn| = |An| follows from the enumeration of unrooted ternary trees,
which is easily obtained by considering the possible rotation symmetries (order 2
around a vertex or an edge, order 4 around a vertex), in a way similar to the proof
of Proposition 3.5. �

The formula for rooted irreducible triangulations can easily be obtained from
the series counting rooted triangulations of the 4-gon by using a composition
scheme, see [111]. To our knowledge, the counting formula for unrooted irreducible
triangulations is new. However, a composition scheme should make it possible to
count irreducible triangulations with a given rotation symmetry (order 2 around
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a vertex or an edge, order 4 around a vertex), starting from triangulations of the
4-gon with a given rotation symmetry, which have been counted by Brown [27].

3. Appendix: proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2, which states that each irreducible
dissection has a unique tri-orientation without clockwise circuit.

Theorem 1.3 ensures uniqueness of the orientation without clockwise circuit of a
graph with prescribed outdegree for each vertex. However, this does not directly imply
uniqueness in Theorem 3.2, because a tri-orientation has bi-oriented edges.

To use Theorem 1.3, we work with the derived map G′ of an irreducible dissection D,
as defined in Section 1.3.2. We have defined derived maps only for a subset of irreducible
dissections, namely for bicolored complete irreducible dissections. As a consequence, a
first step toward proving Theorem 3.2 is to reduce its proof to the proof of existence and
uniqueness of a so-called complete-tri-orientation (a slight adaptation of the definition of
tri-orientation) without clockwise circuit for any bicolored complete irreducible dissection.

Then we prove that a complete-tri-orientation without clockwise circuit of a bicolored
complete irreducible dissection D is transposed injectively into an α3-orientation without
clockwise circuit of its derived map G′. By injectivity of the transposition and by unique-
ness of the α3-orientation without clockwise circuit of G′, this implies uniqueness of a
tri-orientation without clockwise circuit of D.

Conversely, we prove that an α3-orientation without clockwise circuit of G′ is trans-
posed into a complete-tri-orientation without clockwise circuit of D. As α−3 is feasible for
any suspended 3-connected map, there exists an α3-orientation without clockwise circuit
of G′, this implies the existence of a complete-tri-orientation without clockwise circuit of
D, concluding the proof of Theorem 3.2.

3.1. Reduction to the case of bicolored complete dissections.

Introduction. The object of this section is to reduce the proof of Theorem 3.2 to the
class of so-called complete bicolored irreducible dissections, which are defined as dissections
such that the three outer white vertices have degree 2. We state the following proposition
where the term “complete-tri-orientation”, to be defined later, is a slight adaptation of
the notion of tri-orientation.

Proposition 3.8. The existence and uniqueness of a complete-tri-orientation without
clockwise circuit for any bicolored complete irreducible dissection implies the existence and
uniqueness of a tri-orientation without clockwise circuit for any irreducible dissection, i.e.,
implies Theorem 3.2.

The rest of this subsection is devoted to the proof of Proposition 3.8. The proof is done
in two steps. First, reduce the proof of Theorem 3.2 to the existence and uniqueness of a
tri-orientation without clockwise circuit for any bicolored complete irreducible dissection.
Then, prove that this reduces to the existence and uniqueness of a complete-tri-orientation
without clockwise circuit for any bicolored complete irreducible dissection.

Completion of a bicolored irreducible dissection. For any bicolored irreducible dissec-
tion D, we define its completed dissection Dc as follows . For each white vertex v of the
hexagon, we denote by e1 and e2 the two edges of the hexagon incident to v and denote
by v1 and v2 the respective extremities of e1 and e2. We perform the following operation:
if v has at least 3 incident edges in the dissection, a new white vertex v′ is created outside
of the hexagon and is linked to v1 and to v2 by two new edges e′1 and e′2, see Figure 18.

The dissection obtained is a bicolored dissection of the hexagon such that the three
white vertices of the hexagon have two incident edges, see the transition between Fig-
ure 19(a) and Figure 19(b) (ignore here the orientation of edges on this figure). Hence,
the obtained dissection is complete, i.e., the three outer white vertices have degree 2.

Lemma 3.16. The completion Dc of a bicolored irreducible dissection D is a bicolored
complete irreducible dissection.
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Proof. The dissection Dc is complete by construction. Hence, we just have to prove that
Dc is irreducible. As D is irreducible, if a separating 4-cycle C appears in Dc when the
completion is performed, then it must contain a white vertex v′ of the hexagon of Dc added
during the completion. Hence, using the notation of the definition of the completion, two
edges of C are the edges e′1 and e′2 incident to v′ in Dc. The two other edges e′′1 and e′′2 of
C form a path of length 2 connecting the extremities v1 and v2 of e′1 and e′2 and passing
by the interior of D (otherwise, C would enclose a face). As D is irreducible, the 4-cycle
C′ of D consisting of the edges e1, e2, e′′1 and e′′2 delimits a face. Hence e1 and e2 are
incident to the same inner face of D, which implies that the white vertex v on the border
of D and associated to v′ has degree 2. But, by definition of the completion, the creation
of a new vertex v′ associated to v is performed only if v has at least 3 incident edges,
yielding a contradiction. �

Tri-orientations. Let D be a bicolored irreducible dissection and let Dc be its com-
pleted bicolored dissection. We define a mapping Φ from the tri-orientations of Dc to the
tri-orientations of D. Given a tri-orientation Y of Dc, we remove the half-edges that have
been added to obtain Dc from D, erase the orientation of the edges of the hexagon of D,
and orient inward all inner half-edges incident to a vertex of the hexagon of D. We obtain
thus a tri-orientation Φ(Y ) of D, see the transition between Figure 19(b) and Figure 19(a).

Lemma 3.17. Let eY be a tri-orientation of Dc without clockwise circuit. Then the

tri-orientation Φ(eY ) of D has no clockwise circuit.
For each tri-orientation Y of D without clockwise circuit, there exists a tri-orientation

eY of Dc without clockwise circuit such that Φ(eY ) = Y .

Proof. The first point is trivial as the tri-orientation Φ(eY ) is just obtained by removing
some edges and some orientations of edges.

For the second point, the preimage eY is constructed as follows. Consider each white
vertex v of the hexagon of D which has degree at least 3. Let (h1, . . . , hm) (m ≥ 3) be
the series of half-edges incident to v in D in counter-clockwise order around v, with h1

and h2 belonging respectively to the edges e1 and e2 of the hexagon that are incident to
v (using the notation of Figure 18). As m ≥ 3, the vertex v gives rise to a new vertex v′

with two incident edges e′1 and e′2 such that the edges e1, e2, e′1 and e′2 form a new face
f . Then the edges e1 and e2 become internal edges of Dc and have thus to be oriented in
a tri-orientation of Dc.

We orient the two half-edges of e1 and e2 respectively toward v1 and toward v2, see
Figure 18. Then the vertex v has degree 2 after these two orientations, and we have to
give to v a third outgoing half-edge. The judicious choice to avoid the appearance of a
clockwise circuit is to orient h3 outward, see Figure 18. Indeed, assume that these new
orientations of half-edges create a simple clockwise circuit C, then the circuit must pass
by v. It arrives at v by one of the half-edges hi directed toward v, i.e., i ≥ 4. Moreover,
it must go out of v using the half-edge h3 (indeed, if the circuit uses h1 or h2 to go out
of v, then it arrives at a vertex on the hexagon, i.e., a vertex having outdegree 0). Hence,
the interior of the clockwise circuit C must contain all faces incident to v that are on the
right of v when we traverse v from hi and go out using h3. Hence, the interior of C must
contain the new face f of Dc, see Figure 18. But f is on the border of the hexagon.
Hence, the circuit C, containing f , must pass by the edges of f that are on the border
of the dissection Dc. As these edges are not oriented by definition of a tri-orientation,

we have a contradiction. Thus, we have constructed a tri-orientation eY of Dc without

clockwise circuit and such that Φ(eY ) = Y . An example of this construction can be seen
as the transition between Figure 19(a) and Figure 19(b). �

Lemma 3.18. The existence and uniqueness of a tri-orientation without clockwise cir-
cuit for any bicolored complete irreducible dissection implies the existence and uniqueness
of a tri-orientation without clockwise circuit for any irreducible dissection, i.e., implies
Theorem 3.2.
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Figure 18. From a tri-orientation Y of D without clockwise cir-
cuit, the rules of construction of a tri-orientation Ỹ of Dc without

clockwise circuit such that Φ(Ỹ ) = Y .
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Figure 19. A bicolored irreducible dissection D endowed with a
tri-orientation Y without clockwise circuit (Figure a). Its associ-
ated completed dissection Dc (the two added white vertices are

surrounded) with a tri-orientation Ỹ without clockwise and preim-
age of Y by Φ (Figure b). The dissection Dc with a complete-

tri-orientation without clockwise circuit and preimage of Ỹ by Ψ
(Figure c).

Proof. This is a clear consequence of Lemma 3.16 and Lemma 3.17. �

Complete-tri-orientations. A complete-tri-orientation of a bicolored complete irre-
ducible dissection D is an orientation of the half-edges of D that satisfies the following
conditions (very similar to the conditions of a tri-orientation): all black vertices and all
inner white vertices of D have outdegree 3, the three white vertices of the hexagon have
outdegree 0, and the two half-edges of an edge of D can not both be oriented inward. The
difference with the definition of tri-orientation is that the half-edges of the hexagon are
oriented, with prescribed outdegree for the outer vertices. Similarly as in a tri-orientation,
edges of D are distinguished into simply-oriented edges and bi-oriented edges.

Lemma 3.19. Let D ∈ Dn be a bicolored complete irreducible dissection endowed with
a complete-tri-orientation without clockwise circuit. Then the subgraph T of D consisting
of the bi-oriented edges of D is a tree incident to all vertices of D except the three outer
white vertices.

Proof. We reason similarly as in Lemma 3.7. We denote by r and s the respective number
of bi-oriented and simply oriented edges of D. From Euler’s relation (using the degrees of
the faces of D), D has 2n + 7 edges, i.e., r + s = 2n + 7. In addition, the n inner vertices
and the three black (resp. white) vertices of the hexagon of D have outdegree 3 (resp. 0).
Hence, 2r + s = 3(n+3). Thus, r = n+2 and s = n+5. Hence, the subgraph T has n+2
edges, has no cycle (otherwise, it would yield a clockwise circuit of D), and is incident to
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at most (n + 3) vertices, which are the inner vertices and the three outer black vertices
of D. A classical result of graph theory ensures that T is a tree spanning these (n + 3)
vertices. �

Lemma 3.20. Let D ∈ Dn be a bicolored complete irreducible dissection endowed with
a complete-tri-orientation Y without clockwise circuit. Then, each black vertex v of the
hexagon has two of its outgoing half-edges on the hexagon, belonging to simply oriented
edges; and the third outgoing half-edge of v belongs to a bi-oriented inner edge.

Proof. The fact that the two edges of the hexagon incident to v are simply oriented out
of v follows from the fact that the three white vertices of the hexagon have outdegree 0.
The second assertion is a consequence of the fact that the subgraph T consisting of the
bi-oriented edges of D is a tree spanning all vertices of D except the three outer white
vertices. Hence, there is a bi-oriented edge e incident to each black vertex v of the hexagon
and this edge consitutes the third outgoing edge of v. �

Let D be a bicolored complete irreducible dissection. We define a mapping Ψ from
the complete-tri-orientations without clockwise circuit of D to the tri-orientations of D,
defined as follows. Let Y be a complete-tri-orientation of D without clockwise circuit. We
proceed as follows to obtain Ψ(Y ): erase the orientation of the edges of the hexagon of D;
then for each black vertex v of the hexagon, change the orientation of the unique outgoing
inner half-edge h of v. According to Lemma 3.20, h belongs to a bi-oriented edge e, so
that the change of orientation of h turns e into an edge simply oriented toward v. Thus,
the obtained orientation Ψ(Y ) satisfies the conditions of a tri-orientation.

Lemma 3.21. Let D be a bicolored complete irreducible dissection. Let eY be a complete-

tri-orientation of D without clockwise circuit. Then the tri-orientation Ψ(eY ) of D has no
clockwise circuit.

For each tri-orientation Y of D without clockwise circuit, there exists a complete-tri-

orientation eY of D without clockwise circuit such that Ψ(eY ) = Y .

Proof. The first point is trivial. For the second point, we reason similarly as in Lemma 3.17.
For each black vertex v of the hexagon of D, let (h1, . . . , hm) (m ≥ 3) be the sequence of
half-edges of D incident to v in counter-clockwise order around v, with h1 and h2 belonging
to the two edges e1 and e2 of the hexagon of D that are incident to v. To construct the

preimage eY of Y , we orient the two half-edges of e1 and e2 toward their incident white
vertex. The third outgoing half-edge is chosen to be h3, which is the “leftmost” inner half-
edge of v. An argument similar as in the proof of the second point of Lemma 3.17 ensures
that this choice is judicious to avoid the creation of a clockwise circuit. An example of
this construction is the transition between Figure 19(b) and Figure 19(c). �

Finally, Proposition 3.8 follows directly from Lemma 3.21 and Lemma 3.18.
Proposition 3.18 reduces the proof of Theorem 3.2 to the set of bicolored complete

irreducible dissections. From now on, we will work with these dissections.

3.2. Transposition rules for orientations. Let D be a bicolored complete irre-
ducible dissection and let G′ be its derived map. We associate to a complete-tri-orientation
of D an orientation of the edges of G′ of D in the following way.

Let e be an edge of G′ and let v be the extremity of e which is a primal or dual
vertex (the other extremity is an edge-vertex). Let h be the half-edge of D following e in
counterclockwise order around v. Then we give to e the orientation of h, see Figure 20.

Lemma 3.22. Let D be a bicolored complete irreducible dissection endowed with a
complete-tri-orientation without clockwise circuit. Then the orientation of edges of the
derived map G′ of D obtained using the transposition rules has the following properties:

• Each primal or dual vertex of G′ has outdegree 3.
• Each edge-vertex of G′ has outdegree 1.
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b)a) c)

Figure 20. The construction of the derived map of a bicolored
complete irreducible dissection. The dissection is endowed with a
complete-tri-orientation without clockwise circuit, and the derived
map is endowed with the orientation obtained from the transposi-
tion rules for orientations.

In other words, the orientation of edges of G′ obtained by the transposition rules is an
α3-orientation.

Proof. The first point is trivial.
For the second point, let f be an inner face of D and vf the associated edge-vertex

of G′ (we recall that vf is the intersection of the two diagonals of f). The transposition
rules for orientation ensures that the outdegree of vf in G′ is the number nf of inward
half-edges of D incident to f (i.e., having the interior of f on their right). Hence, to prove
that each edge-vertex of G′ has outdegree 1, we have to prove that nf = 1 for each inner
face f of D. Observe that nf is a positive number, otherwise the contour of f would be a
clockwise circuit in the complete-tri-orientation, which is impossible. Let n be the number
of inner vertices of D. Using Euler’s relation, it is easy to prove that D has (n + 2) inner
faces and has (4n + 14) half-edges. By definition of a complete-tri-orientation, 3(n + 3)
half-edges are outgoing. Hence, (n + 5) half-edges are ingoing. Among these (n + 5)
ingoing half-edges, exactly three are incident to the outer face (see Figure 19c). Hence,
D has (n + 2) half-edges incident to an inner face, so that

P
f

nf = n + 2. As
P

f
nf is a

sum of (n +2) positive numbers adding to (n + 2), the pigeonhole’s principle ensures that
nf = 1 for each inner face f of D. �

3.3. Uniqueness of a tri-orientation without clockwise circuit. The following
lemma completes Lemma 3.22 and is crucial to establish the uniqueness of a tri-orientation
without clockwise circuit for any irreducible dissection.

Lemma 3.23. Let D be a bicolored complete irreducible dissection endowed with a
complete-tri-orientation Y without clockwise circuit. Let G′ be the derived map of D. Then
the α3-orientation X of G′ obtained from Y by the transposition rules has no clockwise
circuit.

Proof. Assume that X has a clockwise circuit C. Each edge of G′ connects an edge-vertex
and a vertex of the original dissection D. Hence, the circuit C consists of a sequence of
pairs (e, e) of consecutive edges of G′ such that e goes from a vertex v of the dissection
toward an edge-vertex v′ of G′ and e goes from v′ toward a vertex v of the dissection. Let
(e′1, . . . , e

′
m) be the sequence of edges of G′ between e and e in clockwise order around v′,

so that e′1 = e; and e′m = e and let (v1, . . . , vm) be their respective extremities, so that
v1 = v and vm = v. Note that 2 ≤ m ≤ 4.

As each edge-vertex has outdegree 1 in X and as e′m is going out of v′, the edges
e′1, . . . , e

′
m−1 are directed toward v′. Hence,the transposition rules for orientations ensure

that the edges (vi, vi+1), for 1 ≤ i ≤ m − 1, are all bi-oriented or oriented from vi to
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v1

v′ v′

Figure 21. An oriented path of edges of the dissection can be
associated to each pair (e, e) of consecutive edges of C sharing an
edge-vertex.

Figure 22. A simple clockwise circuit can be extracted from an
oriented path enclosing a bounded simply connected region on its
right.

vi+1 in the complete-tri-orientation Y of D. Hence,we can go from v to v passing by the
exterior of C and using only edges of D, see Figure 21 for an example, where m = 3.

Concatenating the paths of edges of D associated to each pair (e, e) of C, we obtain
an oriented path of edges of D enclosing the interior of C on its right. Then, a simple
clockwise circuit can be extracted from this closed path, see Figure 22. As the complete-
tri-orientation Y has no clockwise circuit, this yields a contradiction. �

Proposition 3.9. Each irreducible dissection has at most one tri-orientation without
clockwise circuit.

Proof. Let D be a bicolored complete irreducible dissection and G′ its derived map. A
first important remark is that the transposition rules for orientations clearly define an
injective mapping. In addition, Lemma 3.23 ensures that the image of a complete-tri-
orientation of D without clockwise circuit is an α3-orientation of G′ without clockwise
circuit. Hence, injectivity of the mapping and uniqueness of an α3-orientation without
clockwise circuit of G′ ensure that D has at most one complete-tri-orientation without
clockwise circuit. Finally, Proposition 3.8 ensures that each irreducible dissection has at
most one tri-orientation without clockwise circuit. �

3.4. Existence of a tri-orientation without clockwise circuit.

Inverse of the transposition rules. Let D be a bicolored complete irreducible dissection
and G′ its derived map. Given an α3-orientation of G′, we can associate to this orientation
an orientation of the half-edges of D by performing the inverse of the transposition rules:
each half-edge h of D receives the orientation of the edge of G′ that follows h in clockwise
order around its origin, see Figure 20(b).

Lemma 3.24. Let D be an irreducible dissection and let G′ be the derived map of D,
endowed with its minimal α3-orientation. Then the inverse of the transposition rules for
orientations yields a complete-tri-orientation of D.

Proof. The inverse of the transposition rules is clearly such that a vertex has the same
outdegree in the obtained orientation of half-edges of D as in the α3-orientation of G′.
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e e

Figure 23. The case where the two half-edges of e are oriented
inward implies that the contour of the associated face of G′ is a
clockwise circuit.

Hence, each inner vertex of D has outdegree 3 and each white (resp. black) vertex on the
hexagon of D has outdegree 0 (resp. 3), see Figure 20(b).

To prove that the obtained orientation of D is a complete-tri-orientation, it remains
to show that the two half-edges of an edge e of D can not both be oriented inward. Assume
a contrario that there exists such an edge e. The transposition rules for orientation and
the fact that each edge-vertex of G′ has outdegree 1 imply that the contour of the face fe

of G′ associated to e is a clockwise circuit, see Figure 23. This yields a contradiction with
the minimality of the α3-orientation. �

Lemma 3.25. Let D be a bicolored complete irreducible dissection and let G′ be its de-
rived map, endowed with its minimal α3-orientation denoted by X. Let Y be the complete-
tri-orientation obtained from X using the inverse of the transposition rules. Then Y has
no clockwise circuit.

Proof. Assume that Y has a clockwise circuit C. For each vertex v on C, we denote by hv

the half-edge of C incident to v and having the interior of C on its right, and we denote by
ev the edge of G′ that follows hv in clockwise order around v. As C is a clockwise circuit
for Y , hv is going out of v. Hence, by definition of the transposition rules, ev is going
out of v. Observe that, in the interior of C, ev is the most counter-clockwise edge of G′

incident to v. From this observation, a clockwise circuit of X can be built in a similar
way as in the proof of Lemma 3.12. This yields a contradiction. �

Proposition 3.10. For each irreducible dissection, there exists a tri-orientation with-
out clockwise circuit.

Proof. Lemma 3.25 ensures that each bicolored complete irreducible dissection D has
a complete-tri-orientation Y without clockwise circuit. Then, Proposition 3.8 ensures
that the existence of a complete-tri-orientation without clockwise circuit for any bicolored
complete irreducible dissection implies the existence of a tri-orientation without clockwise
circuit for any irreducible dissection. �

Finally, Theorem 3.2 follows from Proposition 3.9 and Proposition 3.10.
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Conclusion. The concept of minimal α-orientation yields a general method to
formulate bijections between families of rooted planar maps and families of rooted
trees. Four already known bijections are recovered in this unified framework: with
the families of (rooted) tetravalent maps, quadrangulations, triangulated maps, and
triangulations.

Concerning the families of 3-connected maps and irreducible triangulations of
the 4-gon, the method based on minimal α-orientations does not seem to apply
easily. Nevertheless, there also exist bijections related to these two families, with
the particular feature that no root is needed (the bijections are between unrooted
plane trees and unrooted planar maps). The advantage is that these new bijections
yield enumeration fomulas for families of unrooted planar maps. In particular, we
obtain the first combinatorial proof for the number of unrooted plane triangulations.





CHAPTER 4

Algorithmic applications

t Introduction. As demonstrated in the first three chapters, planar struc-
tures (maps, trees) have rich combinatorial properties. These properties are both
structural (existence of specific orientations and coloration of edges) and enumer-
ative (existence of bijections). The goal is now to exploit the combinatorial study
in order to develop an efficient algorithmics on planar structures. In this chapter,
we show that the bijections presented in Chapter 3 give rise to efficient algorithms
for random generation and encoding. A striking further application is the develop-
ment of a random generator for planar graphs with very low polynomial complexity
(linear for approximate-size sampling and quadratic for exact-size sampling).

Results obtained in this chapter. The first application we develop is purely
enumerative. Recall that we have counted bijectively the family of irreducible
dissections of a hexagon and the family of irreducible triangulations of a 4-gon in
Chapter 3. In Section 1.1, we show how to count rooted 3-connected maps (Prop. 4.1
p. 124), starting from the enumeration formulas for irreducible dissections. A sim-
ilar method is applied in Section 1.2 to count rooted 4-connected triangulations
(Prop. 4.2 p. 125), starting from irreducible triangulations. In each case, the re-
sult is formulated using generating functions; a rational expression in terms of the
generating function of a family of trees is obtained. In this way, we recover in
a more direct way enumerative results found by Mullin and Schellenberg [90] for
3-connected maps and Tutte [111] for 4-connected triangulations.

We then describe algorithmic applications. From the bijections we derive en-
coding procedures that are optimal (in a sense to be made precise) for the families
of 3-connected maps (Theo 4.1 p. 127) and 4-connected triangulations (Theo. 4.2
p. 128). The principle consists in encoding the map by the parenthesis (contour)
word of the associated tree. Then we focus on random generation, describing how
the bijections give rise to efficient generators for rooted 3-connected maps (Prop. 4.3
and 4.4 p. 129) and rooted 4-connected triangulations. Notice that the derivation
of map generators from bijections has already been extensively studied by Schaef-
fer [99, 100]. Our most original and important contribution in this chapter is the
development of a very efficient uniform random generator for labeled planar graphs
(in contrast to a map, no explicit embedding is attached to a planar graph). The
sampler makes use of a well-known decomposition of planar graphs into 3-connected
planar graphs. As 3-connected planar graphs have a unique embedding, the 3-
connected components can be drawn using our bijective generator of 3-connected
maps. Then these components are assembled into a planar graph using specific
branching probabilities, which are computed based on the framework of Boltzmann
samplers, as introduced by Duchon, Flajolet, Louchard, and Schaeffer [43]. We
only provide the description of the algorithms and of its main ingredients, as a

119
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striking application of the combinatorial study of planar maps. The full paper to
be submitted [62] contains all the proofs.

Motivations. Random generation. The bijections presented in Chapter 3 yield
uniform random generators for the corresponding families of maps, each time with
linear-time complexity. Random generation is an important tool to test conjectures,
and to test the average complexity and correctness of algorithms. The uniform dis-
tribution is a natural one, as it does not give advantage to any particular object, i.e.,
it is maximally spread over the set to be sampled. In addition, random generation
allows us to observe statistical properties of objects drawn uniformly at random.
Typically, asymptotic properties are observed: limit shapes, limit distribution of
parameters... As these properties are asymptotic, it is necessary to draw very large
objects. For planar maps, a size of order 104 is sufficient to observe the asymp-
totic behaviour in most cases. This is readily achieved by the bijective samplers
presented in this chapter, which have linear time complexity.

Let us mention examples where random generation has been a fruitful source of
new results on planar maps. In his PhD [99], G. Schaeffer observed a distribution in
the scale of n1/4 for the radius of a random quadrangulation with n faces (the radius
of a rooted map is the distance from the root vertex to the farthest vertex); and
conjectured a limit distribution, in the scale n2/3, for the size of the so-called core-
map extracted from a random map of size n. These two (independent) observations
have been the starting point of fruitful research: in [30] it is shown that the radius
of a random quadrangulations with n vertices rescaled by n−1/4 converges to a so-
called Brownian snake; in [1] it is shown that the size of the core-map in a random
map with n edges fluctuate in the scale of n2/3 around its mean according to a
so-called Airy distribution. In a similar way, the uniform sampler for irreducible
triangulations, obtained in Section 3.2, has made it possible to perform simulations
of the compact straight-line drawing algorithm presented in Chapter 5. I have
observed that the grid size is always of the form αn × αn, with α ≈ 0.4 (see
Figure 8 page 166). This has encouraged me to perform an analysis (also given in
Chapter 5), which ensures that the grid is asymptotically with high probability of
size 11n/27× 11n/27 up to fluctuations of order

√
n.

Optimal encoding. A second important application of our bijections is an asymp-
totically optimal encoding algorithm for the corresponding families of maps. Let us
make precise what we mean by optimal encoder. A fixed size coding algorithm for
a set E is an injective mapping from E to the set {0, 1}k of binary words of length
k. The integer k is called the length of the code. By injectivity of the mapping,
2k ≥ |E|, so that the best compression rate one can expect for the code is with
a length k = ⌈log2(|E|)⌉. An encoder with length ⌈log2 |E|⌉ is said to be optimal.
The concept of encoding is then extended to a combinatorial class C = ∪nCn grad-
uated by a size parameter n. A size-uniform encoder for C is a procedure that
maps bijectively objects of C to binary words, such that, for n ≥ 0, the words
encoding objects of Cn have all a same length kn. The encoding is said to be linear
if the encoding and decoding procedures have linear-time complexity. Moreover,
the encoding procedure is said to be asymptotically optimal iff kn ∼ ⌈log2 |Cn|⌉ as
n→ ∞. Clearly, such encoders give asymptotically the best compression rates for
size-uniform encoders. The encoders presented in this chapter, which are derived
from explict bijections, are all linear asymptotically optimal encoders. In particular,
we obtain the first optimal encoder for the family of 3-connected maps. This family
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is of great interest; indeed the incidence structures of meshes with polygonal faces
and a spherical topology are exactly 3-connected maps. Hence, our encoder settles
a question raised in Computational Geometry, whether there exists an encoder for
polygonal meshes achieving the lower bound of 2 bits per edge. This question is
important in theory and in practice. Indeed, there exist efficient (not size-uniform)
heuristics to encode the combinatorial part of meshes [70, 79]. In case of bad com-
pression rate by these heuristics on particular instances, our encoder can be called
alternatively, producing invariably a coding word with 2 bits per edge.

1. Counting planar maps

This section explains how 3-connected maps can be counted, starting from the
enumeration of irreducible dissections; in the same way 4-connected triangulations
are counted starting from the enumeration of irreducible triangulations. The simple
expressions we get are in terms of generating functions. The corresponding formulas
for coefficients (not given in this thesis) are not closed, involving summations of
binomial coefficients. (These formulas are easily extracted using Lagrange inversion
formula.)

1.1. Counting rooted 3-connected maps. The idea to count rooted 3-
connected maps is the following: 1) rooted irreducible dissections of the hexagon
have an explicit counting formula given in Corollary 3.1 page 99, 2) 3-connected
maps and irreducible dissections are closely related via a simple decomposition.

1.1.1. Generating functions of rooted dissections. Even if the counting formu-
las obtained in Corollary 3.1 are simple, it proves useful to have an expression of
the corresponding generating functions. Indeed, the decomposition-method we de-
velop is suitably handled by generating functions. Recall that B•

ij (B◦
ij) stands for

the set of rooted bicolored binary trees such that the root node is black (white,
respectively).

Let r1(x•, x◦) :=
∑ |B•

ij |xi
•x

j
◦ and r2(x•, x◦) :=

∑ |B◦
ij |xi

•x
j
◦ be the series of

black-rooted and white-rooted bicolored binary trees. Observe that B•
ij ≃ B◦

ji

(upon switching colors), so that r1(x•, x◦) = r2(x◦, x•).
By decomposition at the root, r1(x•, x◦) and r2(x•, x◦) are the solutions of the

system:

(13)

{
r1(x•, x◦) = x• (1 + r2(x•, x◦))

2

r2(x•, x◦) = x◦ (1 + r1(x•, x◦))
2 .

Define an edge-marked bicolored binary tree as a bicolored binary tree with a
marked inner edge. Let B̄ij be the set of edge-marked bicolored binary trees with
i black nodes and j white nodes. Cutting the marked edge of such a tree yields
a pair made of a black-rooted and a white-rooted binary tree. As a consequence,
the generating function counting edge-marked bicolored binary trees is r1 · r2, i.e.,
r1 · r2 =

∑
ij |B̄ij |xi

•x
j
◦.

Let us consider bi-rooted objects as in the proof of Theorem 3.4; since any
object of Bij has (2i−j+1) white leaves (connected to a black node) and (2j−i+1)
black leaves (connected to a white node),

|B◦
ij | =

2j − i+ 1

2i− j + 1
|B•

ij |.
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Similarly, counting in two ways the objects of B•
ij having a marked edge yields

|B̄ij | =
i+ j − 1

2i− j + 1
|B•

ij |.

Recall that the number |D′
ij | of rooted bicolored irreducible dissections with i inner

black vertices and j inner white vertices satisfies |D′
ij | = 3

2i−j+1 |B•
ij |, according

to (11) page 99. Thus, we have |B•
ij |+|B◦

ij|−|B̄ij | = 3
2i−j+1 |B•

ij | = |D′
ij | (using (11)),

so that

(14)
∑

i,j

|D′
ij |xi

•x
j
◦ = r1(x•, x◦) + r2(x•, x◦)− r1(x•, x◦)r2(x•, x◦).

Substituting x• and x◦ by x, we obtain

(15) D(x) :=
∑

n

|D′
n|xn = 2r(x) − r(x)2,

where |D′
n| is the number of rooted irreducible dissections with n inner vertices

and r(x) = x (1 + r(x))
2

is the generating function of binary trees according to the
number of nodes.

1.1.2. Generating function of rooted 3-connected maps. We now present a sim-
ple decomposition that relates rooted 3-connected maps and rooted irreducible
dissections. The idea is to add an outer edge to a rooted irreducible dissection and
observe that the separating 4-cycles that might appear are nested. To our knowl-
edge, this decompositon has not been described before. In our case, it makes it
possible to derive an expression for the generating function of rooted 3-connected
maps from the generating function of rooted irreducible dissections. The expres-
sions we get are equivalent to those obtained by Mullin and Schellenberg using
algebraic methods [90].

Injection from Q′ into D′. Recall that Q′ stands for the set of rooted irreducible
quadrangulations, counted either w.r.t. the number n of vertices or the numbers
(i, j) of black and white vertices; and D′ stands for the set of rooted irreducible
dissections, counted either w.r.t. the number n of inner vertices or the numbers
(i, j) of inner black and inner white vertices. Let us consider the mapping ι defined
on rooted quadrangulations by the removal of the root-edge and rerooting on the
next edge in counterclockwise order around the root-vertex; ι is clearly injective,
and for any quadrangulationQ, ι(Q) has only quadrangular faces but the outer one,
which is hexagonal, and it can not have more separating 4-cycles than Q. Hence
the restriction of ι to Q′ is an injection from Q′ to D′, more precisely from Q′

n to
D′

n−4 and from Q′
ij to D′

i−3,j−3.
It is however not a bijection, since the inverse edge-adding operation π, per-

formed on an irreducible dissection, can create a separating 4-cycle on the obtained
quadrangulation. Precisely, given D a rooted irreducible dissection —with root-
vertex s and t the vertex of the hexagon opposite to s — a path of length 3 be-
tween s and t is called a decomposition path. The two paths of edges of the hexagon
connecting s to t are called outer decomposition paths, and the other ones, if any,
are called inner decomposition paths of D.

Observe that inner decomposition paths of D are in one-to-one correspondence
with separating 4-cycles of the quadrangulation π(D).

A rooted irreducible dissection without inner decomposition path is said to be
undecomposable. The discussion on decomposition paths yields the following result,
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where P ′
n is the set of rooted 3-connected maps with n edges and P ′

ij is the set of
rooted 3-connected maps with i vertices and j faces.

Lemma 4.1. Denote by U ′
n the set of rooted undecomposable dissections with n

inner vertices and by U ′
ij the set of rooted undecomposable dissections with i inner

black vertices and j inner white vertices. Then U ′
n−4 is in bijection with P ′

n and
U ′

i−3,j−3 is in bijection with P ′
ij.

Proof. The image of a rooted irreducible quadrangulation by ι is a rooted dissection
such that the inverse edge-adding operation π does not create a separating 4-cycle,
i.e., an undecomposable dissection. Moreover, Euler’s relation ensures that the
image of a quadrangulation with n faces has n− 4 inner vertices. As ι is injective,
it is bijective to its image, i.e., it is a bijection betweenQ′

n and U ′
n−4; and a bijection

between Q′
ij and U ′

i−3,j−3. The result follows, as Q′
n and Q′

ij are respectively in

bijection with P ′
n and P ′

ij via the angular mapping (Theorem 1.2). �

Thanks to Lemma 4.1, enumerating rooted 3-connected maps reduces to enu-
merating rooted undecomposable dissections.

Decomposition of rooted irreducible dissections. Since irreducible dissections
do not have multiple edges nor cycles of odd length, decomposition paths satisfy
the following properties:

Lemma 4.2. Let D ∈ D′, and let P1 and P2 be two different decomposition
paths of D. Then:

• either P1 ∩P2 = {s, t}, in which case P1 and P2 are said to be internally
disjoint;
• or there exists one inner vertex v adjacent to s or t such that P1 ∩ P2 =
{s} ∪ {t} ∪ {v}, in which case P1 and P2 are said to be upper or lower
joint depending on whether v is adjacent to s or t.

Lemma 4.2 implies in particular that two decomposition paths can not cross
each other. Hence the decomposition paths of an irreducible dissection D follow a
left-to-right order, from the outer decomposition path containing the root (called
left outer path) to the other outer decomposition path (called right outer path).

Lemma 4.3. Let D ∈ D′, and let P1 and P2 be two upper joint (resp. lower
joint) decomposition paths of D. Then the interior of the area delimited by P1 and
P2 is a face incident to t (resp. to s).

Proof. This is a trivial consequence of the fact that the interior of each 4-cycle of
D is a face. �

Decomposition word of an irreducible dissection. LetD ∈ D′ and let {P0, . . . ,Pℓ}
be the sequence of decomposition paths of D ordered from left to right. Let us
consider the alphabet A = {s} ∪ {t} ∪ U ′, where U ′ is the set of all rooted unde-
composable dissections; the decomposition word of D is the word w = w1 . . . wℓ of
length ℓ on A such that, for any 1 ≤ i ≤ ℓ: if Pi−1 and Pi are upper joint, then
wi = s; if Pi−1 and Pi are lower joint, then wi = t; if Pi−1 and Pi are internally
disjoint, then wi = U , where U is the undecomposable dissection delimited by Pi−1

and Pi (rooted at the first edge of Pi−1 and with s as root-vertex), see Figure 1.
This encoding is injective, an easy consequence of Lemma 4.3.

Characterization of decomposition words of elements of D′. The fact that D
has no separating 4-cycle implies easily that its decomposition word has no factor
ss nor tt, and these are the only forbidden factors. Moreover, as a dissection has at
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t

s

=⇒ w = tsUsts, where U =

Figure 1. Example of the decomposition of a rooted irreducible
dissection and of its associated decomposition word.

least one inner vertex, a decomposition word can be neither the empty word, nor
the one-letter words s and t, nor the two-letter words st and ts. It is easily seen
that all other words encode irreducible dissections of the hexagon.

This leads to the following equation linking the generating functions D(x) and
U(x) counting D′ and U ′ according to the number of inner vertices,

(16) x2D(x) + 2x2 + 2x+ 1 =

(
1 +

2x

1− x

)
· 1

1− x2U(x)
(
1 + 2x

1−x

) .

Similarly, let D(x•, x◦) :=
∑ |D′

ij |xi
•x

j
◦ and U(x•, x◦) :=

∑ |U ′
ij |xi

•x
j
◦. Then

the characterisation of the coding words gives

(17) x•x◦D(x•, x◦) + 2x•x◦ + x• + x◦ + 1

= (1 + x•) ·
1

1− x◦x•
· (1 + x◦) ·

1

1− x•x◦U(x•, x◦)(1 + x•)
1

1−x◦x•
(1 + x◦)

.

Proposition 4.1 (counting rooted 3-connected maps). Let P ′
n be the number

of rooted 3-connected maps with n edges and P ′
i,j the number of rooted 3-connected

maps with i vertices and j faces. Then

∑

n

|P ′
n+2|xn =

1− x
1 + x

− 1

1 + 2x+ 2x2 + x2(2r(x) − r(x)2) ,

where r(x) = x (1 + r(x))2, and

∑

i,j

|P ′
i+2,j+2|xi

•x
j
◦ =

1− x•x◦
(1 + x•)(1 + x◦)

− 1

1 + x• + x◦ + 2x•x◦ + x•x◦(r1 + r2 − r1r2)
,

where

{
r1(x•, x◦) = x• (1 + r2(x•, x◦))

2

r2(x•, x◦) = x◦ (1 + r1(x•, x◦))
2 .

Proof. Lemma 4.1 ensures that
∑

n |P ′
n+2|xn = x2U(x) and

∑
i,j |P ′

i+2,j+2|xi
•x

j
◦ =

x•x◦U(x•, x◦). Then, Equation (16) yields an expression of x2U(x) in terms ofD(x)
and Equation (17) yields an expression of x•x◦U(x•, x◦) in terms of D(x•, x◦). In
these expressions, replace D(x) and D(x•, x◦) by their respective expression in
terms of r and in terms of r1 and r2, as given by Equations (14) and (15). �
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1.2. Counting rooted 4-connected triangulations. Counting method.
We make use of the following well known characterisation “a triangulation is 4-
connected iff the interior of every 3-cycle is a face, except for the outer 3-cycle,
and there are at least 4 vertices”. Clearly this is very close to the definition of
irreducible triangulations; and, as we show next, an expression for the generating
function of 4-connected triangulations can be derived from the coefficients counting
irreducible triangulations w.r.t. the number of vertices. In all this section, the set
of rooted 4-connected triangulations with n inner vertices is denoted by C′n and
the set of rooted irreducible triangulations with n inner vertices is denoted by T ′

n.
Coefficient extraction in the generating function makes it possible to recover the
expression for T ′

n found by Tutte [111] using algebraic methods.

Decomposing an irreducible triangulation. For n ≥ 5, the operation of re-
moving the root edge of an object of C′n and carrying the root on the ccw-consecutive
edge is an injective mapping from C′n to T ′

n−1. However, given T ∈ T ′
n−1, the inverse

edge-adding operation can create a separating 3-cycle if there exists an internal path
of length 2 connecting the origin of the root of T to the vertex diametrically opposed
in the outer quadrangle of T . Objects of T ′

n−1 having no such internal path are
said to be undecomposable; the corresponding family counted with respect to the
number n of inner vertices is denoted by U ′ = ∪nU ′

n. The above discussion ensures
that C′n is in bijection with U ′

n−1 for n ≥ 5. In addition, a maximal decomposition
of an object of T ′ along the above mentioned interior paths of length 2 ensures that
such an object is a sequence of objects of U ′. Precisely, the graph enclosed between
two consecutive paths of length 2 is either an undecomposable triangulation of the
4-gon or a quadrangle with a unique interior edge connecting the middles of the
two paths. This leads to the equation

(18) T (z) + 1 =
U(z) + 1

1− z(U(z) + 1)
,

where T (z) =
∑ |T ′

n|zn and U(z) =
∑ |U ′

n|zn are respectively the series counting
the set T ′ and the set U ′ with respect to the number of inner vertices.

Proposition 4.2 (counting 4-connected triangulations). The series C(z) count-
ing rooted 4-connected triangulations by their number of inner vertices has the fol-
lowing expression,

(19) C(z) =
z(A(z)−A(z)2 + 1)

1 + z(A(z)−A(z)2 + 1)
,

where A(z) = z(1+A(z))3 is the series counting rooted ternary trees by their number
of nodes.

Proof. As C′n is in bijection with U ′
n−1 for n ≥ 5 and as the unique 4-connected

triangulation with less than 5 vertices is the tetrahedron, we have C(z) = z(U(z)+
1). Hence, Equation (18) yields C(z) = z(T (z) + 1)/(1 + z(T (z) + 1)). Thus, it
remains to provide an expression of T (z) in terms of the series A(z) =

∑
Anz

n

counting rooted ternary trees by their number of nodes. We define respectively

the sets An and Ân of ternary trees with n nodes and having the following marks:
an inner edge is marked and oriented for objects of An; an inner edge is marked

and oriented and a leaf is marked for objects of Ân. As a ternary tree with n

nodes has n − 1 inner edges and 2n + 2 leaves, we have An · 2(n − 1) = |Ân| =
|An|(2n + 2), so that |An| = 2 n−1

2n+2An. In addition, given a ternary tree with
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a marked oriented edge, the operation of cutting the marked edge produces an
ordered pair of rooted ternary trees. Hence, the series counting A := ∪nAn with
respect to the number of nodes is A(z)2. Finally, we know from Corollary 3.7 that
Tn = 4

2n+2An. Hence, we also have |T ′
n| = 2n+2

2n+2An − 2 n−1
2n+2An = An − |An|, from

which we conclude that T (z) = A(z) − A(z)2. Finally, to obtain the expression
of C(z) in terms of A(z), we substitute T (z) by A(z) − A(z)2 in the expression
C(z) = z(T (z) + 1)/(1 + z(T (z) + 1)). �

From Expression (19), the coefficients of C(z) can be quickly extracted: C(z) =
z + z3 + 3 z4 + 12 z5 + 52 z6 + 241 z7 +O(z8). The first coefficients match with the

values given by the formula cn =
1

n

n∑

i=1

(−1)i

(
3n− i− 1

n− i

)(
2i

2

)
for the number

of rooted 4-connected triangulations with n vertices. This formula was found by
Tutte [111] using more complicated algebraic methods.

2. Coding planar maps

Two encoding algorithms are presented in this section, related to the families
of 3-connected maps and 4-connected triangulations. The key ingredients are the
bijection between binary trees and irreducible dissections of the hexagon to encode
3-connected maps and the bijection between ternary trees and irreducible triangu-
lations to encode 4-connected triangulations. These bijections reduce the task of
coding a map to the much easier task of coding a tree.

2.1. Coding 3-connected maps. This section introduces an algorithm to
encode a 3-connected map. Precisely, the algorithm encodes an outer-triangular
3-connected map, but it is then easily extended to encode any 3-connected map.
Indeed, if the outer face of G is not triangular, fix three consecutive vertices v, v′

and v′′ incident to the outer face of G and link v and v′′ by an edge to obtain an

outer-triangular 3-connected planar map G̃. Then, the coding of G is obtained as

the coding of G̃ plus one bit indicating if an edge-addition has been done.
Let G be an outer-triangular 3-connected map and let G′ be its derived map.

The encoding of G is done according to the following steps, illustrated in Figure 2.

1) Compute the minimal α3-orientation of the derived map G′. The ori-
entation is computed using the algorithm presented in Section 4.

2) Compute the irreducible dissection D associated to G. We associate
with G the unique bicolored dissection D of the hexagon such that each edge of G
connects the two (opposite) black vertices of a unique inner face of D. The fact
that G is 3-connected easily implies that the dissection D is irreducible. Notice
that D has n inner faces if G has n edges. Hence, according to Euler’s relation, D
has n− 2 inner vertices. Similarly, if G has i vertices and j inner faces, then D has
i black vertices and j + 3 white vertices.

3) Compute the tri-orientation of D without clockwise circuit. Inner
half-edges of D are oriented in the following way: an inner half-edge h is oriented
inward if its origin belongs to the hexagon; otherwise, h receives the orientation
of the edge of G′ following h in clockwise order around its origin. As shown in
Section 3 (precisely, Lemma 3.25 combined with the correspondence of Figure 19),
the obtained orientation of the half-edges of D is the unique tri-orientation without
clockwise circuit.
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a3 a2
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a3 a2
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a3 a2
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a) b) c)

d) e) f)

Figure 2. Encoding a 3-connected map.

4) Open the dissection D into a binary tree T . Once the tri-orientation
without clockwise circuit is computed, D is opened into a binary tree T , by keeping
the half-edges oriented outward (see the description of the opening mapping in
Section 2.1.2).

5) Encode T . First, choose an arbitrary leaf of T , root T at this leaf, and encode
the obtained rooted binary tree using a parenthesis word (also called Dyck word).
The opening of a 3-connected map with n edges is a binary tree with n− 2 nodes,
yielding an encoding Dyck word of length 2(n− 2).

Similarly, the opening of a 3-connected map with i vertices and j inner faces is
a black-rooted bicolored binary tree with i − 3 black nodes and j white nodes. A
black-rooted bicolored binary tree with a given number of black and white nodes is
encoded by a pair of parenthesis words, as explained in Section 2.1.5. Then the two
words can be asymptotically optimally encoded in linear time, according to [17,
Lem.7].

Theorem 4.1 (coding 3-connected maps). The coding algorithm has linear-
time complexity and is asymptotically optimal: the number of bits per edge of the
code of an element of P ′

n (P ′
ij) is asymptotically equal to the binary entropy per

edge, defined as 1
n log2(|P ′

n|) ( 1
i+j−2 log2(|P ′

ij |), respectively).

Proof. It is clear that the encoding algorithm has linear-time complexity, as the
algorithm computing the minimal α3-orientation of the derived map has linear-time
complexity.

According to Corollary 3.1, Proposition 4.3 and 4.4, |B′
n|/|P ′

n| and |B•
ij |/|P ′

ij |
are bounded by fixed polynomials. Hence, the entropy per edge of B′

n and P ′
n are

asymptotically equal, and the binary entropy per edge of B•
ij and P ′

ij are asymptot-

ically equal. As the encoding of objects of B′
n (B•

ij) using parenthesis words (and

further compression for B•
ij) is asymptotically optimal, the encoding of objects of

P ′
n (P ′

ij , respectively) is also asymptotically optimal. �
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2.2. Coding 4-connected triangulations. We briefly describe here the en-
coding algorithm for 4-connected triangulations. The idea is to use the bijection
between ternary trees and irreducible triangulations. Let T be a rooted 4-connected
triangulation with (n+4) vertices. The encoding of T consists of the following steps.

1) Delete the root edge of T . In this way, T becomes an irreducible triangulation
with n inner vertices.

2) Open T into a ternary tree τ . We recall that the steps of the opening are
1) the computation of the minimal transversal structure (in linear time) using the
algorithm of Section 5, 2) the deletion of the outer half-edges and of the half-edges
having the same color as their clockwise-consecutive half-edge.

3) Encode τ . The tree τ , which has n nodes, is first rooted at an arbitrary
leaf. Then the obtained rooted tree is classically encoded using a ccw traversal
starting at the root, writing a letter 1 when a node is discovered and a letter 0
when a leaf is traversed. The obtained string has n letters 1 and 2n+ 1 letters 0.
Using [17, Lem. 7], this string can be further encoded as a binary string whose
length ln matches asymptotically the binary entropy log2((3n+ 1)!/(n!(2n+ 1)!)),
i.e., ln ∼ n log2(27/4) (using Stirling’s formula). In addition, this mapping has
linear time complexity and the ternary tree can be recovered from the string in
linear time.

Theorem 4.2 (coding 4-connected triangulations). The encoding algorithm for
4-connected triangulations is linear and asymptotically optimal.

Proof. If the 4-connected triangulation to be encoded has n vertices, then the
triangulation obtained by removing the root edge has n − 1 inner vertices. Hence
the ternary tree τ obtained by doing the opening has n − 1 nodes. As discussed
above, the length ln of the binary string coding a 4-connected triangulation with
n vertices satisfies ln ∼ n log2(27/4). Moreover, Tutte has shown that |C′n| ∼
33/29

√
3/πn−5/2(27/4)n−3, implying directly log2(|C′n|) ∼ n log2(27/4). Hence,

ln ∼ log2(|C′n|). �

3. Random sampling of planar maps

As a second important algorithmic application, the bijections presented in this
section yield very efficient (linear) random generators for the corresponding families
of maps. As map generators derived from bijections are already studied by Schaef-
fer in much details [99, 100], we only discuss these applications for the bijections
with binary trees and ternary trees. In the first case, generating a binary tree and
applying the closure mapping yields a random generator for rooted 3-connected
maps; in the second case, generating a ternary tree and applying the closure map-
ping yields a random generator for rooted 4-connected triangulations. Compared
to direct bijections as those presented in Section 1, a rejection step appears in the
derived random generators, so that the complexity analysis requires to study the
rejection probability.

3.1. Random sampling of rooted 3-connected maps. The method to
perform random sampling of rooted 3-connected maps is the following. Rooted
binary trees are in bijection with irreducible dissections of the hexagon, with simple
correspondence between the size parameters. Hence, uniform sampling of binary
trees combined with the bijection yields a uniform sampler for rooted irreducible
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dissections. Moreover, via the angular mapping, rooted 3-connected maps are a
subset of rooted irreducible dissections. Hence, running the sampler for rooted
dissections until a rooted 3-connected map is output yields a uniform sampler for
rooted 3-connected maps. The rejection probability is not large, as the number of
rooted 3-connected maps with a given size is of the same order as the number of
rooted irreducible dissections with the same size. This yields random generators
for rooted 3-connected maps with expected linear time complexity.

3.1.1. Sampling rooted 3-connected maps with n edges. Theorem 3.4 ensures
that the following algorithm samples rooted 3-connected maps with n edges uni-
formly at random.

(1) Sample an object T ∈ B′
n−4 uniformly (e.g. using parenthesis words).

(2) Perform the closure of T to obtain an irreducible dissection D ∈ Dn−4.
Choose randomly one of the six edges of the hexagon of D to carry the
root. If D is not undecomposable, then reject and restart from 1.

(3) Add an edge e in the outer face of D going, with the infinite face on its
right, from the root-vertex v of D to the vertex diametrically opposed to
v on the hexagon. Take e as root edge, with v as root-vertex. As D is un-
decomposable, this operation yields a rooted irreducible quadrangulation
Q with n faces.

(4) Return the rooted 3-connected map in P ′
n associated to Q by the angular

mapping.

Proposition 4.3. The success probability of the sampler at each trial is equal
to |P ′

n|/|D′
n−4|, which satisfies

|P ′
n|

|D′
n−4|

→
n→∞

28

36
.

The number of rejections follows a geometric law whose mean is asymptotically

c = 36

28 , so that the random generator has expected linear-time complexity.

Proof. According to Corollary 3.1, |D′
n| = 6

n+2 |B′
n| = 6(2n)!

(n+2)!n! . Stirling’s formula

yields |D′
n−4| ∼ 3

128
√

π
4n

n5/2 . Moreover, according to [113], |P ′
n| ∼ 2

35
√

π
4n

n5/2 . This

yields the limit of |P ′
n|/|D′

n−4|. Finally, the linear time complexity of the sampler
results from the linear complexity of testing undecomposability of a dissection and
the linear time complexity of the closure mapping, which is obtained by putting
—during the ccw traversal— the stems and sides of edges in a stack (see [94, Sec.
8.3.3] for a discussion on the implementation of such bijections). �

3.1.2. Sampling rooted 3-connected maps with i vertices and j faces. Similarly,
the following algorithm samples rooted 3-connected maps with i vertices and j faces
uniformly at random:

(1) Sample an object T ∈ B•
i−3,j−3 uniformly. A simple method is described

in Section 2.1.5.
(2) Perform the closure of T to obtain an irreducible dissection D with i− 3

black vertices and j − 3 white vertices. Choose randomly the root-vertex
among the three black vertices of the hexagon. If the dissection is not
undecomposable, then reject and restart.

(3) Add an edge e in the outer face of D going, with the infinite face on its
right, from the root-vertex v of D to the vertex of the hexagon diametri-
cally opposed to v. Take e as root edge, with v as root-vertex. This gives
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a rooted irreducible quadrangulation Q with i black vertices and j white
vertices.

(4) Return the rooted 3-connected map in P ′
i,j associated to Q by the angular

mapping.

Proposition 4.4. The success probability of the sampler at each trial is equal
to |P ′

ij |/|Di−3,j−3|. Let α ∈]1/2, 2[; if i and j are correlated by i
j → α as i → ∞,

then
|P ′

ij |
|D′

i−3,j−3|
∼ 28

36

(2− α)2(2α− 1)2

α2
=:

1

cα
.

Hence, when i
j → α, the number of rejections follows a geometric law whose mean

is asymptotically cα. Under these conditions, the sampling algorithm has expected
linear-time complexity, the linearity factor being asymptotically proportional to cα.

Moreover, in the worst case of triangulations, where j = 2i − 4, the mean
number of rejections is quadratic, so that the sampling complexity is cubic.

Proof. These asymptotic results are easy consequences of the expression of |D′
ij |

obtained in Corollary 3.1 and of the asymptotic result |P ′
ij | ∼ 1

3522ij

(
2i−2
j+2

)(
2j−2
i+2

)

given in [6]. �

3.2. Random sampling of rooted 4-connected triangulations. Sam-
pling rooted 4-connected triangulations follows the same lines as for rooted 3-
connected maps. The bijection with ternary trees yields a uniform sampler for
rooted irreducible triangulations with a given size. From there we obtain a rejec-
tion sampler for rooted 4-connected triangulations, which can be seen as a subset
of rooted irreducible triangulations.

Sampling irreducible triangulations. The closure mapping (rooted formula-
tion) yields a very efficient uniform sampler for objects of T ′

n. AsA′
n is in 4-to-(n+2)

correspondence with T ′
n, the uniform distribution on A′

n is transported by the clo-
sure mapping into the uniform distribution on T ′

n. Moreover, it is well known how
to design a linear time uniform sampler SampleA(n) for ternary trees with n nodes,
using parenthesis words. Thus we have the following uniform sampler for T ′

n:

SampleT(n): 1) τ ← SampleA(n)
2) T ← Closure(τ)
3) Choose a border edge e of T at random
4) Root T at e and return T

As the closure mapping can be implemented to run in linear time, the algorithm
SampleT(n) has also linear time complexity. Then, a uniform sampler for rooted 4-
connected triangulations of size n ≥ 5 is easily obtained by adding to SampleT(n) a
rejection loop conditioned to output an undecomposable triangulation. We use also
a simple procedure AddRootEdge that, given T ∈ T ′, adds an edge e going from
the root vertex of T to the diametrically opposed vertex of the outer quadrangle
with the outer face on its right, and then roots the obtained triangulation at the
edge e.

SampleC(n): 1) repeat T ← SampleT(n− 4) until T ∈ U
2) return AddRootEdge(T )

Proposition 4.5. For n ≥ 5, SampleC(n) is a uniform sampler for rooted 4-
connected triangulations with n vertices, with expected linear time complexity. The
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number of trials in the loop (i.e., the number of calls to SampleT(n− 4)) follows
a geometric law of parameter |C′n|/|T ′

n−4| ∼n→∞ 36/210 ≈ 0.712.

Proof. All stated results follow clearly from the above discussion except for the limit
|C′n|/|T ′

n−4| ∼ 36/210. This limit follows from |C′n| ∼ 33/29
√

3/πn−5/2(27/4)n−3

and |T ′
n| ∼ 1/2

√
3/πn−5/2(27/4)n. The estimate for |T ′

n| is obtained by applying
Stirling’s formula to the expression given in Proposition 3.7. The estimate for |C′n|
was found by Tutte [111] and can also be derived from the expression of C(z) given
in Proposition 4.2 by applying singularity analysis, as detailed in [51]. �

4. Random sampling of planar graphs

4.1. Introduction. Let us now focus on the random generation of planar
graphs, i.e., graphs having at least one planar embedding. The graphs we consider
here are labeled (each of the n vertices carries a distinct label in [1..n]) and have
no loops nor multiple edges. Notice that a uniform generator for labeled planar
maps yields a generator for labeled connected planar graphs such that each graph
has a weight proportional to its number of embeddings. Hence, generating planar
graphs uniformly is different from generating planar maps uniformly, so that our
bijective generators for maps can not be applied directly. A first algorithm for the
random generation of planar graphs was proposed by Denise, Vasconcellos, and
Welsh [40], where a Markov chain on the set Gn of labeled planar graphs with
n vertices is defined. At each step, two different vertices v and v′ are chosen at
random. If they are adjacent, the edge (v, v′) is deleted. If they are not adjacent and
if the operation of adding (v, v′) does not break planarity, then the edge (v, v′) is
added. By symmetry of the transition matrix of the Markov chain, the probability
distribution converges to the uniform distribution on Gn. This algorithm is very
easy to describe but more difficult to implement, as there exists no simple linear-
time planarity testing algorithm. Moreover, the rate of convergence to the uniform
distribution is unknown.

Our approach is very different. The key ingredient is a well-known decompo-
sition of planar graphs by increasing degree of connectivity. To sum up, a planar
graph can be decomposed into a tree-like structure whose nodes are occupied by
rooted 3-connected planar graphs. According to a theorem of Whitney [117], rooted
3-connected planar graphs have a unique (unoriented) embedding, so that rooted
3-connected planar graphs are isomorphic to rooted 3-connected maps. Essentially,
our generator generates the tree-like structure using specific branching probabil-
ities, and then calls the bijective generator for 3-connected maps, described in
Section 3.1, for the generation at each node of the tree-like structure. The branch-
ing probabilities are values of generating functions of various families of planar
graphs (connected, 2-connected,...). In this thesis, we only focus on the complete
description of the algorithm. The proofs are in the full paper to be submitted [62].

Let us mention that the decomposition of planar graphs by increasing degree of
connectivity is also used by Bodirsky et al [13] to obtain the first uniform sampler
for planar graphs with polynomial complexity. As in our case, their approach is to
translate the decomposition of planar graphs into a random generator. The main
difference relies in the framework used to translate the decomposition; the authors
of [13] use the recursive method introduced by Nijenhuis and Wilf [91] —later
further formalized by Flajolet et al [53]—, whereas we use the recently introduced
framework of Boltzmann samplers [43]. Both frameworks make it possible to trans-
late a combinatorial decomposition to a random generator in a quite automatic way.
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Aux. mem. Preproc. time Time per generation

Markov chains O(log n) O(log n) unknown {exact size}

Recursive method O(n5 log n) O∗̀ n7
´

O(n3) {exact size}

Boltzmann sampler O((log n)k) O((log n)k) O(n2) {exact size}
O(n) {approx. size}

Figure 3. Complexities of the random samplers of planar graphs
(O∗ stands for a big O taken up to logarithmic factors).

In the case of the recursive method, the branching probabilites used to generate
the object are expressed in terms of the coefficients counting the classes involved
in the decomposition. When the objects to be generated are large, this requires
to compute large tables of large integers (the coefficients), so that the generation
is mostly limited to sizes of a few thousands in the best case, a few hundreds for
more involved classes like planar graphs. In contrast, the branching probabilities
in Boltzmann samplers involve only a finite number of real constants, which are
evaluations of generating functions of the classes involved in the decomposition. In
practice, these constants are truncated to a fixed precision (e.g. 20 digits), with no
detectable bias from uniformity. Boltzmann samplers have mostly linear complex-
ity in the size of the output, making it possible to generate objects of size 106 when
suitably implemented. The price to pay is that the size of the output is not fixed.
Nevertheless, it is often possible to tune the sampler so that the size of the output
is around a target size with high probability.

Translating the decomposition of planar graphs into Boltzmann samplers, we
obtain very efficient random generators, which produce planar graphs with a fixed
number of vertices or with fixed numbers of vertices and edges uniformly at random.
Furthermore, our samplers have an approximate-size version where a small relative
range, say a few percents, is allowed for the size of the output. For practical purpose,
approximate-size random sampling often suffices. The approximate-size samplers
we propose are very efficient as they have linear time complexity.

Theorem 4.3 (Samplers with respect to number of vertices). For n ∈ N,
there is an exact-size sampler An producing labelled planar graphs with n vertices
uniformly at random. For any tolerance ratio ǫ > 0, there is an approximate-size
sampler An,ǫ producing random planar graphs with number of vertices in [n(1 −
ǫ), n(1+ǫ)] such that the distribution is uniform on each size k ∈ [n(1−ǫ), n(1+ǫ)].

Under a real-artithmetic complexity model, Algorithm An is of expected com-
plexity O(n2). Algorithm An,ǫ is of expected complexity O(n), where the linearity
constant depends on ǫ, being of order 1/ǫ as ǫ→ 0.

Theorem 4.4 (Samplers with respect to the numbers of vertices and edges).
Let n ∈ N be a target size and µ ∈ (1, 3) be a parameter of ratio edges-vertices.
There exists an exact-size sampler An,µ producing planar graphs with n vertices
and ⌊µn⌋ edges uniformly at random. For any tolerance-ratio ǫ > 0, there exists
an approximate-size sampler An,µ,ǫ producing random planar graphs with number
of vertices in [n(1− ǫ), n(1+ ǫ)] and ratio edges/vertices in [µ(1− ǫ), µ(1+ ǫ)], such
that the distribution is uniform for each fixed pair (number of vertices, number of
edges).

Under a real-artithmetic complexity model, for a fixed µ ∈ (1, 3), Algorithm
An,µ is of expected complexity O(n5/2), where the constant depends on µ. For fixed



4. RANDOM SAMPLING OF PLANAR GRAPHS 133

µ ∈ (1, 3) and ǫ > 0, Algorithm An,µ,ǫ is of expected complexity O(n), the constant
of linearity depending both on µ and on ǫ, being of order 1/ǫ as ǫ→ 0.

The samplers are completely stated in Section 4.5.3 and Section 4.5.4.
The real-arithmetic complexity model is that of the number of arithmetic op-

erations (additions, comparisons) over real numbers assumed to be known exactly.
The complexity of our algorithm is compared to the complexities of the two pre-
ceding random samplers in Figure 3.

Let us comment on the practical preprocessing complexity. The implementa-
tion of An,ǫ and An, as well as An,µ,ǫ and An,µ, requires the storage of a fixed
number of real constants, which are special values of generating functions. The
generating functions to be evaluated are those of several families of planar graphs
(connected, 2-connected, 3-connected). A crucial result, recently established by O.
Giménez and M. Noy [68], is that there exist exact analytic equations satisfied by
these generating functions. Hence, their numerical evaluation can be performed
efficiently, the complexity being of low polynomial degree k in the number of digits
that need to be computed.

Fixed-size truncation of real numbers leads to algorithms with a probability of
failure (caused by lack of precision) that can be made arbitrarily close to 0. No
failure arises with a precision of 20 digits in practice, when we draw objects of size up
to the million. In general, to draw objects of size n, the precision needed to make the
probability of failure small is of order log(n) digits. Thus the preprocessing step to
evaluate the generating functions with a precision of log(n) digits has a complexity
of order log(n)k. Notice that it is possible to achieve perfect uniformity by calling
adaptative precision routines in case of failure, see Denise and Zimmermann [41]
for a detailed discussion on similar problems. The following statement summarizes
the discussion:

Fact 4.1. In practice, the auxiliary memory necessary to generate planar graphs
of size n is of order O(log(n)) and the preprocessing time complexity is of order
O(log(n)k) for some small integer k.

The evaluation of the generating functions of planar graphs has been carried
out with the mathematical software Maple, based on the analytic expressions given
by Giménez and Noy [68]. Then, the random generator has been implemented in
Java, with a precision of 64 bits for the values of generating functions (“double”
type). Using the approximate-size sampler, planar graphs with size of order 100,000
are generated in a few seconds with a machine clocked at 1GHz. In contrast, the
recursive method of Bodirsky et al is currently limited to sizes of about 100.

4.2. Overview. The algorithm we propose relies on several tools. First, we
extend the collection of constructions for Boltzmann samplers, as detailed in [43],
and develop the more complicated case of substitution constructions, see Sec-
tion 4.3. We describe in Section 4.4 the recursive decomposition of planar graphs
according to successive levels of connectivity (also used in [13]) and adapt it to
the Boltzmann framework. We start with the development of a Boltzmann sam-
pler for (edge-rooted) 3-connected planar graphs. To do this, we use the bijection
between irreducible dissections and binary trees. The realisation of a Boltzmann
sampler for binary trees is straightforward and it yields, via the bijection (combined
with rejection techniques), a Boltzmann sampler for edge-rooted 3-connected pla-
nar graphs. The next step is the realisation of a Boltzmann sampler for 2-connected
planar graphs. A well-known decomposition —originally due to Trakhtenbrot and
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planar graphs

connected
planar graphs

derivated
connected

planar graphs

derivated
2-connected

planar graphs

edge-rooted
2-connected
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edge-rooted

3-connected
planar graphs

bicolored
binary trees

depointing
by rejection

depointing
+new pointing

by rejection

bijection
+rejection

substitution
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Figure 4. The chain of reductions from planar graphs to binary trees.

described in details in [116]— ensures that edge-rooted 2-connected planar are as-
sembled in a unique way from edge-rooted 3-connected planar graphs. Translating
the decomposition yields a Boltzmann sampler for edge-rooted 2-connected planar
graphs. Then we develop a Boltzmann sampler for connected planar graphs, using
another decomposition ensuring that vertex-rooted connected planar graphs are as-
sembled in a unique way from vertex-rooted 2-connected planar graphs. Finally,
we obtain a Boltzmann sampler for (unconstrained) planar graphs, resulting from
the decomposition of planar graphs into connected components. The corresponding
Boltzmann sampler is denoted by ΓG(x, y), where the variable x marks the number
of vertices and the variable y marks the number of edges.

The Boltzmann sampler ΓG(x, y) can unfortunately not be used directly to
generate large planar graphs with a good time complexity. Indeed, the size dis-
tribution of ΓG(x, y) is too concentrated on objects of small size. To improve the
size distribution, we point the objects, in a way inspired by [43], which corresponds
to a differentiation of the associated generating function. The precise singularity
analysis of the generating functions of planar graphs, recently performed in [68],
indicates that we have to perform derivation of planar graphs three times in order
to get a usable size distribution. In Section 4.5, we explain how to inject the de-
rivative operator into the decomposition of planar graphs. This gives a Boltzmann
sampler ΓG′′′(x, y) for “triply derived” planar graphs. Our random generators of
planar graphs are finally obtained as targetted samplers, starting from ΓG′′′(x, y)
and choosing well tuned values x = xn and y = y(µ) for each target size n and
ratio edges/vertices µ ∈ (1, 3). The general scheme of the planar graph generator
is shown in Figure 4.

4.3. Boltzmann samplers. In this section, we define Boltzmann samplers
and describe the main properties which we will need to develop a Boltzmann sam-
pler for planar graphs in Section 4.4. In particular, we have to extend the frame-
work to the case of mixed classes, meaning that the objects have two types of
atoms. Indeed the decomposition of planar graphs involves both (labeled) vertices
and (unlabeled) edges. The constructions needed to formulate the decomposition
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of planar graphs are classical ones in combinatorics: Sum, Product, Set, Substitu-
tions. For each of the constructions, we describe a sampling rule, so that Boltzmann
samplers can be assembled for any class that admits a decomposition in terms of
these constructions. Morevover, the decomposition of planar graphs involves root-
ing/unrooting operations. Taking these operations into account in the samplers
makes it necessary to inject some rejection techniques, as well as derivative opera-
tors, in the framework of Boltzmann samplers.

4.3.1. Definition. Boltzmann samplers, introduced and developed by Duchon
et al in [43], constitute a general and efficient framework to produce a random gen-
erator on a combinatorial class C that admits an explicit decomposition. Instead
of fixing a particular size for the random generation, objects are drawn under a
probability distribution spread over the whole class. This distribution assigns to
each object of a combinatorial class C a weight essentially proportional to the ex-
ponential of its size n. Precisely, if C is an unlabelled class, the ordinary generating
function of C is

C(y) :=
∑

γ∈C
y|γ|,

where |γ| stands for the size (e.g. the number of nodes in a tree) of γ, and y is
a variable marking the size. It is clear that the sum defining C(y) converges if y
is smaller than the radius of convergence ρC of C(y), in which case y is said to
be coherent. Then, the probability distribution assigining to each object γ of C a
probability

Py(γ) =
y|γ|

C(y)

is a well defined distribution, called ordinary Boltzmann distribution of parame-
ter y. An ordinary Boltzmann sampler of parameter y is a procedure ΓC(y) that
draws objects of C at random under the Boltzmann distribution Py. The authors
of [43] provide a collection of rules to assemble Boltzmann samplers for combina-
torial classes specified using basic combinatorial constructions, like Sum, Product,
Sequence. The framework has been recently extended to constructions that are sub-
ject to symmetries, like Multiset, Powerset, Cycle [50]. An interesting application
to random sampling of plane partitions is developed in [11].

Boltzmann samplers can similarly be assembled in the framework of labelled
objects (e.g. graphs with labelled vertices). The exponential generating function of
the class C is defined as

C(x) :=
∑

γ∈C

x|γ|

|γ|! ,

where |γ| is the size of an object γ ∈ C (e.g. the number of vertices of a graph).
The exponential Boltzmann distribution assigns to each object of C a weight

Px(γ) =
x|γ|

|γ|!C(x)
.

Given a coherent value x, i.e., a value smaller than the radius of convergence of
C(x), a Boltzmann sampler for the labelled class C is a procedure ΓC(x) that draws
objects of C at random under the “labelled” Boltzmann distribution Px. As in the
unlabelled framework, the authors of [43] give sampling rules associated to classical
combinatorial constructions (Sum, Product, Set).

To assemble a Boltzmann sampler for planar graphs from their combinatorial
decomposition, we need to extend the framework of Boltzmann samplers to the case
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of a mixed combinatorial class. In a mixed class C = ∪n,mCn,m, an object has n
labelled “atoms” and m unlabelled “atoms”, e.g., a graph with n labelled vertices
and m unlabelled edges. For γ ∈ C, we write |γ| for the number of labelled atoms
of γ and ||γ|| for the number of unlabelled atoms of γ. The associated generating
function C(x, y) is defined as

C(x, y) :=
∑

γ∈C

x|γ|

|γ|! y
||γ||.

For a fixed real value y > 0, we denote by ρC(y) the radius of convergence of
the function x → C(x, y). A pair (x, y) is said to be coherent if x ∈ (0, ρC(y)),

which means that
∑

γ∈C
x|γ|

|γ|! y
||γ|| converges and that C(x, y) is well defined. Given a

coherent pair (x, y), the mixed Boltzmann distribution is the probability distribution
Px,y assigning to each object γ ∈ C probability

Px,y(γ) =
1

C(x, y)

x|γ|

|γ|! y
||γ||.

An important property of this distribution is that two objects with the same pa-
rameters (|γ|, ||γ||) have the same probability. A mixed Boltzmann sampler at (x, y)
—shortly called Boltzmann sampler hereafter— is a procedure ΓC(x, y) that draws
objects of C at random under the Boltzmann distribution Px,y. Observe that the
development of the Boltzmann framework for mixed classes is an extension of the
labelled case studied in [43]. Indeed, ΓC(x, 1) is an exponential Boltzmann sampler
for C.

4.3.2. Constructions. The five constructions that follow serve to describe the
decomposition of planar graphs, see [52] for a detailed description. We need two
substitution constructions, one at labelled atoms called x-substitution, the other at
unlabelled atoms called y-substitution.

Sum. The sum C = A+B of two classes is meant as a disjoint union, i.e., it is the
union of two distinct copies of A and B. The generating function of C satisfies

C(x, y) = A(x, y) +B(x, y).

Product. The product C = A⋆B is a classical cartesian product, combined with a
relabelling step ensuring that the atoms of an object γ ∈ A ⋆B bear distinct labels
in [1, . . , |γ|]. The generating function of C satisfies

C(x, y) = A(x, y) ·B(x, y).

Set≥d. For d ≥ 0 and a class A having no object of size 0, C = Set≥d(A) is the
class such that each object γ ∈ Set≥d(A) is a finite set of at least d objects of
A, relabelled so that the atoms of γ bear distinct labels in [1 . . |γ|]. For d = 0,
this corresponds to the classical construction Set. The generating function of C
satisfies

C(x, y) = ed(A(x, y)), where ed(Z) :=
∑

k≥d

Zk

k!
.

x-substitution. Given A and B two classes such that B has no object of size 0,
the class C = A ◦x B is the class of objects that are obtained by taking an object
ρ ∈ A, called the core-object, substituting each labelled atom v of ρ by an object
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Construction Boltzmann sampler

empty atom

unit atom

Sum C = A+ B

Product C = A ⋆ B

Set≥d C = Set≥d(A)

1

Z

x-subs C = A ◦x B

y-subs C = A ◦y B

return 1

return Z

ΓC(x, y): if Bern
(

A(x,y)
C(x,y)

)

, return ΓA(x, y)

else return ΓB(x, y)

ΓC(x, y): γ ← (ΓA(x, y),ΓB(x, y))
DistributeLabels(γ); return γ

ΓC(x, y): k ← Pois≥d(A(x, y))

γ ← (ΓA(x, y), . . . ,ΓA(x, y)) {k ind. calls}

DistributeLabels(γ); return γ

ΓC(x, y): γ ← ΓA(B(x, y), y)

for each labeled atom v ∈ γ do
replace v by γv ← ΓB(x, y) od {ind. calls}

DistributeLabels(γ); return γ

ΓC(x, y): γ ← ΓA(x,B(x, y))

for each unlabeled atom e ∈ γ do
replace e by γe ← ΓB(x, y) od {ind. calls}

DistributeLabels(γ); return γ

Figure 5. The sampling rules associated with each of the five constructions.

γv ∈ B, and finally relabelling the atoms of ∪vγv with distinct labels from 1 to∑
v |γv|. The generating function of C satisfies

C(x, y) = A(B(x, y), y).

y-substitution. Given A and B two classes such that B has no object of size 0,
the class C = A ◦y B is the class of objects that are obtained by taking an object
ρ ∈ A, called the core-object, substituting each unlabelled atom e of ρ by an object
γe ∈ B, and finally relabelling the atoms of ρ ∪ (∪eγe) with distinct labels from
1 to |ρ| +∑e |γe|. We assume here that the unlabelled atoms of an object of A
are distinguishable. This property is satisfied in the case where A is a family of
labelled graphs with no multiple edges, as two different edges are distinguished by
the labels of their two incident vertices. The generating function of C satisfies

C(x, y) = A(x,B(x, y)).

4.3.3. Sampling rules. A nice feature of Boltzmann samplers is that the basic
combinatorial constructions (Sum, Product, Set) give rise to simple rules for as-
sembling the associated Boltzmann samplers. To describe these rules, we assume
that the exact values of the generating functions at a given coherent pair (x, y) are
known. We will also need two well-known probability distributions.

• A Bernoulli law of parameter p ∈ (0, 1) is a random variable equal to 1 (or
true) with probability p and equal to 0 (or false) with probability 1− p.
• Given λ > 0 a real value and d a nonnegative integer, Pois≥d(λ) is the

law of a random variable taking values in Z≥d such that

P(k) =
1

ed(λ)

λk

k!
, where ed(Z) :=

∑

k≥d

Zk

k!
.



138 4. ALGORITHMIC APPLICATIONS

For d = 0, this corresponds to the classical Poisson law, abbreviated as
Pois.

For complexity analysis, a Bernoulli choice is assumed to have unit cost, and draw-
ing from a Poisson law has cost equal to the value of the output. (Indeed, a Poisson
law is classically drawn using a loop running k times if the result is k, see [52].)

Starting from combinatorial classesA and B endowed with Boltzmann samplers
ΓA(x, y) and ΓB(x, y), Figure 5 describes how to assemble a sampler for a class
C obtained from A and B (or from A alone for the construction Set≥d) using
the five constructions. The relabelling step, as mentioned in the definition of the
constructions, is performed by an auxiliary procedure DistributeLabels. Given
an object γ with its labelled atoms ranked from 1 to |γ|, DistributeLabels(γ)
draws a permutation σ of [1, . . , |γ|] uniformly at random and gives label σ(i) to
the atom of rank i.

Proposition 4.6. Let A and B be two mixed combinatorial classes endowed
with Boltzmann samplers ΓA(x, y) and ΓB(x, y). Then, for each of the five con-
structions {+, ⋆,Set≥d, x−subs, y−subs}, the sampler ΓC(x, y), as defined in Fig-
ure 5, is a valid Boltzmann sampler for the combinatorial class C.
Example 1. Consider the class C of labelled binary trees where the atoms are the
nodes. The class C has the following decomposition grammar,

C = (C + 1) ⋆ Z ⋆ (C + 1) .

Hence, the series C(x) counting binary trees satisfies C(x) = x (1 + C(x))2. Thus,
C(x) can be easily evaluated for a fixed real parameter x < ρC = 1

4 .
Using the sampling rules for Sum and Product, we obtain the following Boltz-

mann sampler for binary trees,
ΓC(x) : return (Γ(1 + C)(x),Z,Γ(1 + C)(x)) {independent calls}
Γ(1 + C)(x) : if Bern

(
1

1+C(x)

)
return ∅ (leaf)

else return ΓC(x)

Remark 1. The procedure DistributeLabels(γ) throws distinct labels uni-
formly at random on the atoms of γ that support labels. The fact that the
relabelling permutation is always chosen uniformly ensures that the call to Dis-
tributeLabels can be postponed till the end of the algorithm, i.e., we can apply
the labelling to the finally output object (this is also mentioned by Flajolet et al [53,
Sec 3]). Hence, the labels do not really matter and induce no additional complex-
ity to the Boltzmann samplers: for a class C whose combinatorial decomposition
involves the five constructions, we just have to generate the unlabelled shape of an
object γ produced by ΓC(x, y); then we call DistributeLabels(γ).

4.3.4. Useful techniques related to Boltzmann samplers. In the following sec-
tions, we will make much use of the derivative operator. Given a mixed (or labelled)
combinatorial class C = ∪n,mCn,m, an object of the derived class C′ is obtained by
removing the label n of an object of C of size n, so that the obtained object has size
n− 1 (the atom n can be considered as a pointed atom that does not count in the
size). As a consequence, C′n−1,m ≃ Cn,m , so that the generating function C′(x, y)
of C′ satisfies

(20) C′(x, y) =
∑

n,m

|Cn,m|
xn−1

(n− 1)!
ym =

∂C

∂x
(x, y).
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The y-derivative of C is the class C of objects of C having a marked unlabelled
atom that does not count in the size. Thus, the generating function C(x, y) of C
satisfies

(21) C(x, y) =
∂C

∂y
(x, y).

For the particular case of a class of planar graphs, we will also consider edge-
rooted objects, i.e., planar graphs where an edge is marked and oriented. In addi-
tion, the root edge is not counted as unlabelled atom, and the two extremities of
the root do not count as labelled atoms (i.e., are not labelled). The edge-rooted

class of C is denoted by
−→C . The generating function

−→
C (x, y) of

−→C satisfies

(22)
−→
C (x, y) =

2

x2

∂C

∂y
(x, y).

Another useful techique is rejection, which offers great flexibility and makes
it possible to adjust the distributions of the samplers. This technique will prove
particularly useful to cope with re-pointing/depointing operations that intervene in
the decomposition of planar graphs.

Lemma 4.4 (Rejection). Given a combinatorial class C, let W : C → R+ and
p : C → [0, 1] be two functions, called weight-function and rejection-function, re-
spectively. Assume that W is summable, i.e.,

∑
γ∈CW (γ) is finite. Let A be a

random generator on C that draws each object γ ∈ C with probability proportional
to W (γ). Then, the procedure

Arej : repeat A→ γ until Bern(p(γ)); return γ

is a random generator on C, which draws each object γ ∈ C with probability propor-
tional to W (γ)p(γ).

4.4. Decomposition of planar graphs and Boltzmann samplers. The
classical method to count planar graphs consists in decomposing a planar graph into
planar components that have higher degree of connectivity. The decomposition is
stopped at connectivity degree 3, where the graphs have a unique planar embedding.
Recall that a graph is k-connected if it has at least k vertices and if the removal
of any set of k − 1 vertices and their incident edges does not disconnect the graph.
The generation method we describe reverses the decomposition, i.e., planar graphs
are assembled in a way that follows the decomposition.

First, by uniqueness of the embedding, generating 3-connected planar graphs
is equivalent to generating 3-connected maps, which is done using the sampler
presented in Section 3.1 (turned into a Boltzmann sampler). The next step is to
generate 2-connected planar graphs from 3-connected ones. We take advantage of
a decomposition of 2-connected planar graphs into 3-connected planar components,
which has been formalised by Trakhtenbrot [109] and later used by Walsh [116]
to count 2-connected planar graphs and by Bender, Gao, Wormald to obtain as-
ymptotic enumeration [5]. Finally, connected planar graphs are generated from
2-connected ones by using a well-known decomposition at separating vertices, and
planar graphs are generated from connected ones by choosing the number of con-
nected components and then generating each component. Notice that these steps
translate to explicit equations relating the generating functions of 2-connected, con-
nected, and unconstrained planar graphs. Starting from these equations, Giménez
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and Noy have solved the asymptotic enumeration of planar graphs, using analytic
methods and clever integral manipulations [68].

Notations. In the sequel, the number of vertices and the number of edges of a
planar graph γ are respectively denoted by V (γ) and E(γ). Notice that V (γ) might
not be equal to |γ| and E(γ) might not be equal to ||γ||, e.g., an edge-rooted planar
graph γ satisfies V (γ) = |γ|+ 2 and E(γ) = ||γ||+ 1.

4.4.1. Boltzmann sampler for 3-connected planar graphs. Equivalence with rooted
3-connected maps A well known result due to Whitney [117] states that a 3-
connected planar graph has a unique embedding on the sphere up to continuous
deformation and reflection (in general a planar graph can have many embeddings).
Hence, a labelled edge-rooted 3-connected planar graphs gives rise to two different
labelled 3-connected maps, the two maps differing by a reflection. The class of
(unlabelled) rooted 3-connected maps is denoted by M = ∪i,jMi,j where i is the
number of vertices different from the two end points of the rooted edge and j is
the number of edges without counting the rooted one. The associated generating
function is M(z, w) =

∑
i,j |Mi,j |ziwj (as both vertices and edges are unlabelled,

the series is ordinary in the two variables). Due to the absence of symmetries for
rooted maps, the family of labelled 3-connected maps with i+2 vertices and j faces
—the non-root vertices bearing distinct labels in [1..i]— is isomorphic toMi,j × i!.
Thus, Whitney’s theorem yields

(23) Mi,j × i! ≃ 2
−→G3(i,j),

which can be written compactly as

(24) M≃ 2
−→G3, M(z, w) =

4

z2

∂G3

∂w
(z, w)

Definition 1. Let C = ∪i,jCi,j be a class with two types of unlabelled atoms,
called an ordinary mixed class. A Boltzmann sampler for C is a random generator
ΓC(x, y) drawing each object γ ∈ Ci,j with probability

P(γ) =
xiyj

C(x, y)
,

where C(x, y) =
∑

i,j |Ci,j |xiyj is the generating function of C, which is ordinary

in the two variables. The derived class C′ and y-derived class C are defined in the
same way as for mixed classes; C′ (C) is the class of objects of C having a marked
atom of the first type (second type, respectively) that does not count in the size.

Equation (24) ensures that rooted 3-connected maps correspond to the unla-
belled shape of edge-rooted 3-connected labelled planar graphs. In addition, accord-
ing to Remark 1, it is sufficient to draw only the unlabelled shape of the objects,
so that we have the following result.

Lemma 4.5. Finding a Boltzmann sampler Γ
−→
G3(z, w) for edge-rooted 3-connected

planar graphs is equivalent to finding a Boltzmann sampler ΓM(z, w) for rooted 3-
connected maps.

Boltzmann sampler for binary trees. Notice that bicolored binary trees admit a
recursive decomposition, so that a Boltzmann sampler is easily derived. Precisely,
the class T of bicolored binary trees is partioned into the class T• of black-rooted
binary trees and the class T◦ of white-rooted binary trees. The associated ordinary
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generating functions with respect to the number of black nodes (variable z) and the
number of nodes (variable w) are denoted by T (z, w), T•(z, w), and T◦(z, w). The
decomposition at the root of a bicolored binary tree yields the following decompo-
sition grammar, where Z• and Z◦ stand for a black and a white node, respectively.




T = T• + T◦
T• = (1 + T◦) ⋆ Z• ⋆ (1 + T◦)
T◦ = (1 + T•) ⋆ Z◦ ⋆ (1 + T•)

(25)



T (z, w) = T•(z, w) + T◦(z, w)

T•(z, w) = zw (1 + T◦(z, w))
2

T◦(z, w) = w (1 + T•(z, w))
2

.

The decomposition grammar of bicolored binary trees is directly translated
into the following Boltzmann sampler ΓT (z, w) for bicolored binary trees, based on
Remark 2 below:

ΓT (z, w): if Bern
(

T•(z,w)
T (z,w)

)

return ΓT•(z, w)

else return ΓT◦(z, w)

ΓT•(z, w): return (Γ(1 + T◦)(z, w),Z•,Γ(1 + T◦)(z, w))

ΓT◦(z, w): return (Γ(1 + T•)(z, w),Z◦,Γ(1 + T•)(z, w))

Γ(1 + T◦)(z, w): if Bern
(

1
1+T◦(z,w)

)

return ∅

else return ΓT◦(z, w)

Γ(1 + T•)(z, w): if Bern
(

1
1+T•(z,w)

)

return ∅

else return ΓT•(z, w)

Remark 2. We consider here ordinary mixed classes, i.e., classes with two types
of unlabelled atoms, a case not covered by the rules given in Figure 5, where the
classes considered have both labeled atoms and unlabeled atoms. However, an
easy adaptation of the proof of Proposition 4.6 ensures that the sampling rules for
Sum and Product are also valid in the case of a class with two types of unlabelled
atoms, i.e., a Boltzmann sampler for C = A + B is obtained by calling ΓA(x, y)
with probability A(x, y)/C(x, y) and calling ΓB(x, y) otherwise; and a Boltzmann
sampler for C = A ⋆ B consists of two independent calls to ΓA(x, y) and ΓB(x, y).

Boltzmann sampler for rooted irreducible dissections. The bijection between binary
trees and irreducible dissections yields the following sampler for rooted irreducible
dissections, where rnd(0,1) stands for a real number in (0, 1) taken uniformly at
random:

ΓI(z, w): repeat u← rnd(0, 1); max size← ⌊1/u⌋;
τ ← ΓT (z, w);
abort and restart as soon as #nodes(τ) + 2 > max size

until (generation finishes)
return closure(τ, rnd(1, 2, 3))

The sampler is easily seen to be equivalent to the sampler
“repeat τ ← ΓT (z, w) until Bern(1/(#nodes(τ)+2)); return closure(τ ,rnd(1,2,3))”,
which is a Boltzmann sampler for irreducible dissections according to Theorem 3.4
page 99. The early abortion process yields a gain in complexity (the choice to
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reject occurs before the entire binary tree is generated), which is crucial to ob-
tain the complexity of generation for planar graphs, as stated in Theorem 4.3 and
Theorem 4.4.

Boltzmann sampler for rooted 3-connected maps. As we have seen in Section 1.1,
irreducible dissections are closely related to 3-connected maps via the angular map-
ping. Precisely, rooted 3-connected maps are in bijection with so-called rooted irre-
ducible dissections with no internal path of length 3 connecting the root vertex to
the opposite outer vertex; these dissections being called undecomposable. Given a
rooted irreducible undecomposable dissection δ, we write π(δ) for the rooted quad-
rangulation obtained from δ by adding an outer (root) edge connecting the root
vertex to the opposite outer vertex, and we write Primal(δ) for the primal map of
π(δ). As we have seen in Section 1.1, Primal(δ) is 3-connected. From the discussion
we derive the following Boltzmann sampler for rooted 3-connected maps:

ΓM(z, w): repeat δ ← ΓI(z, w) until δ is undecomposable
return Primal(δ)

The Boltzmann sampler ΓM(z, w) for rooted 3-connected maps is also a mixed

Boltzmann sampler Γ
−→
G3(z, w) for edge-rooted 3-connected planar graphs, according

to the equivalence stated in Lemma 4.5.
4.4.2. Boltzmann sampler for 2-connected planar graphs. The next step of our

sampler is to realise a Boltzmann sampler for 2-connected planar graphs from the
Boltzmann sampler for edge-rooted 3-connected planar graphs obtained in Sec-
tion 4.4.1. Precisely, we first describe a Boltzmann sampler for edge-rooted 2-
connected planar graphs, and subsequently obtain a Boltzmann sampler for the
derived class of 2-connected planar graphs, by using rejection techniques.

To generate edge-rooted 2-connected planar graphs, we use a well-known de-
composition, due to Trakhtenbrot [109] and called network-decomposition, which
ensures that an edge-rooted 2-connected planar graph can be assembled from edge-
rooted 3-connected planar components. Precisely, Trakhtenbrot’s decomposition
deals with so-called networks, where a network is defined as a connected graph N
with two distinguished vertices 0 and ∞ called poles, such that the graph N∗ ob-
tained by adding an edge between 0 and ∞ is a 2-connected planar graph. For the
enumeration, the two poles are not counted in the size.

We rely on [116] for the description of Trakhtenbrot’s decomposition. A series-
network or s-network is a network made of at least 2 networks connected in chain
at their poles, the ∞-pole of a network coinciding with the 0-pole of the following
network in the chain. A parallel network or p-network is a network made of at
least 2 networks connected in parallel, so that their respective ∞-poles and 0-
poles coincide. A network N such that N∗ is 3-connected and the poles are not
adjacent is called a pseudo-brick. A polyhedral network or h-network is a network
obtained by taking a pseudo-brick and substituting each edge e of the pseudo-brick
by a network Ne (polyhedral networks establish a link between 2-connected and
3-connected planar graphs).

Proposition 4.7 (Trakhtenbrot). Networks with at least 2 edges are parti-
tioned into s-networks, p-networks and h-networks.

Let us explain how to obtain a recursive decomposition involving the different
families of networks. Let D, S, P , and H be respectively the classes of networks,
s-networks, p-networks, and h-networks. Let D(z, y), S(z, y), P (z, y), H(z, y) be
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the associated mixed generating functions with respect to the number of non-pole
vertices (variable z) and the number of edges (variable y). We recall that L is the
family consisting only of the link-network, i.e., the graph with one edge connecting
the two poles. Proposition 4.7 ensures that

D = L+ S + P +H.
An s-network can be uniquely decomposed into a non-s-network (the head of

the chain) followed by a network (the trail of the chain), which yields

S = (L+ P +H) ⋆ Z ⋆D,
where Z stands for the articulation-vertex between the head network and the trail
network.

A p-network has a unique maximal parallel decomposition into a set of com-
ponents that are not p-networks. Observe that we consider here graphs without
multiple edges, so that at most one of these components is an edge. Whether there
is one or no such edge-component yields

P = L ⋆ Set≥1(S +H) + Set≥2(S +H).

By definition, the class of h-networks corresponds to a y-substitution of net-
works in pseudo-bricks. We write G3 for the family of labelled 3-connected planar
graphs and denote by G3(z, w) the associated generating function with respect to
vertices and edges. By definition, a pseudo-brick is an edge-rooted 3-connected
plane graph. As a consequence,

H =
−→G3 ◦y D.

To summarize, Trakhtenbrot’s decomposition yields the following decomposi-
tion grammar relating networks and edge-rooted 3-connected planar graphs:















D = L + S + P + H

S = (L + P + H) ⋆ Z ⋆ D

P = L ⋆ Set≥1(S + H) + Set≥2(S + H)

H =
−→
G3 ◦y D

(N)

The decomposition grammar (N) is directly translated to a Boltzmann sampler
ΓD(z, y) for networks, using the sampling rules given in Figure 5. The only terminal
nodes of the decomposition grammar are the classes Z, L (which are explicit), and

the class
−→G3. Thus, the sampler ΓD(z, y) and the auxiliary samplers ΓS(z, y),

ΓP (z, y), and ΓH(z, y) are recursively specified in terms of Γ
−→
G3(z, w), where w =

D(z, y).
Observe that each edge-rooted 2-connected planar graph different from the link

graph gives rise to two networks, obtained respectively by including or not including
the root-edge in the network. This yields the identity

(26) (1 + L) ⋆
−→B ≃ (1 +D),

where
−→B is the class of edge-rooted 2-connected planar graphs, D is the class of

networks and L is the one-element class made of the link-graph. From that point,
a Boltzmann sampler is easily obtained for the family of edge-rooted 2-connected
planar graphs. Define a procedure AddRootEdge that adds an edge connecting
the two poles 0 and ∞ of a network if they are not already adjacent, and roots the
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obtained graph at the edge (0,∞) oriented from 0 to ∞. Equation (26) translates

to the following Boltzmann sampler for
−→B ,

Γ
−→
B (z, y): γ ← Γ(1 +D)(z, y); AddRootEdge(γ); return γ

Γ(1 +D)(z, y): if Bern
(

1
1+D(z,y)

)
return link-graph else return ΓD(z, y);

The last step is to obtain a Boltzmann sampler for derived 2-connected planar
graphs from the Boltzmann sampler for edge-rooted 2-connected planar graphs (in-
deed, derived 2-connected planar graphs are the building blocks needed to construct
connected planar graphs). This requires a simple rejection loop:

ΓB′(z, y): repeat γ ← Γ
−→
B (z, y) until Bern

(
V (γ)
2E(γ)

)
;

DistributeLabels(γ); point a vertex at random; return γ

The probability V (γ)/E(γ) of keeping the generated graphs turns the Boltz-
mann distribution for edge-rooted graphs into the Boltzmann distribution for vertex-
rooted (i.e., derived) graphs.

4.4.3. Boltzmann sampler for connected planar graphs. To obtain a Boltzmann
sampler for connected planar graphs, we translate a decomposition linking derived
connected and derived 2-connected planar graphs to a Boltzmann sampler for de-
rived connected planar graphs. Then, a further rejection step yields a Boltzmann
sampler for connected planar graphs. The block-decomposition (see [72, p.10] for a
detailed description) is specified as follows. Each derived connected planar graph
can be uniquely constructed by composition in the following way: take a set of de-
rived 2-connected planar graphs and attach them, by merging their marked vertices
into a unique marked vertex. Then, for each unmarked vertex v of each 2-connected
component, take a derived connected planar graph γv and merge the marked vertex
of γv with v (this operation corresponds to an x-substitution). Writing B for the
class of 2-connected planar graphs and B(z, y) for its mixed generating function
with respect to vertices and edges, the block-decomposition implies

(27) C′ = Set (B′ ◦x (Z ⋆ C′)) , C′(x, y) = exp(B′(xC′(x, y), y)).

The block-decomposition translates to the following Boltzmann sampler for derived
connected planar graphs (based on the rules of Figure 5):

ΓC′(x, y): k← Pois(B′(z, y)) [with z = xC′(x, y)]
γ ← (ΓB′(z, y), . . . ,ΓB′(z, y)) {k independent calls}
merge the k components of γ at their marked vertices
for each unmarked vertex v of γ

γv ← ΓC′(x, y)
merge the marked vertex of γv with v

return γ.

A Boltzmann sampler for connected planar graphs is then simply obtained from
ΓC′(x, y) by using a rejection step so as to adjust the probability distribution:

ΓC(x, y): repeat γ ← ΓC′(x, y) until Bern
(

1
V (γ)

)
; return γ.

4.4.4. Boltzmann sampler for planar graphs. Let G be the class of planar graphs
and C the class of connected planar graphs. Let G(x, y) and C(x, y) be the mixed
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generating functions of G and C with respect to the number of vertices and edges.
A planar graph is decomposed into the set of its connected components, yielding

(28) G = Set(C), G(x, y) = exp(C(x, y)),

which translates to the following Boltzmann sampler for planar graphs

ΓG(x, y): k ← Pois(C(x, y))
return (ΓC(x, y), . . . ,ΓC(x, y)) {k independent calls}

4.5. Deriving an efficient sampler. The preceding section has provided the
complete description of a Boltzmann sampler for planar graphs. However more is
needed to achieve the complexity stated in Theorems 4.3 and 4.4, as shown here.

4.5.1. Size distribution. In the last section, we have described a method to
produce a mixed Boltzmann sampler ΓG(x, y) for labelled planar graphs. In par-
ticular, ΓG(x, 1) is a Boltzmann sampler for labelled planar graphs, drawing two
planar graphs with the same number of vertices with equal probability. For prac-
tical purpose, a target size n is chosen by the user (e.g. n = 100, 000), and the
sampler is required to return a random planar graph whose size is around n up to
a few percents, or even exactly n. As a consequence, the size distribution of planar
graphs output by ΓG(x, y) has to be studied. Typically, we need to tune the real
parameter x in order to ensure that the size distribution is concentrated around the
target value n. However, this tuning operation does not always apply depending
on the singularity type of G(x).

Definition 2. Given α ∈ R\Z≥0, a generating function f(x) is said to be α-
singular if the following expansion holds in a ∆-neighbourhood of its dominant
singularity ρ (see [43] for technical conditions of such neighbourhoods),

f(x) =
x→ρ

P (x) + cα

(
1− x

ρ

)α

+ o

(
1− x

ρ

)α

,

where P (x) is a polynomial and cα is a non-zero real value.

The following lemma, Theorem 6.3 of [43], ensures that the tuning operation
mentioned above applies well when f(x) is α-singular with α < 0. We state it in a
slightly more general version, extended to mixed Boltzmann samplers.

Lemma 4.6. (Duchon et al [43]) Let F be a mixed combinatorial class endowed
with a Boltzmann sampler ΓF (x, y). Let F (x, y) be the mixed generating function
of F . Given y > 0, assume that the function x → F (x, y) is α-singular with
α < 0. For each integer n, define xn = ρG(y)

(
1 + α

n

)
, ρG(y) being the radius of

convergence of x→ F (x, y). Let Xn be the random variable defined as the labelled
size of an object output by ΓF (xn, y).

Then, for each fixed tolerance-ratio ǫ > 0,

P (Xn ∈ [n(1− ǫ), n(1 + ǫ)])→ pǫ as n→∞,

where pǫ is a positive constant depending on ǫ, being of order ǫ as ǫ→ 0: pǫ ∼ǫ→0

σ · ǫ for some constant σ.
Moreover,

P (Xn = n) ∼ σ

n
as n→∞, for the same constant σ > 0.



146 4. ALGORITHMIC APPLICATIONS

The following lemma indicates that we have to “derive 3 times” the Boltzmann
sampler ΓG(x, y) for planar graphs, so that the size distribution of the output gets
the good behaviour stated in Lemma 4.6.

Lemma 4.7 (Gimenez and Noy [68]). Let G(x, y) be the mixed generating func-
tion of labelled planar graphs. Then, for each y > 0, the function x→ G′′′(x, y) is
(−1/2)-singular.

4.5.2. Injecting the derivative operator in the decomposition of planar graphs.
The derivative operator is easily injected in the 5 constructions used to describe
the decomposition of planar graphs,

(29)





(A+ B)′ = A′ + B′

(A ⋆ B)′ = A′ ⋆ B +A ⋆ B′

Set≥d(A)′ = A′ ⋆ Set≥d−1(A)
(A ◦x B)′ = B′ ⋆A′ ◦x B
(A ◦y B)′ = A′ ◦y B + B′ ⋆A ◦y B,

where we recall that A stands for the y-derived class of A. As a consequence,
the derivative operator can be injected in the chain of decompositions, in order to
assemble a Boltzmann sampler for triply derived planar graphs, as explained next.

Boltzmann samplers for derived 3-connected planar graphs. Given a bicolored bi-
nary tree τ , we denote by |τ |• the number of black nodes of τ and by |τ | the number
of nodes of τ . Let ΓT (z, w) be a Boltzmann sampler for bicolored binary trees and
ΓT ′(z, w) be a Boltzmann sampler for the class T ′ of bicolored binary trees with a
pointed black node that does not count in the size. In other words, ΓT ′(z, w) draws
a bicolored binary tree τ with probability proportional to |τ |•z|τ |•w|τ |. The class
T ′ has a complete recursive decomposition, obtained by deriving the decomposition
grammar of T with respect to z,

(30)




T ′ = T ′

• + T ′
◦

T ′
• = T ′

◦ ⋆ Z• ⋆ (1 + T◦) + (1 + T◦) ⋆ (1 + T◦) + (1 + T◦) ⋆ Z• ⋆ T ′
◦

T ′
◦ = T ′

• ⋆ Z◦ ⋆ (1 + T•) + (1 + T•) ⋆ Z◦ ⋆ T ′
• ,

which is translated to a Boltzmann sampler ΓT ′(z, w) using the sampling rules for
Sum and Product.

The rooted version of the bijection between binary-trees and irreducible dissec-
tions (Theo. 3.4 p. 99) and Lemma 4.4 (rejection lemma) ensure that the following
algorithms are Boltzmann samplers for the derived classes of rooted 3-connected
maps up to order 2.
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ΓM ′(z, w): repeat τ ← ΓT (z,w)

until (M ← closure(τ, rnd(1, 2, 3)) is undecomposable and Bern
“

|τ |•+1
|τ |+2

”
);

return M

ΓM(z, w): repeat τ ← ΓT (z,w)

until (M ← closure(τ, rnd(1, 2, 3)) is undecomposable and Bern
“

3
4

|τ |+3
|τ |+2

”
);

return M

ΓM ′′(z,w):repeat τ ← ΓT ′(z, w)

until (M ← closure(τ, rnd(1, 2, 3)) is undecomposable and Bern
“

|τ |•+1
|τ |+2

”
);

return M

ΓM
′
(z, w): repeat τ ← ΓT ′(z, w)

until (M ← closure(τ, rnd(1, 2, 3)) is undecomposable and Bern
“

3
8

(|τ |•+1)(|τ |+3)
|τ |•(|τ |+2)

”
);

return M

ΓM(z, w): repeat τ ← ΓT ′(z, w)

until (M ← closure(τ, rnd(1, 2, 3)) is undecomposable and Bern
“

1
7

|τ |+3
|τ |•

”
);

return M

Boltzmann samplers for derived 2-connected planar graphs. Starting from the 4-
lines decomposition grammar (N) of networks and deriving two times, we obtain
successively















D = L + S + P + H

S = (L + P + H) ⋆ Z ⋆ D

P = L ⋆ Set≥1(S + H) + Set≥2(S + H)

H =
−→
G3 ◦y D















D′ = S ′ + P ′ + H′

S ′ = (P ′ + H′) ⋆ Z ⋆ D + (L + P + H) ⋆ (D + Z ⋆ D′)
P ′ = L ⋆ (S ′ + H′) ⋆ Set(S + H) + (S ′ + H′) ⋆ Set≥1(S + H)

H′ =
−→
G3

′
◦y D + D′

⋆
−→
G3 ◦y D



















D′′ = S ′′ + P ′′ + H′′

S ′′=(P ′′+H′′)⋆Z⋆D+2(P ′+H′)⋆(D+Z⋆D′)+(L+P+H)⋆(2D′+Z⋆D′′)
P ′′= (L⋆(S ′′+H′′) + (1+L) ⋆ (S ′+H′)2)⋆Set(S+H)+(S ′′+H′′)⋆Set≥1(S+H)

H′′ =
−→
G3

′′
◦y D + 2D′

⋆
−→
G3

′
◦y D + D′2

⋆
−→
G3 ◦y D + D′′

⋆
−→
G3 ◦y D

(N)

(N’)

(N”)

In these three systems taken together, the only terminal nodes are the class−→G3 and its derived classes up to order 2, which are isomorphic to the class M of
rooted 3-connected maps and its derived classes up to order 2, via the identity

M ≃ 2
−→G3. In addition, we have obtained in Section 4.5.2 Boltzmann samplers for

the derived classes of rooted 3-connected planar maps up to order 2. Hence, using
the sampling rules of Figure 5 , the three systems for networks, derived networks,
and doubly derived networks are translated respectively to Boltzmann samplers
ΓD(z, y), ΓD′(z, y), and ΓD′′(z, y), which are recursively specified in terms of the
Boltzmann samplers for M and its derived classes up to order 2, taken at (z, w =
D(z, y)).

Then, Boltzmann samplers for derived edge-rooted 2-connected planar graphs
are easily obtained. Indeed, Equation (26) yields successively

(1 + L) ⋆
−→B ≃ (1 +D), (1 + L) ⋆

−→B ′ ≃ D′, (1 + L) ⋆
−→B ′′ ≃ D′′,

which translates to
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Γ
−→
B (z, y): γ ← Γ(1 +D)(z, y); AddRootEdge(γ); return γ

Γ
−→
B ′(z, y): γ ← ΓD′(z, y); AddRootEdge(γ); return γ

Γ
−→
B ′′(z, y): γ ← ΓD′′(z, y); AddRootEdge(γ); return γ

Finally, the rejection technique allows us to obtain Boltzmann samplers for
derived 2-connected planar graphs from Boltzmann samplers for (derived) edge-
rooted 2-connected planar graphs; the following samplers ΓB′(z, y), ΓB′′(z, y),
and ΓB′′′(z, y) are valid Boltzmann samplers for B′, B′′, and B′′′ (after a call to
DistributeLabels(γ)).

(31)

ΓB′(z, y) : repeat γ ← Γ
−→
B (z, y) until Bern

“
V (γ)
2E(γ)

”
; return γ

ΓB′′(z, y) : repeat γ ← Γ(
−→
B + z

−→
B ′)(z, y) until Bern

“
V (γ)
2E(γ)

”
; return γ

Γ(
−→
B + z

−→
B ′)(z, y) : if Bern

“ −→
B (z,y)

−→
B (z,y)+z

−→
B ′(z,y)

”
return Γ

−→
B (z, y) else return Γ

−→
B ′(z, y)

ΓB′′′(z, y) : repeat γ ← Γ(2
−→
B ′ + z

−→
B ′′)(z, y) until Bern

“
V (γ)
E(γ)

”
; return γ

Γ(2
−→
B ′ + z

−→
B ′′)(z, y) : if Bern

“
2
−→
B ′(z,y)

2
−→
B ′(z,y)+z

−→
B ′′(z,y)

”
return Γ

−→
B ′(z, y) else return Γ

−→
B ′′(z, y)

Boltzmann samplers for derived connected planar graphs. Starting from Equa-
tion (27), the derivative rules (29) yield successively
(32)8
<
:
C′ = Set (B′◦x (Z ⋆ C′)) ,

C′′ = (C′ +Z ⋆ C′′) ⋆ B′′◦x (Z ⋆ C′) ⋆ C′,
C′′′=(2C′′+Z⋆C′′′)⋆B′′◦x(Z⋆C′)⋆C′+(C′+Z⋆C′′)2⋆B′′′◦x(Z⋆C′)⋆C′+(C′+Z⋆C′′)⋆B′′◦x(Z⋆C′)⋆C′′.

Using the sampling rules of Figure 5, these decompositions translate to Boltzmann
samplers ΓC′(x, y), ΓC′′(x, y), and ΓC′′′(x, y), which are recursively specified in
terms of the Boltzmann samplers ΓB′′′(z, y), ΓB′′(z, y), and ΓB′(z, y), where z =
xC′(x, y).

Boltzmann samplers for derived planar graphs. Starting from G = Set(C), the
derivative rules (29) yield successively

(33)





G = Set(C),
G′ = C′ ⋆ G,
G′′ = C′′ ⋆ G + C′ ⋆ G′,
G′′′ = C′′′ ⋆ G + 2C′′ ⋆ G′ + C′ ⋆ G′′.

Again, using the sampling rules of Figure 5, these decompositions translate to
Boltzmann samplers ΓG′(x, y), ΓG′′(x, y), and ΓG′′′(x, y), which are specified in
terms of the Boltzmann samplers ΓC′′′(x, y), ΓC′′(x, y), ΓC′(x, y), and ΓC(x, y).
(The Boltzmann sampler ΓC(x, y) has already been obtained from ΓC′(x, y) using
rejection).

The complete algorithmic scheme, from binary trees to triply derived planar
graphs, is summarized in Figure 6 and Figure 7.

4.5.3. Samplers according to the number of vertices. The random sampler of
planar graphs we use is the “triply derived” Boltzmann sampler ΓG′′′(xn, 1) with
the value xn = ρG

(
1− 1

2n

)
tuned as indicated in Lemma 4.6, ρG being the radius

of convergence of G(x, 1). The exact-size sampler is

An: repeat γ ← ΓG′′′(xn, 1) until V (γ) = n; return γ.
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Procedure 2: binary trees → 3-connected planar graphs

τ ← ΓT (z, w)
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|τ |+2

τ ← ΓT (z, w)

+ early abort

2) closure(τ)
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Figure 6. The algorithmic scheme producing Boltzmann sam-
plers for 3-connected planar graphs from Boltzmann samplers for
bicolored binary trees.

For any ǫ > 0, the approximate-size sampler is

An,ǫ: repeat γ ← ΓG′′′(xn, 1) until V (γ) ∈ [n(1− ǫ), n(1 + ǫ)]; return γ.
4.5.4. Samplers according to the numbers of vertices and edges. For any y > 0,

we denote by ρG(y) the radius of convergence of x → G(x, y). Let µ(y) be the
function defined as

µ(y) := −ydρG

dy
(y)/ρG(y).

It has been shown by Giménez and Noy [68] that the function µ(y) is strictly
increasing on (0,+∞), with limµ(y) = 1 as y → 0 and limµ(y) = 3 as y → +∞.
As a consequence, µ(y) has an inverse function y(µ) defined on (1, 3). We define
xn(µ) := ρG(y(µ))(1 − 1

2n ). The exact size sampler we propose is
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Procedure 3: 3-connected planar graphs → 2-connected planar graphs
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Procedure 4: 2-connected planar graphs → connected planar graphs

Block-decomposition

C′ = Set(B′ ◦x (Z ⋆ C′)) C′′ = expr. with
C′,C′′,B′,B′′

C′′′ = expr. with
C′,C′′,C′′′,B′,B′′,B′′′

derivate derivate

ΓC ′(x, y) ΓC ′′(x, y) ΓC ′′′(x, y)

γ ← ΓC ′(x, y)

Pkeep =
1

V (γ)

ΓC(x, y)

Procedure 5: connected planar graphs → planar graphs

G = Set(C) G′ = C′ ⋆ G G′′=C′′⋆G+C′⋆G′

ΓG(x, y)

G′′′=C′′′⋆G+2C′′⋆G′+C′⋆G′′der. der. der.

ΓG′(x, y) ΓG′′(x, y) ΓG′′′(x, y)

Decomposition into connected components

Figure 7. The algorithmic scheme producing a Boltzmann sam-
pler for triply derived planar graphs from Boltzmann samplers for
3-connected planar graphs.

An,µ: repeat γ ← ΓG′′′(xn(µ), y(µ)) until (V (γ) = n and E(γ) = ⌊µn⌋); return
γ.

For any ǫ > 0, the approximate-size sampler is

An,µ,ǫ: repeat γ ← ΓG′′′(xn(µ), y(µ))

until (V (γ) ∈ [n(1− ǫ), n(1 + ǫ)] and E(γ)
V (γ) ∈ [µ(1 − ǫ), µ(1 + ǫ)]);

return γ.

4.6. Implementation and experimental results. We have realised a full
implementation of the random samplers for planar graphs. First we evaluated
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with good precision—typically 20 digits are enough for our purpose—the generat-
ing functions of the families of planar graphs that intervene in the decomposition:
general, connected, 2-connected, 3-connected, pointed up to 3 times. The calcu-
lations have been carried out in Maple using the analytic expressions of Giménez
and Noy for the generating functions. We performed the evaluations for values of
the parameter x associated with a bunch of reference target sizes in logarithmic
scale, n = {102, 103, 104, 105, 106}. From the values of the generating functions we
computed the vectors of real values that are associated to the random choices to be
performed during the generation, e.g., a Poisson law vector with parameter C(x)
(the GF of connected planar graphs) is used for drawing the number of connected
components of the graph.

The second step has been the implementation of the random sampler in Java.
To build the graph all along the generation process, it proves more convenient to
manipulate planar maps rather than planar graphs. The advantage is that the graph
to be generated will be equipped with an explicit (arbitrary) planar embedding.
Thus if the graph generated is to be drawn in the plane, we do not need to call
the rather involved algorithms for embedding a planar graph. Moreover, planar
maps have the advantage that they are suitably manipulated using the so-called
half-edge structure, where each half-edge occupies a memory block containing a
pointer to the opposite half-edge along the same edge and to the next half-edge
in ccw order around the incident vertex. Using the half-edge structure, it proves
very easy to implement in cost O(1) all primitives used for building the graph—
typically, merging two components at a common vertex or edge. Doing this, the
actual complexity of implementation corresponds to the complexity of the random
samplers as stated in Theorem 4.3 and Theorem 4.4: linear for approximate-size
sampling and quadratic for exact-size sampling. In practice, generating a graph of
size of order 105 takes a few seconds on a standard PC.

Experimentations. The good complexity of our random samplers allows us to
observe statistical properties of parameters on very large random planar graphs—in
the range of sizes 105—where the asymptotic regime is already visible. We focus
here on the experimental study of parameters that are known or expected to be
concentrated around a limit value.

Number of edges. First we have checked that the random variable Xn that counts
the number of edges in a random connected planar graph with n vertices is concen-
trated. Precisely, Giménez and Noy have proved that Yn := Xn/n converges in law
to a constant µ ≈ 2.213, with gaussian fluctuations of magnitude 1/

√
n. Figure 8

shows in ordinate the ratio #(edges)/#(vertices) for a collection of 80 random
connected planar graphs, obtained by calling repeatedly the triply pointed Boltz-
mann sampler ΓC•••(x) for a parameter x close to the singularity, and keeping the
generated graphs of size at least 104. The observed ratios are concentrated around
the horizontal line y = µ, showing good agreement with the convergence results of
Giménez and Noy.

Degrees of vertices. Another parameter of interest is the distribution of the degrees
of vertices in a random planar graph. For a planar graph γ with n vertices, we

denote by N
(k)
n (γ) the number of vertices of γ that have k neighbours. Accordingly,

pk := nk/n is the proportion of vertices of degree k. It is known from Giménez and
Noy that, for k = 1, 2, pk converges in law to an explicit constant. Figure 9 shows
in abscissa the parameter k and in ordinate the value of pk for a collection of 80
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Figure 8. Ratio edges/vertices observed on a collection
G1, . . . , G80 of 80 random connected planar graphs of size at least
104; each graph Gi yields a point at coordinates (i,Rat(Gi), where
Rat(G) := #edges(G)/#vertices(G).

connected planar graphs that have at least 104 vertices. Hence, each abscissa-line
x = k is occupied by 80 points whose ordinates correspond to the values taken by
pk for each of the graphs. As we can see, for k small—typically k << logn—the
values of pk are concentrated around a constant. This leads us to the following
conjecture.

Conjecture 4.1. For k ≥ 1, let N
(k)
n be the random variable for the number

of vertices of degree k in a random planar graph with n vertices taken uniformly at

random. Then N
(k)
n /n converges to an explicit constant πk. In addition

∑
k πk = 1.

Notice that the conjecture is on planar graphs whereas experimentations are
on connected planar graphs. However, from the works of Giménez and Noy, a
random planar graph consists of a huge connected component, the total size of the
other components having expectation of order O(1). Thus, statistical properties
like that stated in Conjecture 4.1 should be the same for random planar graphs as
for random connected planar graphs.
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Figure 9. The degrees of vertices observed on a collection
G1, . . . , G80 of 80 random connected planar graphs of size
at least 104. Each graph G yields points at coordinates
(1, π1(G)), (2, π2(G)), . . . , (m,πm(G)), where m is the maximal de-
gree of G and, for 1 ≤ k ≤ m, πk(G) is the proportion of vertices
of G that have degree k.

Conclusion. The bijections presented in Chapter 3 yield efficient algorithms to
perform encoding and random generation of planar maps. Encoding is optimal in
the sense that the length of the code matches asymptotically the binary entropy
(defined as n−1 log2(|Cn|)) of the class of maps considered. Random generation has
linear time complexity, so that maps of very large size (in the range of 106) are
readily generated.

More surprisingly, our bijective generator for 3-connected maps —combined
with the framework of Boltzmann samplers— makes it possible to develop a uniform
random generator for planar graphs (different from maps, as no explicit planar em-
bedding is attached) with very low polynomial complexity. Fixed-size uniform sam-
pling has expected quadratic complexity. More importantly perhaps, approximate-
size sampling has expected linear time complexity, making it possible to generate
planar graphs of very large size uniformly at random. In practice, planar graphs of
size in the range of 105 are readily generated, whereas the best previously known
uniform planar graph sampler was limited to sizes in the range of 102.





CHAPTER 5

Straight-line drawing

Introduction. Efficient tools of visualisation are very helpful to study the struc-
ture of complex systems (e.g., metabolism, web graph, social networks, neural cor-
tex). The common feature is that these systems are made of dependencies (e.g. hy-
perlinks), so that they are naturally represented as graphs. This has motivated the
emergence of a branch of computer science, called graph drawing, which addresses
the issue of displaying graphs so as to satisfy various constraints and aesthetic cri-
teria. Graph drawing is an active research topic, which finds many applications
such as circuit layout, floor planning, or diagram display [2]. In general, a graph
drawing algorithm takes as input a combinatorial description of the graph and out-
puts a drawing (in general in the plane). Classical examples are planar drawings
(drawings such that no two edges cross), orthogonal drawings (the edges are either
vertical or horizontal), and upward drawings, where a hierarchy is geometrically
displayed in a down-to-top direction.

We focus in this chapter on planar drawings. Clearly planar drawings are prefer-
able to have a clear visualisation. Moreover, deploying complex systems such as
circuit layouts or road maps often asks for a representation avoiding edge-crossings,
as these represent collisions. This requires a planarization step (e.g. adding vertices
at crossings), or the decomposition of the graph into several planar layers. Once
the planarization is done, the task comes down to drawing planar graphs with no
edge-crossing. A very natural type of planar embedding are straight-line drawings,
i.e., crossing-free drawings with vertices represented by points and edges repre-
sented by segments. Notice that the definition of planar graphs states the existence
of a crossing-free embedding with edges represented as smooth curves. Hence the
question of feasibility of a straight-line drawing is non-trivial. The answer is posi-
tive, the first proof being due to Fary [45], Wagner [115], and Stein[106] (this is
also a consequence of Steinitz’s theorem on the realizability of 3-connected planar
graphs as polytopes). This chapter introduces and analyses several straight-line
drawing algorithms for different families of planar maps, like triangulations and
quadrangulations.

Results obtained in this chapter. The main contribution of this chapter is a new
straight-line drawing algorithm based on transversal structures. Like the algorithm
for 3-connected maps based on Schnyder woods (recalled in Section 1), the principle
is to embed the vertices using simple face-counting operations. We first describe the
algorithm in the general case. In a similar way as for Schnyder woods, the grid size
can be reduced by deleting specific edges, yielding a more compact drawing. Then
the algorithm is adapted to the family of irreducible triangulations and to the family
of quadrangulations. The semi-perimeter is n− 1 at most (i.e., in the worst case) if
the graph has n vertices, equalling the best previously known algorithms: [74, 89]
for irreducible triangulations and [10] for quadrangulations. Then, in Section 3, we

155
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focus on the probabilistic analysis of the grid size, i.e., we study the distribution of
the grid size of a planar map drawn uniformly at random from a given family and
with a fixed size. This approach, which has been initiated by Bonichon et al [18],
is original in the context of graph drawing, which usually focuses on a worst-case
bounds. The analysis we develop is also interesting on its own, as it combines
structural properties studied in Chapter 1, the bijections described in Chapter 3,
and modern tools of Analytic Combinatorics such as the quasi-power theorem.
With all these ingredients, we come up with a precise analysis of the face-counting
drawing algorithms based on Schnyder woods and transversal structures, showing
that the grid is always asymptotically squared and is significantly smaller than in
the worst case. For instance, the grid size of a random irreducible triangulation
with n vertices converges in law to 11n/27× 11n/27, while the worst case grid size
is n/2× n/2.

Motivations. Notice that the classical display devices (screen, squared paper)
are finite regular grids, the size of the grid corresponding to the display resolution.
Due to the limited resolution, it is thus crucial for straight-line drawing algorithms
to produce a small grid size with respect to the numbers of vertices of the map.
Notice that the first straight-line drawing algorithms, like the spring embedding of
Tutte [114], had no guarantee on the grid area; the implementation requires delicate
real-arithmetic computations to calculate the coordinates, with no guarantee on the
minimal distance between two vertices. De Fraysseix et al [39] and Schnyder [102]
have independently introduced the first algorithms embedding planar graphs with
n vertices on a grid of area O(n2). The algorithmic approaches are quite different:
a) purely iterative for De Fraysseix et al, where the vertices are treated in a specific
order and the drawing is globally updated at each step [39, 77, 89]; b) one-shot
type for Schnyder, where the planar map is first endowed with a combinatorial
structure (e.g. Schnyder woods for triangulations), which is used to compute the
coordinates of vertices using some face-counting operations [16, 46, 102].

Our algorithm based on transversal structures is of the one-shot type and is also
based on face-counting operations. The algorithms of this type have the advantage
that the coordinates of vertices are computed independently, so that they are easier
to implement and to perform on a piece of paper. In addition, the grid size can be
expressed in terms of combinatorial parameters of the graph, making it possible to
perform a precise grid-size analysis for a typical random instance.

1. Drawing using Schnyder woods

The combinatorial structure of Schnyder woods gives rise to an elegant straight-
line drawing algorithm, introduced by Schnyder [102] for triangulations and sub-
sequently extended independently by Felsner [46] and Di Battista et al [3] to 3-
connected maps. The idea is to use the acyclicity property of Schnyder woods to
embed the vertices in a barycentric way, using face-counting operations.

Then, as explained in Section 1.2, the grid size can be further reduced using
specific edge-deletion operations that decrease the number of inner faces. This
improved algorithm has been developed by Bonichon et al [16], extending on edge-
deletion principles appearing in an algorithm of Zhang and He that performs com-
pact straight-line drawing of triangulations [118]. The grid size obtained in this way
is (n−1−max(1,∆)×(n−1−max(1,∆)), where ∆ ≥ 0 is an explicit combinatorial
parameter of the graph. In addition, the algorithm has the nice feature that the
faces are (weakly) convex. An algorithm by Chrobak and Kant [32] (not described
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Figure 1. The three areas associated with a vertex (Fig.a), the
configuration of embedded edges incident to a vertex (Fig.b) and
to a face (Fig.c).

here) also has these features, i.e., convexity and worst-case grid (n− 2)× (n − 2),
but the difference between n− 2 and the actual grid width is not specified in terms
of an explicit combinatorial parameter.

1.1. Generic algorithm. Consider a suspended internally 3-connected map
M = (V,E) endowed with a Schnyder wood. Recall that, for i ∈ {1, 2, 3}, the
graph Ti induced by the edges carrying label i is a spanning tree rooted at the
outer vertex ai, see Figure 12 page 37. Moreover, for each inner vertex v of M , the
paths P1(v), P2(v), P3(v) going from v to the root in each tree T1, T2, T3 are disjoint
after leaving v. Thus, the three paths delimit three areasR1(v), R2(v), R3(v), where
Ri(v) is delimited by Pi−1(v) and Pi+1(v), see Figure 1(a).

Lemma 5.1 ([3, 46]). Let e = {v, v′} be an edge of M . Then the following
inclusion relations are satisfied.

• If e is simply oriented from v to v′ with label i, then

Ri+1(v
′) ( Ri+1(v), Ri−1(v

′) ( Ri−1(v), Ri(v) ( Ri(v
′).

• If e is bi-oriented with label i+ 1 at v and label i− 1 at v′, then

Ri(v) = Ri(v
′), Ri+1(v) ( Ri+1(v

′), Ri−1(v
′) ( Ri−1(v

′).

Let f1(v), f2(v), f3(v) be the numbers of inner faces in R1(v), R2(v), R3(v),
respectively. Observe that f1(v) + f2(v) + f3(v) is equal to f , the number of inner
faces of M . We associate to v the barycentric triple

x1(v) :=
f1(v)

f
, x2(v) :=

f2(v)

f
, x3(v) :=

f3(v)

f
.

The coordinates xi(v) satisfy x1(v) + x2(v) + x3(v) = 1, so that they give rise in a
natural way to the following barycentric embedding of the map M ,

(1) place the outer vertices a1, a2, a3 so as to form a clockwise triangle,
(2) place each inner vertex v of M at the barycentre x1(v) · a1 + x2(v) · a2 +

x3(v) · a3,
(3) embed all edges of M as segments.

The obtained embedding is easily shown to be planar, based on Lemma 5.1. Indeed,
the inclusion relations stated in the lemma ensure that, around each vertex v,
bi-oriented edges are on a line {xi = xi(v)} and simply oriented edges are in
one particular sextant delimited by the three lines parallel to (a1, a2), (a2, a3),
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Figure 2. Embedding a suspended internally 3-connected map
using Schnyder woods and face-counting operations.

and (a3, a1), respectively (see Figure 1(b)). Precisely, 1) if an edge e = {v, v′}
is simply oriented with label i from v to v′, then {xi(v

′) > xi(v), xi−1(v
′) <

xi−1(v), xi+1(v
′) < xi+1(v)}, so that e is in the open sextant delimited by xi−1 =

xi−1(v) and xi+1 = xi+1(v); 2) if an edge e = {v, v′} is bi-oriented with label i
at v and label j at v′, then e is on the half-line {xk = xk(v), xi ≥ xi(v)}, where
{k} = {1, 2, 3}\{i, j}.

In particular, a judicious placement of a1, a2, a3 yields a straight-line drawing
of M on a regular square grid of width f , with f the number of inner faces of M :

SchnyderDraw(M):
(1) Take a regular grid f × f .
(2) Place the outer vertices a1 at (0, f), a2 at (f, 0), and a3 at (0, 0).
(3) Place each inner vertex of M at the point (f2(v), f1(v)).

Proposition 5.1. [3, 46, 102] Let M be a suspended map endowed with a
Schnyder wood. Let f be the number of inner faces of M . Then the procedure
SchnyderDraw(M) outputs a straight-line of M on the square grid f × f , with
the property that all faces are weakly convex.

1.2. Improvement based on edge-deletions. Recall that an important is-
sue in graph drawing is to keep the size of the grid as small as possible. By
construction, the algorithms based on Schnyder woods produce embeddings on a
square grid of width equal to the number of inner faces of the map. A nice idea,
introduced by Bonichon et al [16], is to delete edges of the map while maintaining
a Schnyder wood. In this way, the number of inner faces (hence the width of the
grid) is decreased. Then, the reduced map is embedded by calling the algorithm
SchnyderDraw. The difficulty is to specify edge-deletion operations so that the
embedding remains planar after re-inserting the deleted edges.

The edge-deletions are formalised as merges. Define a clockwise merge as
the operation represented on Figure 3(a), i.e., find two simply oriented clockwise-
consecutive edges e1 and e2 arond a vertex v, with e1 outgoing and e2 ingoing; then
delete e1 and carry the orientation and label of e1 on the second half-edge of e2. A
clockwise-merge gives rise to a 3-connected planar map with one inner face less. In
addition, as shown in [16], the induced orientation and labelling of the half-edges
is a Schnyder wood, which is more easily verified by working on the derived map
and checking that a merge preserves an α3-orientation, see Figure 3(b).

CompactSchnyderDraw(M):
(1) Compute the minimal Schnyder wood of M using the algorithm of Sec-

tion 4.
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Figure 3. A clockwise merge (top), and the effect of a clockwise
merge on the derived map (down).

(2) Starting from the graph M , perform a maximal sequence of clockwise-

merges, yielding a “reduced” graph M̂ endowed with the Schnyder wood
induced by the merges.

(3) Call SchnyderDraw(M̂).

(4) Reinsert the edges of M\M̂ as segments.

Counter-clockwise faces. As explained in the remark page 39 (see also Fig-
ure 1(c)), the contour of an inner face f of M contains three particular edges e1(f),
e2(f) and e3(f) such that the boundary path between ei(f) and ei+1(f) has only
bi-oriented edges with labels i and (i + 1). A face f is called counter-clockwise if
there is a ccw half-edge in each label on the boundary. If the Schnyder wood is
minimal, it is easily shown that a face f is counterclockwise iff the edges e1(f),
e2(f) and e3(f) are either simply oriented ccw or bi-oriented.

Theorem 5.1 (Bonichon et al [16]). For each suspended internally 3-connected
map M , CompactSchnyderDraw(M) outputs a convex straight-line drawing of
M on a grid (n− 1−∆)× (n− 1−∆), where ∆ is the number of counter-clockwise
faces of M .

Proof. The embedding Ê given by SchnyderDraw(M̂) is planar and convex,
according to Proposition 5.1. Hence the edges re-inserted at the end are chords
of weakly convex faces. In addition, the set of re-inserted chords in each face are
combinatorially organised in a non-crossing way (becauseM is a planar map). Thus
the only point is to show that the extremities of a re-inserted edge are not connected

by a straight path along an inner face f of M̂ . This is proved in [16, Theo 5], based
mainly on the generic configuration of an embedded face (Figure 1(c)) and on a
study of the configurations of re-inserted edges.

The formula for the grid size relies on the following property, which easily
follows from the proof of [16, Theo 6]: if a suspended graph is endowed with its
minimal Schnyder wood, then the length of any maximal sequence of clockwise
merges on M is equal to f −n+ ∆+1, where ∆ is the number of counterclockwise
faces of M . Hence, the width of the square grid of the embedding output by
CompactSchnyderDraw(M) is equal to n− 1−∆. �

Let us mention that the algorithm stated above outputs a grid size (n − 1) ×
(n − 1) in the worst case. The authors of [16] explain how to slightly twist the
drawing when ∆ = 0 so as to obtain a (n − 2) × (n − 2) in the worst case. The
worst-case grid size (n− 2)× (n− 2) is the best currently known, and has already
been attained by other algorithms, first by Schnyder using vertex counting (instead
of face counting) arguments [102], and by Chrobak and Kant [32], improving on
the principles of the shift-based procedure by De Fraysseix et al [39]. It is in fact
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Figure 4. Example of execution of TransversalDraw(M).

conjectured that any planar map with n vertices and no loop nor multiple edge has
a straight-line drawing on a grid ⌊2n/3− 1⌋ × ⌊2n/3− 1⌋.

2. Drawing using transversal structures

In a similar way as Schnyder woods, transversal structures give rise to a simple
straight-line drawing algorithm based on face-counting operations, which is our
main contribution in this chapter. The idea is to use the red edges to associate an
abscissa and the blue edges to associate an ordinate to each vertex. The algorithm
applies to embed irreducible triangulations (Section 2). More surprisingly, it also
applies to embed quadrangulations (Section 2.4), even if quadrangulations do not
admit transversal structures.

2.1. Generic algorithm. Let us first describe the generic straight-line draw-
ing algorithm TransversalDraw. Consider a planar map M with quadrangular
outer face and endowed with a transversal structure. The red map (blue map) of
M is the map Mr (Mb) obtained by deleting all blue edges (red edges, respectively)
of M , see Figure 15(c). Given an inner vertex v of M , the rightmost ingoing red
path of v is the path PS(v) = (v0 = v, v1, . . . , vk = S) from v to S where, for each
i ∈ [0..k − 1], (vi+1, vi) is the rightmost ingoing red edge of vi, i.e., the unique
ingoing edge of vi whose ccw consecutive edge around vi is outgoing. The leftmost
outgoing red path of v is the path PN (v) = (v0 = v, v1, . . . , vl = N) where, for
i ∈ [0..l − 1], (vi, vi+1) is the leftmost outgoing red edge of vi. The separating red
path Pr(v) of v is the concatenation of PN (v) and PS(v). Hence, Pr(v) is a path
from S to N . We define similarly the separating blue path Pb(v) of v, which goes
from W to E.

TransversalDraw(M):
(1) Take a regular grid of size fr × fb, where fr (fb) is the number of inner

faces of the red map Mr (of the blue map Mb, respectively).
(2) Place the outer vertices S, W , N , E at the grid corners (0, 0), (0, fb),

(fr, fb) and (fr, 0), respectively.
(3) For each inner vertex v of M , let x be the number of inner faces of Mr on

the left of Pr(v) and let y be the number of inner faces of Mb on the right
of Pb(v). Place v at the grid point of coordinates (x, y).

(4) Link each pair of adjacent vertices by a segment.

See Figure 4 for an example of execution of TransversalDraw(M).

Theorem 5.2 (face-counting algorithm based on transversal structures). Given
a planar map M with quadrangular outer face and endowed with a transversal struc-
ture, TransversalDraw(M) outputs a straight-line drawing of M in linear time.



2. DRAWING USING TRANSVERSAL STRUCTURES 161

W N

E

W N

E

P

P

Figure 5. The direction properties of the edges ensure that the
drawing is planar, step after step.

Red edges are strictly directed from bottom to top and weakly directed from left to
right; blue edges are strictly directed from left to right and weakly directed from top
to bottom. The semi-perimeter of the grid is equal to n − 1 − ∆, where n is the
number of vertices and ∆ is the number of quadrangular faces of M . All faces of
the drawing are strictly convex.

Proof. 1) Proof of the direction property of edges. Let e be a red edge of M and let
v1 be its origin and v2 be its end-vertex. To prove that e is oriented from bottom
to top in the embedding computed by TransversalDraw(M), we have to show
that the ordinate of v2 is greater than the ordinate of v1. This follows from the
fact that Pb(v1) is on the right of Pb(v2). Indeed, Pb(v1) and Pb(v2) can not cross
(see Fact 5.3 for a justification), and Condition C1’ ensures that v1 is on the right
of v2 in the orientation induced by the blue edges of M . Then, to prove that e
is weakly oriented from left to right, we have to prove that the abscissa of v1 is
not greater than the abscissa of v2, which comes down to proving that Pr(v1) is
not on the right of Pr(v2). This last fact follows from two easy observations: the
leftmost outgoing red path of v1 is (weakly) on the left of the leftmost outgoing red
path of v2; and the rightmost ingoing red path of v2 is (weakly) on the right of the
rightmost ingoing red path of v1. Similary the blue edges are oriented from left to
right and weakly oriented from top to bottom.

2) Proof of planarity of the embedding. The proof that the embedding is planar
relies on the direction properties of the red and blue edges and on the fact that
they are combinatorially transversal. To carry out the proof, we use a sweeping
process akin to the iterative algorithm presented in Section 2.4. The idea consists
in maintaining an oriented blue path P from W to E called the sweeping path,
such that the following invariants are maintained: the embedding of the edges of
T that are not on the right of P is a straight-line drawing delimited to the top
by the embedding of (W,N), to the right by the embedding of (N,E), and to the
bottom-left by the embedding of P . The sweeping path is initially (W,N,E) and
then “moves” toward S. At each step, one chooses an inner face f of the blue-map
of T such that its left lateral path is included in P . Then, P is updated by replacing
the left lateral path of f by the right lateral path of f . Thus P remains an oriented
path from W to E and is moved toward the bottom left corner of the embedding,
i.e., the vertex S. The fact that the invariants are maintained is easily checked from
the geometric direction properties of the red and blue edges and from the fact that
all red edges inside f connect transversally the two lateral blue paths, see Figure 5.
At the end, the sweeping path is equal to (W,S,E), so that there are no edges
anymore on the right of P . Thus, the fact that the invariants are true at the end
implies that the embedding of T is a straight-line drawing.
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Figure 6. The configuration of an inner vertex in a transversal
structure (Fig. a), the associated configuration in the embedding
given by TransversalDraw (Fig.b), and the configuration of an
embedded quadrangular face (Fig.c).

3) Proof of the formula for the semi-perimeter. We show now that the semi-
perimeter of the grid of TransversalDraw(M) is equal to n− 1−∆ if M has n
vertices and ∆ quadrangular faces. We write respectively fr and fb for the number
of inner faces of the red map Mr and of the blue map Mb of M . By construction
of TransversalDraw, fr is the width and fb is the height of the grid. Hence we
have to prove that fr + fb = n − 1 − ∆. We write respectively er and eb for the
number of edges of Mr and Mb. Euler’s relation ensures that the total number e
of edges of M is 3n − 7 −∆. Hence, eb + er = e + 4 = 3n − 3 −∆. In addition,
Euler’s relation, applied respectively to Mr and Mb, ensures that n + fr = er + 1
and n+ fb = eb + 1. Hence, fr + fb = er + eb − 2n+ 2 = n− 1−∆.

4) Proof of the linear time complexity. Finally, the algorithm has linear-time com-
plexity because performing the face-counting operations takes linear time. The
implementation is the following. For each inner vertex v of M , consider the right-
most outgoing red path P1, the leftmost outgoing red path P2, the leftmost ingoing
red path P3, and the rightmost ingoing red path P4 starting at v (in each case,
the path starts at v and leaves each vertex with the same type of edge, e.g., the
rightmost outgoing path leaves each vertex using the rightmost outgoing red edge).
These 4 paths partition the set of inner faces of the red-map Tr into 4 areas U(v),
L(v), D(v) and R(v), respectively delimited by (P1, P2), (P2, P3), (P3, P4), and
(P4, P1). Let U(v), L(v), D(v), and R(v) be the number of inner faces of Tr in
U(v), L(v), D(v) and R(v). The quantity U(v) is easily computed in one pass,
by doing a traversal of the vertices of M from S to N . Similarly, D(v) can be
computed for all inner vertices of M in one pass. Then, L(v) is also computed in
one pass (using D(v) and U(v)) by doing a traversal from W to E. Finally, the
abscissas of all vertices can be computed using Abs(v) = D(v) + L(v).

5) Proof of strict convexity of the faces. According to Proposition 1.12, all faces
are either triangular or quadrangular. Clearly triangular faces are always strictly
convex in any straight-line drawing. Consider now a quadrangular face f . Such a
face has always the configuration of Figure 18(a). The strict convexity of f is an
easy consequence of the direction property of edges, which are in specific quadrants
depending on their color and orientation, see Figure 6. �

2.2. Improvement based on edge-deletions. As the drawing algorithm
based on Schnyder woods, the procedure TransversalDraw relies on face-counting
operations. The idea of deleting edges to reduce the size of the grid is also fruitful
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here. The principle is similar to the one used for Schnyder woods: 1) delete edges
while maintaining a transversal structure, 2) embed the reduced map, 3) re-insert
the deleted edges. However, the description is simpler, as the edge-deletions are
done without updating the orientation and coloration of neighbouring edges.

Edge-deletion. Given M a planar map endowed with a transversal structure,
an edge e of M is called deletable if the induced structure on M\{e} is still a
transversal structure. Clearly, given the condition C1 for transversal structure, a
red edge e = (v, v′) is deletable iff e is neither the unique outgoing red edge at v
nor the unique ingoing red edge at v′, and the same property holds for blue edges.
Similarly, we define a deletable set of edges as a set E of edges such that the induced
structure on M\E is a transversal structure. (Notice that a set of deletable edges
might not be a deletable set of edges.)

Proposition 5.2 (drawing after edge-deletions). Let M be a planar map with
quadrangular outer face and endowed with a transversal structure. Given any
deletable set E of M , the following procedure,

(1) call TransversalDraw(M\E),
(2) insert the edges of E in the obtained embedding,

outputs a strictly convex straight-line drawing of M on a grid of semi-perimeter
n− 1− |E| −∆, where ∆ is the number of quadrangular faces of M .

Proof. According to Theorem 5.2, TransversalDraw(M\E) is a straight-line
drawing of M\E , and all faces of M\E are strictly convex. Hence, the reinsertion
of edges clearly maintains planarity and the strict convexity of the faces. The grid

size is f̂r × f̂b, where f̂r (f̂b) is the number of inner faces of the red map (blue
map, respectively) of M\E . Let fr (fb) be the number of inner faces of the red

map (blue map, respectively) of M . Clearly, f̂r + f̂b = fr + fb − |E|. According to
Theorem 5.2, fr + fb = n− 1−∆, so that the semi-perimeter of the embedding is

equal to f̂r + f̂b = n− 1−∆− |E|. �

Thus the smallest grid to be expected with this procedure is obtained by using
a deletable set with maximal cardinality, which is described next.

Computing deletable sets of maximal cardinality. Clearly, a red (blue) edge
is deletable iff the induced orientation of the red (blue) edges is still bipolar. More-
over, an important property used here is that the two bipolar orientations have no
transitive edge, as mentioned after Lemma 2.5. Hence, we have to characterise the
edges whose deletion does not break bipolarity in a bipolar orientation with no tran-
sitive edge. Define an N -pattern of X as a path of length 3 (v0, e0, v1, e1, v2, e2, v3)
such that e0 and e1 are ingoing at v1, e1 and e2 are outgoing at v2, e1 follows e0
in ccw order around v1, and e1 follows e2 in ccw order around v2, see Figure 7(a).
Similarly, define an S-pattern of X as a path of length 3 (v0, e0, v1, e1, v2, e2, v3)
such that e0 and e1 are outgoing at v1, e1 and e2 are ingoing at v2, e1 follows e0 in
cw order around v1, and e1 follows e2 in cw order around v2, see Figure 7(b). The
edge e1 is called the central edge of the pattern. The conditions of plane bipolar
orientation (see Figure 6) and the fact that X has no transitive edge easily imply
that an edge is deletable iff it is the central edge of an N -pattern or the central
edge of an S-pattern . We define a zigzag-path as a path P = (v0, e0, . . . , ek, vk+1)
of length at least 3 such that any three consecutive edges of P form alternatively
an N -pattern or an S-pattern, see Figure 7(c). The two edges e0 and ek are called
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Figure 7. An N -pattern (Fig.a), an S-pattern (Fig.b), and a
zigzag path (Fig.c).

the extremal edges of P and the other edges of P are called internal edges of P . A
zigzag-path is called maximal if it is not strictly contained in another zigzag-path.

Lemma 5.2. Let X be a plane bipolar orientation with no transitive edge. Then
each deletable edge is an internal edge in a unique maximal zigzag-path.

Proof. As already mentioned, an edge is deletable iff it is the central edge of an
N -pattern or the central edge of an S-pattern. Clearly, there is a unique way to
extend such a pattern to a maximal zigzag-path. The result follows. �

Notice that an internal edge of a zigzag path can be deleted iff its two neigh-
bouring edges in the zigzag-path are not deleted. Based on this, it is easy to describe
a procedure that computes a deletable set E of maximal cardinality:

ComputeMaximalDeletableSet(X)
(1) Compute the maximal zigzag-paths of X .
(2) For each maximal zigzag-path P = (v0, e0, . . . , ek, vk+1), add to E the

edges ei of P with odd index.

To compute a deletable set of a transversal structure with maximal cardinality, it
thus suffices to run this procedure on each of the two transversal bipolar orienta-
tions. We can now describe an algorithm that exploits edge-deletions optimally.

CompactTransversalDraw(M)
#M is endowed with a transversal structure
#Xr (Xb) is the red (blue, respectively) bipolar orientation

(1) Call Er ← ComputeMaximalDeletableSet(Xr).
Eb ← ComputeMaximalDeletableSet(Xb)

(2) Call TransversalDraw(M\(Er ∪ Eb)).
(3) Insert the edges of Er ∪ Eb in the obtained embedding.

The above discussion yields directly the following result on CompactTransver-
salDraw(M).

Theorem 5.3 (optimal drawing after edge-deletions). Given a planar map M
with quadrangular outer face and endowed with a transversal structure, the algo-
rithm CompactTransversalDraw(M) outputs a straight-line drawing of M in

linear time. The semi-perimeter of the grid is equal to n − 1 − ∆̂, where n is the

number of vertices and ∆̂ is the sum of the number of quadrangular faces in M
and of the maximal number of edges that can be deleted from M while keeping a
transversal structure. All faces of the drawing are strictly convex.

Reduction of the grid based on coordinate-deletions. A simpler technique
to reduce the size of the grid is to work directly on the embedding. The reduction



2. DRAWING USING TRANSVERSAL STRUCTURES 165

is done by deleting unoccupied coordinates, see Figure 9 for an example. However,
the following lemma ensures that the technique of edge-deletion performs at least
as good as the technique of coordinate-deletion. In particular, it ensures that the
algorithm CompactTransversalDraw outputs a straight-line drawing where all
coordinate-lines are occupied.

Lemma 5.3. Let M be a planar map endowed with a transversal structure X.
Then the unoccupied abscissas (ordinates) of TransversalDraw(M) are in one-
to-one correspondence with the central edges of red (blue, respectively) S-patterns
of X. Moreover, deleting a set of unoccupied coordinates is equivalent to calling
the algorithm of Theorem 5.3 with the deletable set E containing the corresponding
central edges of N -patterns.

The proof of this lemma is rather technical and is delayed to the appendix
(Section 4).

2.3. Drawing irreducible triangulations. The first family of maps for
which the straight-line drawing applies is the family of irreducible triangulations,
as these can be endowed with transversal structures. To carry out a probabilis-
tic analysis of the grid size (see Section 3.2), we consider the minimal transversal
structure.

Theorem 5.4 (drawing irreducible triangulations). For any irreducible trian-
gulation T , the procedure

(1) Compute the minimal transversal structure of T ,
(2) E ← TransversalDraw(T )

Ec ← CompactTransversalDraw(T )

has linear time complexity and outputs two straight-line drawings of T (E and Ec).
In both drawings, the red edges are directed from bottom to top and weakly directed
from left to right; and the blue edges are directed from left to right and weakly
directed from top to bottom. If T has n vertices, then the semi-perimeter of E is
equal to n− 1 and the semi-perimeter of Ec is n − 1 −∆, where ∆ is the number
of unused coordinates of E.

Proof. Given a transversal structure on T , the presence of an N -pattern clearly
yields a right alternating 4-cycle. As we consider the minimal transversal structure,
there is no N -pattern, so that the maximal zigzag paths are of length 3 and are S-
patterns. Hence the algorithm CompactTransversalDraw deletes the internal
edges of each N -pattern, and then calls the face-counting algorithm Transver-
salDraw. According to Lemma 5.3, this is equivalent to deleting the unused co-
ordinates, see Figure 9. Clearly, deleting unoccupied coordinates clearly preserves
the geometric direction property of red and blue edges satisfied by Transversal-
Draw(M). �

The choice of the minimal transversal structure makes it possible to perform
a probabilistic analysis of the grid size of TransversalDraw and Compact-
TransversalDraw. As we will prove in Section 3.2, both algorithms output
asymptotically with high probability square grids that are respectively n/2 × n/2
for TransversalDraw and 11n/27× 11n/27 for CompactTransversalDraw
(up to relative fluctuations of order 1/

√
n). An example is given in Figure 8, where

the irreducible triangulation is uniformly taken in T ′
200 using the random sampler

of Section 3.2 . The gain both in length and in width by a factor ≈ 27/22 is already
visible.
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Figure 8. A random triangulation with 200 vertices endowed with
its minimal transversal structure and embedded with Transver-
salDraw and CompactTransversalDraw.

deletion
coordinate

deletion
edge

Figure 9. Given an irreducible triangulation endowed with its
minimal transversal structure, the result of CompactTransver-
salDraw is the same as a call to TransversalDraw followed
by a deletion of the unused coordinates.

2.4. Drawing quadrangulations. Surprisingly, the straight-line drawing al-
gorithm based on transversal structures can be applied to draw quadrangulations,
even if quadrangulations do not admit a transversal structure. The key obervation



2. DRAWING USING TRANSVERSAL STRUCTURES 167

N

S

W

E
N

N

N

S

SS

S

N

N

N E

E

E

E

E
E

E

S
S

W

W

W

W

W

W

W

W

E

a) b) c)

f)

d)

e)

W N

S E
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Figure 10. A quadrangulation Q (Fig.a), endowed with an angu-
lar partition of the inner edges (Fig.b), the associated uncomplete
transversal structure (Fig.c), and the straight-line drawing of Q
(Fig.d).

is that it is possible to augment a quadrangulation by adding edges, so as to obtain
a map endowed with a transversal structure. The edge-addition process leads us
to refine the correspondence (described in Section 4.2) between 2-orientations of a
quadrangulation Q and bipolar orientations of the primal map M . This time, we
show that a bipolar orientation of M gives rise to a specific quadri-partition of the
inner edges of Q. Such a quadri-partition is also investigated in [76] using another
terminology (with labels). We use the quadri-partition to triangulate partially Q
into a map M endowed with a transversal structure, which is then embedded using
TransversalDraw(M).

Quadri-partition of inner edges of a quadrangulation. Let Q be a quadran-
gulation, the four outer vertices in clockwise order denoted by N , E, S, and W .
We endow Q with its unique bicoloration of vertices such that S and N are black,
and consider the primal map M of Q, see Figure 10(b).

Given a bipolar orientation X of M with source S and sink N , an angle (e, e′)
of two edges of M around a black vertex v —with e′ following e in cw order around
v— is called an angle of type N , S, W , E if (e, e′) are (ingoing, ingoing), (outgoing,
outgoing), (ingoing, outgoing), (outgoing, ingoing), respectively. Accordingly, the
inner edges of Q are partitioned into N -edges, S-edges, W -edges and E-edges,
depending on the type of their associated angle. This partition is called the angular
edge-partition ofQ associated withX , see Figure 10(b). Recall the property of plane
bipolar orientations illustrated in Figure 6: the edges incident to an inner vertex
are partitioned into a non-empty interval of ingoing edges and a non-empty interval
of outgoing edges; and, dually, each face f of M has two particular vertices Sf and
Nf such that the contour of f consists of two non-empty oriented paths both going
from Sf to Nf , called left lateral path and right lateral path of f , respectively.
Hence, each inner black vertex v of Q is incident to one W -edge eW and one E-
edge eE , which are separated by a possibly empty interval of N -edges in the cw
sector between eE and eW and a possibly empty interval of S-edges in the cw sector
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between eW and eE . Dually, each white vertex of Q, corresponding to a face f of
M , is incident to one N -edge eN (connected to Nf) and one S-edge eS (connected
to Sf ), which are separated by a possibly empty interval of W -edges in the cw
sector between eN and eS and a possibly empty interval of E-edges in the cw sector
between eS and eN . Observe also that all inner edges of Q incident to N , E, S,
and W are N -edges, E-edges, S-edges, and W -edges respectively, see Figure 10(b).

The algorithm. Let Q be a quadrangulation endowed with an angular partition
of the inner edges, associated with a bipolar orientation X of the primal map M .
The uncomplete transversal structure is the orientation and bicoloration of the inner
edges of Q where the N -edges and S-edges are colored red, the W -edges and E-
edges are colored blue, the S-edges and E-edges are oriented from their black to
their white vertex, and the N -edges and W -edges are oriented from their white
to their black vertex, see Figure 10(c). Clearly, the conditions of a transversal
structure are satisfied, except that some of the four intervals of edges around an
inner vertex may be empty. Precisely, if a black vertex v of M has i ≥ 1 ingoing
edges and j ≥ 1 outgoing edges, then v is incident in cw order to an outgoing blue
edge (the E-edge eE), an interval of (i− 1) ingoing red edges, an ingoing blue edge
(the W -edge eW ), and an interval of (j− 1) outgoing red edges. Dually, if a face of
M has a left lateral path of length i ≥ 1 and a right lateral path of length j ≥ 1,
then the associated white vertex of Q is incident in cw order to an outgoing red
edge (the N -edge eN), an interval of (j − 1) outgoing blue edges, an ingoing red
edge (the S-edge eS), and an interval of (i− 1) ingoing blue edges.

We now describe an algorithm PartTriang(Q), which adds colored oriented
edges to Q so as to obtain a partially triangulated planar map G endowed with a
transversal structure. An edge e of M is said to be undeletable if e is the unique
outgoing edge of its origin or the unique ingoing edge of its end-vertex (or both). An
edge ofM different from the edge (S,N) is said to be transitive if it connects the two
poles Nf and Sf of a face of M . Notice that an edge of M can not be undeletable
and transitive. The planar map graph G = PartTriang(Q) is obtained by adding
to Q the undeletable edges of M , colored red and oriented as in X ; and by adding
the edges dual to the transitive edges, colored blue and oriented from left to right,
i.e., for each face of Q associated with a transitive edge e of M , a blue edge is
added connecting the two white vertices of the face and oriented from the left of e
to the right of e. It is easily checked that the edge bicoloration and orientation of
G is a transversal structure. An example of execution of PartTriang is shown in
Figure 10(c)-(d).

Theorem 5.5 (drawing quadrangulations). Let Q be a quadrangulation en-
dowed with an angular partition of its inner edges. The algorithm that first computes
G=PartTriang(Q), then calls TransversalDraw(G), and finally deletes the
edges added from Q to G, is a straight-line drawing algorithm for quadrangula-
tions with linear time complexity. No edge of G is deletable, so that the result of
TransversalDraw(G) is the same as CompactTransversalDraw(G). In
particular, all coordinate-lines are occupied by at least one vertex. The semi-
perimeter W +H of the grid satisfies

W +H = n− 1−∆,

where n is the number of vertices and ∆ is the number of alternating faces of Q,
i.e., faces whose contour consists of two red edges and two blue edges that alternate.
Alternating faces are strictly convex in the drawing.
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Proof. The result follows from Theorem 5.2 and from the fact that the faces of Q
that are not split into two triangles are the alternating faces. These faces are strictly
convex because they are faces of G and TransversalDraw(G) is strictly convex.
Finally, TransversalDraw(G) is the same as CompactTransversalDraw(G)
because G has no deletable edge. Indeed, the obtained transversal structure of G
satisfies the following stronger property (P): each edge e = (v, v′) of the red (blue)
bipolar orientation of G is either the unique outgoing red (blue) edge at v or is
the unique ingoing red (blue, respectively) edge at v′. The proof of (P) is easy; we
check that (P) is true on the uncomplete transversal structure of Q and remains
true for each edge-addition. �

Definition. Given a quadrangulation Q, the angular edge-partition associated
with the minimal bipolar orientation of the primal map of Q is called the minimal
angular edge-partition of Q.

Choosing the minimal angular edge-partition in the generic embedding algo-
rithm described in Theorem 5.5 yields a canonical embedding that can be computed
in linear time.

DrawQuad(Q):
(1) Compute the minimal angular edge-partition of Q.
(2) Compute G = PartTriang(Q).
(3) Call TransversalDraw(G).
(4) Delete the edges added from Q and G.

As we will see in Section 3.3, the choice of the minimal angular edge-partition
makes it possible to perform a probabilistic analysis of the grid size of the algorithm
DrawQuad(Q). The net result is that a rooted n-vertex quadrangulation drawn
uniformly at random is embedded on a grid whose size is with high probability
13n/27× 13n/27, up to fluctuations of order

√
n.

3. Analysis of the drawing algorithms

Due to their close connection with minimal α-orientations, the bijections pre-
sented in Chapter 3 lead to elegant methods to analyze straight-line drawing algo-
rithms. The method applies when the embedding algorithms make use of a combi-
natorial structure that can be formulated as a minimal α-orientation. This property
is satisfied by the algorithms CompactSchnyderDraw (embedding 3-connected
maps), CompactTransversalDraw (embedding irreducible triangulations), and
DrawQuad (embedding quadrangulations). The scheme of the analysis is that the
grid size is formulated in terms of combinatorial parameters of the map, which turn
out to correspond to specific parameters of the associated tree. The analysis of
the distribution of these parameters in a random tree of size n is then performed
using the generating function methodology. This method has been introduced by
Bonichon et al [18] to analyse the grid size of an algorithm embedding triangula-
tions [118], which improves on Schnyder’s [102] by discarding some edges in the
face-counting process.

3.1. Grid size of 3-connected maps. As we have seen in Section 1.2, the
algorithm CompactSchnyderDraw(M) outputs a straight-line drawing of M on
a grid (n − 1 −∆) × (n − 1 −∆), where n is the number of vertices of M and ∆
is an explicit parameter of M endowed with its minimal Schnyder wood, namely
∆ is the number of counter-clockwise faces of M . Let us mention that, using the
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bijection of Poulalhon and Schaeffer [95], the parameter ∆ is shown in [18] to be
of order n/8 for random triangulations with n vertices. The authors of [16] also
perform tests indicating that ∆ is of order m/8 for random 3-connected planar map
with m edges.

The present section provides a thorough analysis of the parameter ∆ for ran-
dom 3-connected planar maps, recovering in particular the result for random tri-
angulations and validating the tests for random m-edges 3-connected planar maps.
The analysis relies on the bijection of Section 2.1, formulated as a correspondence
between 3-connected planar maps and binary trees.

Theorem 5.6 (Grid size of 3-connected planar maps). Let n ≥ 4 and β ∈
[1/2+1/n, 2−5/n] 1. Let G be taken uniformly at random among 3-connected planar
map with n vertices and ⌊βn⌋ inner faces, and embedded using CompactSchny-
derDraw. Then the width Xn,β of the square grid is asymptotically with high
probability equal to (1 − (4β)−1)n in the following “exponential” sense: for each
fixed ǫ > 0, there exist a constant cǫ > 0 and an integer Nǫ, depending only on ǫ,
such that

P
(
Xn,β /∈ [(1− (4β)−1 − ǫ)n, (1− (4β)−1 + ǫ)n]

)
≤ exp(−cǫn)

for n ≥ Nǫ and β ∈ [1/2+ 1/n, 2− 5/n]. In addition, cǫ is of order ǫ2 and Nǫ is of
order ǫ−2 ln(ǫ−1) when ǫ gets small.

Corollary 5.1. In the same “exponential” sense, the following asymptotic
results hold:

• The width of the square grid for a random suspended internally 3-connected
map with n vertices is asymptotically with high probability c n where c =√

7−1
2 ≈ 0.82.

• The width of the square grid for a random suspended internally 3-connected
map with m edges is asymptotically with high probability 3

4n, where n is
its number of vertices.
• The width of the square grid for a random triangulation with n vertices is

asymptotically with high probability 7n/8 (already stated in [16]).

3.1.1. Opening a suspended internally 3-connected map into a binary tree. A
crucial tool to analyse the compaction parameter ∆ of CompactSchnyderDraw
is to reformulate the bijection of Section 2.1 as an injective mapping from suspended
internally 3-connected maps to binary trees, in a way close to the presentation of
the encoding algorithm for 3-connected maps (Section 2.1).

The opening of a suspended internally 3-connected planar map M consists of
the following four steps, illustrated in Figure 11; 1) endow the derived map M with
its minimal α3-orientation; 2) consider the irreducible dissection D whose edge-set
corresponds to vertex-face incidences of M ; 3) give to each half-edge h of D the
direction of the edge of the derivated map M ′ that follows in cw order around the
origin of h; 4) open the oriented dissection into a binary tree τ by deleting the
ingoing half-edges and the three outer white vertices, and root τ at the half-edge
going out of a1 and having the outer face on its right.

Proposition 5.3. For n ≥ 4 and r ∈ [n/2 + 1, 2n − 5], the opening is an
injective map from the set of suspended 3-connected planar maps with n vertices

1The lower bound 1/2 + 1/n and upper bound 2 − 5/n correspond respectively to cubic
3-connected planar graphs (all vertices have degree 3) and to triangulations.
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a1

a2
a3
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b2 b3

a3 a2
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a) b) c)

d) e) f)

Figure 11. Opening of a suspended 3-connected planar map into
a black-rooted bicolored binary tree.

and r inner faces to the set of black-rooted bicolored binary trees with n black nodes
and r white nodes.

Proof. The proof relies on easy modifications of the arguments used to show the
bijection between binary trees and irreducible dissections in Section 2.1. Let us
indicate the main points. The fact that the dissection is irreducible results from
the fact that M is internally 3-connected. The orientation of half-edges of D is
such that each vertex has outdegree 3 except the 3 outer white vertices, which
have outdegree 0. Moreover, no edge is made of two ingoing half-edges, so that the
edges of D are either bi-directed or simply directed. In addition, the orientation
has no clockwise cycle, i.e., all cycle have at least one simply directed edge with
the exterior on its right. Simple counting arguments and the absence of cycle of
bi-directed edges ensure that the subgraph made of bi-directed edges is a spanning
tree of the dissection. Thus the figure finally obtained is a binary tree. Finally,
injectivity follows from the fact that the dissection (and then the suspended map)
can be recovered from the tree using closure operations, as described in Section 2.1.
�

3.1.2. Analysis of the grid size using the opening mapping. According to The-
orem 5.1, analysing the grid size of the algorithm CompactSchnyderDraw re-
duces to analysing the number of counterclockwise faces in a random suspended
3-connected planar map. This latter parameter turns out to correspond, via the
opening map, to a simple parameter of the associated binary tree.

Definition. An internal node in a binary tree is a node whose three neighbours
are themselves nodes, i.e., an internal node is a node not adjacent to any leaf.

Lemma 5.4. Let M be a suspended internally 3-connected planar map, endowed
with its minimal Schnyder wood, and let τ be the bicolored binary tree obtained by
doing the opening of M . Then the number of counterclockwise faces of G is equal
to the number of internal white nodes of τ .
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Proof. Let us characterise the internal nodes of the tree in terms of the orientation
of half-edges of the dissection D of the hexagon. When the ingoing half-edges of D
are deleted to obtain a binary tree, a vertex v of D does not become connected to a
leaf iff its three outgoing edges are bi-directed The end-vertex of a simply oriented
edge going out of v is called a deletion-neighbour of v. Thus, internal white nodes
of the binary tree correspond to white vertices of D without deletion-neighbours.

Given a white vertex v of the dissection D, let f be the inner face of M
associated with v, and let e1(f), e2(f), e3(f) be the three particular edges of f ,
as illustrated in Figure 1(c) page 157. Observe that the neighbours of v in D are
the vertices of M on the contour of f . Given a vertex v′ on the contour of f , we
write e(v′) for the half-edge of M on the contour of f that starts from v′ with
the interior of f on its left. Notice that e(v′) is also an edge of the derived map
M ′. As each half-edge of D inherits the direction of the cw-consecutive edge of the
derived map M ′, there exists a deletion-neighbour v′ of v in D iff there exists a
vertex v′ of M on the contour of f such that e(v′) is ingoing. As all edges on f and
different from e1(f), e2(f), e3(f) are bi-directed, this happens iff one of the three
edges e1(f), e2(f), e3(f) is simply directed clockwise. Thich concludes the proof,
given the characterisation of counter-clockwise faces when the Schnyder wood is
minimal, see the definition page 159. �

Lemma 5.5. Let Bn,r be the number of black-rooted bicolored binary trees with
n black nodes and r white nodes; let Bn,r,k be the number of black-rooted bicolored
binary trees with n black nodes, r white nodes and k internal white nodes. Then

(34) Bn,r =
1

n

(
2n

r

)(
2r

n− 1

)

(35) Bn,r,k =
(2n− 1)!2n−2k

(2n− r)!(r − n+ k + 1)!(n− 1− 2k)!k!

Proof. Let Bn,r (resp. Wn,r) be the number of black-rooted (resp. white-rooted)
binary trees with n black nodes and r white nodes. Let B(x, y) :=

∑
n,r Bn,rx

nyr

and W (x, y) :=
∑

n,r Wn,rx
nyr be their associated generating functions, where the

formal variables x and y mark respectively the number of black nodes and the
number of white nodes. The decomposition of a rooted bicolored binary tree at the
root yields

B(x, y) = x(1 +W (x, y))2 W (x, y) = y(1 +B(x, y))2.

Given a bivariate generating function f(x, y) =
∑

n,r fn,rx
nyr, write [xnyr]f(x, y)

for the coefficient fn,r. Similary, given a univariate generating function f(x) =∑
n fnx

n, write [xn]f(x) for the coefficient fn. The bivariate version of Lagrange
inversion formula [67] states that, if two bivariate generating functions B(x, y) and
W (x, y) are related by a system of the form

B(x, y) = xφ(W (x, y)) W (x, y) = yψ(B(x, y)),

with W → φ(W ) and B → ψ(B) two univariate series, then

[xnyr]B(x, y) =
1

n
[W r](φ(W )n)[Bn−1](ψ(B)r).

As a consequence, Bn,r = 1
n [W r](1 + W )2n[Bn−1](1 + B)2r = 1

n

(
2n
r

)(
2r

n−1

)
. The

coefficient Bn,r,k can be derived in a similar way. First, observe that a white
node of a black-rooted binary tree is internal iff its two sons are not leaves. Let
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Bn,r,k (resp. Wn,r,k) be the number of black-rooted (resp. white-rooted) binary
trees with n black nodes, r white nodes and k white nodes whose two sons are
not leaves. Let B = B(x, y, u) :=

∑
n,r,k Bn,r,kx

nyruk and W = W (x, y, u) :=∑
n,r,k Wn,r,kx

nyruk be their associated generating functions, where the variables
x, y and u mark respectively the number of black nodes, the number of white nodes
and the number of white nodes whose two sons are not leaves. The decomposition
at the root node yields

B = x(1 +W )2 W = y(1 + 2B + uB2),

where the variable u appears at the root if the root node is white and has two
non-empty subtrees. Observe that [xnyr]B(x, y, u) is the univariate polynomial
Bn,r(u) :=

∑
k Bn,r,ku

k. Thus, bivariate Lagrange inversion formula yields

Bn,r(u) =
1

n
[W r](1 +W )2n[Bn−1](1 + 2B + uB2)r

=
1

n

(
2n

r

) ∑

r1+r2+r3=r
r2+2r3=n−1

r!

r1!r2!r3!
2r2ur3

=
1

n

(
2n

r

)∑

k≥0

r!

(r − n+ 1 + k)!(n− 1− 2k)!k!
2n−1−2kuk.

As a consequence Bn,r,k = [uk]Bn,r(u) = (2n−1)!2n−2k

(2n−r)!(r−n+1+k)!(n−1−2k)!k! . In particu-

lar, Bn,r,k = 0 if k ≥ n/2 or k < n− r − 1. �

Lemma 5.6. Let n ≥ 4 and β ∈ [1/2, 2]. Let τ be a black-rooted bicolored binary
tree with n black nodes and ⌊βn⌋ white nodes taken uniformly at random. Then
the number Xn,β of internal white nodes of τ is asymptotically with high probability
close to n

4β in the following “exponential” sense: for each fixed ǫ > 0, there exist a

constant cǫ > 0 and an integer Nǫ, depending only on ǫ, such that

P
(
Xn,β /∈ [((4β)−1 − ǫ)n, ((4β)−1 + ǫ)n]

)
≤ exp(−cǫn)

for n ≥ Nǫ and β ∈ [1/2, 2]. In addition, cǫ is of order ǫ2 and Nǫ is of order
ǫ−2 ln(ǫ−1) for ǫ small.

Proof. Let E be the set {β ∈ [1/2, 2], λ ∈ [max(0, 1 − β), 1/2]}. Based on Stir-
ling Formula, it is easily proved that the expressions for Bn,r and Bn,r,k given in
Lemma 5.5 satisfy for β ∈ [1/2, 2],

lim
n→∞

1

n
ln
`
Bn,⌊βn⌋

´
= 2 ln(2)−β ln(β)− (2−β) ln(2−β)+2β ln(2β)− (2β−1) ln(2β−1),

and for (β, λ) ∈ E ,

lim
n→∞

1

n
ln
`
Bn,⌊βn⌋,⌊λn⌋

´
= 2 ln(2)− (λ + β − 1) ln(λ + β − 1) − (1− 2λ) ln(1− 2λ)

−λ ln(λ) + (1− 2λ) ln(2)− (2− β) ln(2− β).

Write F (β) for the first limit and f(β, λ) for the second limit. A simple calculation

ensures that ∂2f
∂λ2 (β, λ) is strictly negative on E (with −∞ limits on the boundary).

Hence, for β ∈ [1/2, 2] λ → f(β, λ) has its unique maximum at the solution of
∂F
∂λ (β, λ) = 0, which is found to be λ0 = (4β)−1. Moreover, f(β, (4β)−1) = F (β).
Let ǫ > 0. As (β, λ) → f(β, λ) − F (β) is continuous and strictly negative on the
compact set Eǫ := E\{λ ∈ [(4β)−1 − ǫ, (4β)−1 + ǫ]}, there exists a constant η such
that f(β, λ) ≤ F (β)− η on Eǫ. Precisely, Taylor formula ensures that one can take
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η = Mǫ2, where M = 1
2 |maxE(∂2f

∂λ2 )| (M is computable, M ≈ 6.24). Moreover, the

Stirling bounds (s/e)s ≤ s! ≤ e1/12s
√

2πs(s/e)s (given for instance in [14]) imply
that, in the first limit above, 1

n ln
(
Bn,⌊βn⌋

)
differs from F (β) by a term of order

ln(n)/n; and, in the second limit, 1
n ln

(
Bn,⌊βn⌋,⌊λn⌋

)
differs from f(β, λ) by a term

of order ln(n)/n. Hence, there exists a number Ñǫ —which is easily proved to be
of order η−1 ln(η−1) (i.e., of order ǫ−2 ln(ǫ−1))— such that

1

n
ln
(
Bn,⌊βn⌋,k

)
≤ 1

n
ln
(
Bn,⌊βn⌋

)
− η

2

for n ≥ Ñǫ, β ∈ [1/2, 2] and k/n ∈ Eǫ, so that P(Xn,β = k) ≤ exp(−ηn/2). As
P(Xn,β = k) = 0 if k ≥ n/2, there are at most n/2 possible values for k. Hence,

for n ≥ Ñǫ and β ∈ [1/2, 2],

P
(
Xn,β /∈ [((4β)−1 − ǫ)n, ((4β)−1 + ǫ)n]

)
≤ n

2
exp(−ηn/2).

As n exp(−nη/2)→ 0, there exists a number N̂ǫ —which is easily proved to be of or-
der η−1 ln(η−1) (i.e., of order ǫ−2 ln(ǫ−1))— such that n

2 exp(−ηn/2) ≤ exp(−ηn/4)

for n ≥ N̂ǫ. The lemma is proved; take cǫ := 1
4Mǫ2 and Nǫ := max(Ñǫ, N̂ǫ). �

Proof of Theorem 5.6. For ǫ > 0, n ≥ 4 and β ∈ [1/2 + 1/n, 2− 5/n], we define:

• Gn,β the set of suspended internally 3-connected maps with n vertices and
⌊βn⌋ faces, counting the outer face with weight 3.
• Gn,β,ǫ the set of elements G of Gn,β whose number of counterclockwise

faces is outside of [((4β)−1 − ǫ)n− 1, ((4β)−1 + ǫ)n− 1].
• Bn,β the set of black-rooted bicolored binary trees with n black nodes and
⌊βn⌋ white nodes.
• Bn,β,ǫ the set of elements of Bn,β whose number of internal white nodes

is outside of [((4β)−1 − ǫ)n− 1, ((4β)−1 + ǫ)n− 1].

Proving Theorem 5.6 reduces to finding a constant cǫ > 0 of order ǫ2 and a
number Nǫ of order ǫ−2 ln(ǫ−1) such that |Gn,β,ǫ| ≤ e−cǫn|Gn,β | for each n ≥ Nǫ

and β ∈ [1/2 + 1/n, 2− 5/n].
Injectivity of the opening map (Proposition 5.3) and Lemma 5.4 ensure that

|Gn,β,ǫ| ≤ |Bn,β,ǫ|. Moreover, Lemma 5.6 ensures that there a exist a constant c̃ǫ
of order ǫ2 and an integer Ñǫ of order ǫ−2 ln(ǫ−1) such that |Bn,β,ǫ| ≤ e−c̃ǫn|Bn,β|
for each n ≥ Ñǫ and 1/2 ≤ β ≤ 2. The angular mapping easily implies that Gn,β

is in bijection with the set of irreducible dissections with n black vertices, ⌊βn⌋
white vertices, and no outer black vertex of degree 2. The set of such dissections
with n black vertices and r white vertices is easily shown to be

(
2n
r

)(
2r
n

)
up to

rational factors in n and r. Recall that this is also the asymptotic form form of the
coefficients Bn,r counting black-rooted bicolored binary trees with n black nodes
and r white nodes (Equation (34). Hence, there exists a constant C > 0 such that
ln (|Bn,β|) ≤ ln (|Gn,β |) + C ln(n) for each n ≥ 4 and β ∈ [1/2 + 1/n, 2 − 5/n].

Finally we obtain |Gn,β,ǫ| ≤ e−c̃ǫn|Bn,β| ≤ nCe−c̃ǫn|Gn,β | for n ≥ Ñǫ and β ∈
[1/2+1/n, 2−5/n]. Then it is easily proved that there exists an integer N̂ǫ of order

c̃−1
ǫ ln(c̃−1

ǫ ) (i.e., of order ǫ−2 ln(ǫ−1)) such that nCe−c̃ǫn ≤ e−c̃ǫn/2 for n ≥ N̂ǫ.

This concludes the proof, by taking cǫ := c̃ǫ/2 and Nǫ := max(Ñǫ, N̂ǫ). �

Proof of Corollary 5.1. Given a suspended internally 3-connected map G with n
vertices taken uniformly at random, let β be the random variable giving the ratio
faces-vertices of G. Define β0 = (3 +

√
7)/4. Using asymptotic results on rooted
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3-connected maps [6] and Stirling formula, a similar reasoning as in the proof of
Lemma 5.6 ensures that, for each fixed ǫ > 0, the ratio vertices-faces β is equal
to β0 in the same exponential sense as in the statement of Theorem 5.6. As a
consequence (upon composing the ǫ’s), Theorem 5.6 can be applied as if a random
n-vertex 3-connected map would always have ⌊β0n⌋ faces. Similarly, for ǫ > 0, a
random 3-connected map with m edges has exponentially small probability that the
numbers of vertices or faces are outside of [m(1/2 − ǫ),m(1/2 + ǫ)]. This implies
that Theorem 5.6 can be applied as if the graph would be a random 3-connected
map with ⌊m/2⌋ vertices and with a ratio faces-vertices β = 1. Finally, the result
for triangulations easily follows from Theorem 5.6, as triangulations are exactly
3-connected maps for which β = 2− 5/n. �

3.2. Grid size of irreducible triangulations. In this section, we explain
how the bijection with ternary trees, presented in Chapter 3, gives rise to a pre-
cise probabilistic analysis of the grid size of TransversalDraw and Compact-
TransversalDraw. The whole section is dedicated to the proof of the following
result. In all this section, T ′

n denotes the set of rooted irreducible triangulations
with n inner vertices.

Theorem 5.7 (Grid size of irreducible triangulations). Let T be taken uni-
formly at random in T ′

n, T being endowed with its minimal transversal structure. Let
W ×H and Wc×Hc be respectively the size of the grid of TransversalDraw(T )
and of CompactTransversalDraw(T ). Then W and H are asymptotically
equal to n/2 up to fluctuations of order

√
n; and Wc and Hc are asymptotically

equal to 11n/27 up to fluctuations of order
√
n. The same result holds with an ǫ-

formulation: for any fixed ǫ > 0, the probability that W or H are outside of [n
2 (1−

ǫ), n
2 (1+ ǫ)] and the probability that Wc or Hc are outside of [ 11n

27 (1− ǫ), 11n
27 (1+ ǫ)]

are asymptotically exponentially small.

We first concentrate on the analysis of W and H , i.e., the width and the height
of TransversalDraw(T ). This task is rather easy and allows us to introduce
some tools —generating functions and the so-called quasi power theorem— that
will also be used to analyze the grid size of CompactTransversalDraw(T ).

3.2.1. Analysis of the grid size of TransversalDraw(T ). Given T ∈ T ′
n en-

dowed with its minimal transversal structure, the width of the grid of Transver-
salDraw(T ) is, by definition, the number of inner faces of the red-map Tr. Euler’s
relation applied to Tr ensures that er = n + fr + 1. By definition of the opening
(see Section 2.2.2), er is equal to the number of red edges (including the stems)
of the edge-bicolored ternary tree obtained by doing the opening of T . An easy
consequence of the proof of Corollary 3.7 is that the uniform distribution on T ′

n

is transported into the uniform distribution on rooted edge-bicolored ternary tree
with n nodes (the edge-bicoloration being such that each angle is bicolored). These
observations lead to the following statement:

Fact 5.1. The distribution of the width of TransversalDraw(T ) for T uni-
formly sampled in T ′

n is equal to the distribution of er − n + 1, where er is the
number of red edges of a uniformly sampled rooted edge-bicolored ternary tree with
n nodes.

We denote by R and B the sets of rooted edge-bicolored ternary trees whose
root leaf is respectively incident to a red stem and to a blue stem. For a rooted
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edge-bicolored ternary tree τ , we denote by |τ | the number of nodes of τ and by
ξ(τ) the number of red edges of τ . We define the generating functions R(z, u) =∑

τ∈R z
|τ |uξ(τ) and B(z, u) =

∑
τ∈B z

|τ |uξ(τ) that count the set R and the set B
with respect to the number of nodes and the number of red edges. The generating
function E(z, u) counting rooted edge-bicolored ternary trees with respect to the
number of nodes and the number of red edges is thus equal to R(z, u) + B(z, u).
The classical decomposition of a rooted ternary tree at the root node into three
subtrees is directly translated into the following equation system:

{
R(z, u) = u (1 +B(z, u)) (u+R(z, u)) (1 +B(z, u))
B(z, u) = (u+R(z, u)) (1 +B(z, u)) (u+R(z, u)) .

As this system is polynomial in R, B, z and u, it is easy to derive from it, by
algebraic elimination, a trivariate polynomial P (E, z, u) such that the formal power
series P (E(z, u), z, u) is equal to 0, which means that E(z, u) is an algebraic series.

A useful tool at this point is an adaptation of the so-called quasi power theo-
rem [52, Theo. IX.7, Cor. IX.1], [42] for algebraic series. From this theorem, the
distribution of the number of red edges in a rooted edge-bicolored ternary tree can
be analyzed.

Theorem 5.8 (Algebraic quasi power theorem). Let E(z, u) be the generating
function of a combinatorial class E, where the variable z marks the size |γ| of an
object γ ∈ E and the variable u marks a parameter ξ, i.e. E(z, u) =

∑
γ∈E z

|γ|uξ(γ).

Assume that E(z, u) is an algebraic series, i.e., there exists a trivariate polynomial
P (E, z, u) with rational coefficients such that P (E(z, u), z, u) = 0. Consider the
polynomial system:

(S) :=

{
P (E, z, u) = 0,

∂P

∂E
(E, z, u) = 0

}
.

Assume that (S) has a solution {τ, ρ} at u = 1 such that τ and ρ are positive
real values and there exists no other (complex) solution (E, z) of (S) at u = 1

such that |z| ≤ ρ. Assume further that the derivative-condition {∂2P
∂E2 (τ, ρ, 1) 6=

0, ∂P
∂z (τ, ρ, 1) 6= 0} is satisfied. Assume also that the Jacobian of (S) with respect to

E and z does not vanish at (τ, ρ, 1), i.e.,

det

(
∂P
∂E (τ, ρ, 1) ∂2P

∂E2 (τ, ρ, 1)
∂P
∂z (τ, ρ, 1) ∂2P

∂z∂E (τ, ρ, 1)

)
6= 0.

Then there exists a unique pair of algebraic series (τ(u), ρ(u)) such that
{
P (τ(u), ρ(u), u) = 0,

∂P

∂E
(τ(u), ρ(u), u) = 0, τ(1) = τ, ρ(1) = ρ

}
.

Finally, assume that ρ(u) satisfies the mean condition ρ′(1) 6= 0 and variance con-
dition ρ′′(1)ρ(1) + ρ′(1)ρ(1) − ρ′(1)2 6= 0. Then, for γ taken uniformly at random
among the objects of E of size n, the random variable Xn = ξ(γ) is asymptoti-

cally equal to µn, up to Gaussian fluctuations of order σ
√
n, where µ = − ρ′(1)

ρ(1) and

σ2 = − ρ′′(1)
ρ(1) −

ρ′(1)
ρ(1) +

(
ρ′(1)
ρ(1)

)2

. In other words,

Xn − µn
σ
√
n

→
n→∞

N (0, 1), convergence in law.
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where N (0, 1) is a standard Gaussian law. The result also holds with an ǫ-formulation:
for any ǫ > 0, the probability that Xn is outside of [(1− ǫ)µn, (1 + ǫ)µn] is asymp-
totically exponentially small.

This theorem, despite a rather long statement and several conditions to check,
is easy to apply in practice. In our case, E(z, 1) is clearly equal to 2A(z) with
A(z) = z(1 + A(z))3 the generating function of rooted ternary trees. Hence, at
u = 1, we have P (E, z) = E/2−z(1+E/2)3. Using a computer algebra software, the
solution of (S) at u = 1 is found to be {τ = 1, ρ = 4/27}. The derivative condition
and the Jacobian condition are then easily checked. The algebraic function ρ(u) is
obtained by taking the resultant of the two equations of (S) with respect to E; then
the factor Q(z, u) of the resultant such that Q(ρ, 1) = 0 gives an algebraic equation
for ρ(u), i.e., Q(ρ(u), u) = 0. From the algebraic equation Q(ρ(u), u) = 0, the
derivative and second derivative of ρ(u) at u = 1 are readily calculated. To calculate

ρ′(1), we derivateQ(ρ(u), u) = 0 and find ∂Q
∂z (ρ(u), u)ρ′(u)+∂Q

∂u (ρ(u), u) = 0. Hence

ρ′(1) = −∂Q
∂u (ρ, τ)/∂Q

∂z (ρ, τ). From that, the mean condition and variance condition
are readily checked and we find µ = 3/2. Hence, the number er of red edges in a
random rooted edge-bicolored ternary tree is asymptotically equal to 3n/2, up to
fluctuations of order

√
n, and an ǫ-formulation also holds.

This result, together with Fact 5.1, ensure that the width of Transversal-
Draw(T ), for T uniformly sampled in T ′

n, is asymptotically equal to n/2 up to
fluctuations of order

√
n, and an ǫ-formulation also holds. The result is the same

for the height H of TransversalDraw(T ). Indeed, the distribution of H is the
same as the distribution of W , by stability of T ′

n and of TransversalDraw under
the π/2-clockwise rotation. Thus, we have proved the statement of Proposition 5.7
on the distribution of the grid size of TransversalDraw(T ).

3.2.2. Analysis of the grid size of CompactTransversalDraw(T ). We fo-
cus here on the distribution of the width of CompactTransversalDraw(T ),
for T taken uniformly at random in T ′

n. By definition, the width of Compact-
TransversalDraw(T ) is W − ∆r, where W is the width of Transversal-
Draw(T ) and ∆r is the number of red S-patterns of T . We have already proved
that W is asymptotically equal to n/2 up to fluctuations of order

√
n and have also

given an ǫ-formulation of the result. Hence, to obtain the statement of Proposi-
tion 5.7 about Wc, it is sufficient to prove that ∆r is asymptotically equal to 5n/54
up to fluctuations of order

√
n and to prove also an ǫ-formulation of this statement.

The steps of the proof are the following. First, the red S-patterns of T are shown to
correspond to particular red edges of the ternary tree obtained by doing the opening
of T . Then, using generating functions and the algebraic quasi power theorem, it
is proved that the number of such edges in a random rooted edge-bicolored ternary
tree with n nodes is asymptotically equal to 5n/54, up to fluctuations of order

√
n,

and an ǫ-formulation also holds.

Definition. Given a ternary tree A, an internal edge is an inner edge e = {v, v′}
of A such that the the clockwise-following edge at each extremity of e is an inner
edge (not a stem).

Lemma 5.7 (reduction to a parameter on ternary trees). Let T be an irreducible
triangulation and let A be the ternary tree obtained by doing the opening of T , T
being endowed with its minimal transversal edge-partition and A being endowed with
its edge-bicoloration. Then each central edge of a red (resp. blue) S pattern of T
corresponds, via the opening of T , to an internal red (resp. blue) edge of A.
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Proof. Let e = (v, v′) be the central edge of a red N -pattern of T . By definition,
the ccw-consecutive edge of e at v′ is red. Hence the cw-consecutive edge of e at v
is blue, otherwise there would be a unicolored face in T , contradicting Lemma 1.1.
Similarly, the cw-consecutive edge of e at v′ is blue. Hence, by definition of the
opening mapping, e is an inner edge of the ternary tree A obtained by doing the
opening of T . To prove that e is an internal edge of A, we have to prove that the
cw-consecutive edge of A at each extremity of e is an inner edge of A. Let e1, . . . , ek

be the interval of blue edges of T (in clockwise order) following e in clockwise order
around v (the word interval refeering to the terminology of Condition C1); and let
v1, . . . , vk be the corresponding sequence of neighbours of v. By definition of the
opening mapping, the edge of A following e in clockwise order around v is ek. To
prove that ek is an inner edge of A it remains to show that the edge e′ following
ek in clockwise order around vk is red. If k = 1, e′ is also the edge following e in
counterclockwise order around v′. Hence, the fact that e is internal red ensures that
e′ is red. If k ≥ 2, then e′ = (vk, vk−1). As (v, vk) and (v, vk−1) are blue, Lemma 1.1
ensures that (vk, vk−1) is red. Finally, ek is an inner edge of A. Similarly, the edge
following e in clockwise order around v′ is an inner edge of A.

Conversely, let e = {v, v′} be an internal red edge of A. Recall that the edge-
bicoloration of A is transported into a transversal edge-partition of T (see Sec-
tion 2.2.1), in such a way that the edge of T following e in ccw order around v
(resp. v′) has the same color as e iff the extremity of a stem is merged with v (resp.
v′) over e during the partial closure. We claim that this condition is satisfied by
e at v′ (and similarly at v). Indeed, the sides of inner edges incident to the outer
face at the end of the partial closure are such that the cw-consecutive edge at their
right extremity is a stem. Hence, there must be a step at which the right side of
e, traversed from v to v′, is enclosed into a triangular face due to a local closure.
At that step, the stem going over e can not be incident to v, because the edge of
A following e in cw order around v is not a stem. Hence e = {v, v′} is the second
inner edge following the stem, i.e. the extremity of the stem going over e is merged
with v′. �

Lemma 5.7 yields the following result that, as Fact 5.2, is an easy consequence
of Corollary 3.7.

Fact 5.2. The distribution of the parameter ∆r(T ), for T taken uniformly at
random in T ′

n, is equal to the distribution of the number of internal red edges in a
rooted edge-bicolored ternary tree with n nodes taken uniformly at random.

We denote byXn the random variable denoting the number of internal red edges
in a rooted edge-bicolored ternary tree with n nodes taken uniformly at random.
Fact 5.2 and the discussion in the overview ensure that, to prove the statement of
Proposition 5.7 about Wc, we have to analyze the distribution of Xn and show that
it is concentrated around 5n/54.

Analysis of the random variable Xn. We introduce the generating functions
F (z, u) and G(z, u) counting respectively red-rooted ternary trees and blue-rooted
ternary trees with respect to the number of nodes and the number of internal red
edges. As for the series R(z, u) and B(z, u) involved in the analysis of Transver-
salDraw, an equation system linking the series F (z, u) andG(z, u) can be obtained
by decomposing a rooted ternary tree at its root node into three subtrees.

To keep track of the parameter counting internal red edges, we introduce two

auxiliary generating functions; F̂ (z, u) is the series counting red-rooted ternary
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Figure 12. Decomposition at the root node keeping track of the
number of internal red edges.

trees with respect to the number of nodes and the number of internal red edges,
with the difference that root red stem is also considered as an internal red edge if

its right child-edge is an inner edge; and Ĝ(z, u) is the series counting blue-rooted
ternary trees with respect to the number of nodes and the number of internal red
edges, with the difference that the left child-edge of the root node is also considered
as an internal red edge if it is an inner edge whose right child-edge is an inner
edge. The decomposition at the root node keeping track of the number of internal
red edges is represented on Figure 12. It is directly translated into the following
system:

(36)





F̂ (z, u) = z(1 + F ) + z(1 + F̂ )Ĝ+ zu(1 + F )Ĝ+ zuĜ(1 + F̂ )Ĝ

Ĝ(z, u) = z(1 + F̂ )(1 + F ) + z(1 + F̂ )Ĝ(1 + F̂ )

F (z, u) = z(1 + F )(1 + Ĝ) + zĜ(1 + F̂ )(1 + Ĝ)

G(z, u) = z(1 + F )2 + z(1 + F )Ĝ(1 + F̂ )

From that system, an algebraic equation P (H(z, u), z, u) = 0 can easily be
derived for the generating function H(z, u) = F (z, u) + G(z, u) counting rooted
edge-bicolored ternary trees with respect to the number of nodes and the number
of internal red edges. Then, the algebraic quasi power theorem can be applied on
the algebraic generating function H(z, u). All conditions are easily checked and the
algebraic series ρ(u) which we obtain verifies µ = −ρ′(1)/ρ(1) = 5/54. This yields
the statement of Proposition 5.7 on the distribution of Wc. The result is the same
for Hc, because the distribution of Hc is equal to the distribution ofWc, by stability
of T ′

n and CompactTransversalDraw under the π/2 clockwise rotation. This
concludes the proof of Proposition 5.7.

3.3. Grid size of quadrangulations. Let us only sketch the analysis of the
grid size for the straight-line drawing algorithm DrawQuad (described in Sec-
tion 3.3). The arguments are very close to the ones used to analyse the grid size of
irreducible triangulations. The steps are the following, with Q the embedded rooted
quadrangulation and M the primal map of Q. First, recall that the bipolar orien-
tation used to compute the uncomplete transversal structure of Q is the minimal
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bipolar orientation of M . Then it is easily shown that a face f of Q is not split into
two triangles during the partial triangulation step of DrawQuad iff the contour
of f is a ccw circuit in the minimal 2-orientation of Q. As a consequence, the pa-
rameter ∆ to analyse is the number of ccw faces in a rooted quadrangulation with
n faces drawn uniformly at random and endowed with its minimal 2-orientation.
Next, the parameter ∆ is analysed using the bijection presented in Section 1.3,
which is more conveniently considered here as a 2-to-n correspondence between
rooted quadrangulations and rooted 1-stem plane trees. It is easily shown that the
opening turns only one edge of a ccw face into a stem, yielding a configuration
(stem,edge,edge,edge) in a ccw walk around the tree, and such that the three edges
form a path away from the root. The probabilistic analysis of the number of such
patterns in a random rooted 1-stem plane tree is done again by defining bivariate
generating functions and applying the algebraic quasi-power theorem to the system
satisfied by these generating functions.

Theorem 5.9 (Grid size of quadrangulations). Let Q be a rooted quadrangula-
tion with n vertices taken uniformly at random. Then the algorithm DrawQuad(Q)
outputs asymptotically with high probability a grid 13n/27× 13/27,o up to fluctu-
ations of order

√
n. The same result holds with an ǫ-formulation: for any fixed

ǫ > 0, the probability that the width or height are outside of [13n
27 (1− ǫ), 13n

27 (1 + ǫ)]
is asymptotically exponentially small.

4. Appendix: proof of Lemma 5.3

This section is dedicated to the proof of Lemma 5.3, whose statement is: “given a map
M with quadrangular outer face and endowed with a transversal structure, the number of
unused abscissas of TransversalDraw(M), (i.e., the number of vertical lines of the grid
that bear no vertex of M) is equal to the number of red S-patterns of M”. By definition
of TransversalDraw(M), the line with abscissa 0 is occupied by the vertices S and W

and the line with abscissa fr is occupied by the vertices N and E. Moreover, recall that
the abscissa Abs(v) of an inner vertex v is obtained by associating with v an oriented red
path Pr(v) (called separating red path of v) and then counting the number of inner faces
of Mr on the left of Pr(v). From that it follows that 1 ≤ Abs(v) ≤ fr − 1. Hence, the
lines x = 0 and x = fr are occupied and, for 1 ≤ i ≤ fr − 1, the line with abscissa i is
not used iff there exists no inner vertex of M such that Abs(v) = i. In what follows we
show first that each abscissa-candidate 1 ≤ i ≤ fr − 1 can be associated with a unique
inner face of Mr, for which we write Abs(f) = i. Then we show that the existence of an
inner vertex v of M with Abs(v) = i only depends on the configuration of the edge at the
bottom-right corner of f ; the candidate is unoccupied iff this edge is the central edge of a
red S-pattern.

Let us start with a few definitions. Given e an inner edge of Mr, the separating red
path of e, denoted Pr(e), is defined as the path obtained by concatenating the leftmost
outgoing red path of the end-vertex of e, the edge e, and the rightmost ingoing red path of
the origin of e. Given an inner face f of Mr, we recall that there are two vertices Sf and
Nf of f such that the contour of f consists of a left and a right lateral paths going from
Sf to Nf . The separating red path of f , denoted Pr(f), is defined as the concatenation
of the leftmost outgoing red path of Nf , of the right lateral path P2 of f , and of the
rightmost ingoing red path of Sf . Define Abs(f) as the number of faces of Mr on the
left of Pr(f). Observe that the first edge ef of P2, called bottom right edge of f , satisfies
Pr(f) = Pr(ef ). The following facts easily follow from the definition of separating red
path of a vertex, and prove useful to show that separating paths do not cross each other.



4. APPENDIX: PROOF OF LEMMA ?? 181

Fact 5.3. Let v and v′ be two different inner vertices of M . Let P left
r (v), P left

r (v′),
Pright

r (v) and Pright
r (v′) be respectively the leftmost outgoing red paths and rightmost ingo-

ing red paths of v and v′. Then

• The paths P left
r (v) and P left

r (v′) do not cross each other, they join at a vertex
v′′ and then are equal between v′′ and N .

• The paths Pright
r (v) and Pright

r (v′) do not cross each other, they join at a vertex
v′′ and then are equal between v′′ and S.

• The paths P left
r (v) and Pright

r (v′) do not cross each other. In addition, Pright
r (v′)

can not meet P left
r (v) from the left of P left

r (v).

These facts imply easily that the separating red paths Pr(v) and Pr(v
′) do not cross

each other.

Claim 5.1. Let e and e′ be two different red edges of M . Then the separating red
paths Pr(e) and Pr(e

′) do not cross each other.

Proof. Lemma 2.5 ensures that an edge e′ connecting two vertices of an oriented red path
is on the path. Hence only three cases can arise: either e′ and Pr(e) do not intersect, or
they intersect at a unique extremity of e′, or e′ is on Pr(e). Fact 5.3 allows us to check
that Pr(e) and Pr(e

′) do not cross each other for each of the three cases. �

Recall that the separating red path of a face f is the separating red path of its bottom-
right edge. Thus, Claim 5.1 ensures that the separating red paths Pr(f) and Pr(f

′) of
two different inner faces f and f ′ of Mr do not cross each other. In addition, it is easy
to see that they are different using the fact that the bottom-right edge of a face is not
the leftmost outgoing red edge at its origin. As a consequence, Abs(f) 6= Abs(f ′). There
are fr inner faces in Mr, each inner face f clearly satisfying 1 ≤ Abs(f) ≤ fr. Hence the
pigeonhole principle yields:

Fact 5.4. For each 1 ≤ i ≤ fr, there exists a unique inner face f of M such that
Abs(f) = i.

Thus, the inner faces of Mr are strictly ordered from left to right according to their
associated abscissa.

Claim 5.2. The separating red paths of an inner edge e of the red-map Mr and of an
inner vertex v of M do not cross each other. In addition, given e an inner edge of Mr,
there exists an inner vertex v of M such that Pr(v) = Pr(e) iff either e is the rightmost
ingoing red edge at its end-vertex or e is the leftmost outgoing red edge at its origin.

Proof. The fact that Pr(e) and Pr(v) do not cross each other can easily be checked using
Fact 5.3. The second statement of the lemma follows from a few observations. Denote
by v1 the origin of e and by v2 the end-vertex of e. If v is not on Pr(e) then clearly
Pr(v) is not equal to Pr(e). If v is on Pr(e) between v2 and N , then Pr(v) = Pr(e)
iff all edges of Pr(e) between v1 and v are the rightmost ingoing red edge at their end-
vertex. If v is on Pr(e) between S and v1, then Pr(v) = Pr(e) iff all edges of Pr(e)
between v and v2 are the leftmost outgoing red edge at their origin. It follows from these
observations that Pr(v2) = Pr(e) if e is the rightmost ingoing red edge at its end-vertex,
that Pr(v1) = Pr(e) if e is the leftmost outgoing red edge at its origin, and that no vertex
v satisfies Pr(v) = Pr(e) otherwise. �

Definition. Given a map M with quadrangular outer face and endowed with a transversal
structure, a ccw-internal edge of M is an inner edge e of M such that the counterclockwise-
consecutive edge at each extremity of e has the same color as e. Hence, a ccw-internal
red edge is an inner red edge of M that is neither the leftmost outgoing red edge at its
origin nor the rightmost ingoing red edge at its end-vertex. Clearly, a red (blue) edge is
ccw-internal iff it is the central edge of a red (blue, respectively) S-pattern.
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Claim 5.3. The number of abscissas not used by TransversalDraw(M) is equal to
the number of ccw-internal red edges of M . Similarly, the number of ordinates not used
by TransversalDraw(M) is equal to the number of ccw-internal blue edges of M .

Proof. Let 1 ≤ i ≤ fr be an abscissa candidate and let f be the unique inner face of Mr

such that Abs(f) = i. Recall that the separating red path Pr(f) is equal to the separating
red path of the bottom-right edge ef of f . Claim 5.2 ensures that i is not the abscissa of
any vertex of M iff ef is a ccw-internal red edge of M . Hence, the number of abscissas not
used by TransversalDraw(M) is equal to the number of ccw-internal red edges of M

that are the bottom-right edge of an inner face of Mr. This quantity is also the number
of ccw-internal red edges of M . Indeed, a ccw-internal red edge e is the bottom-right edge
of the inner face of Mr on its left, because e is not the leftmost outgoing red edge at its
origin. �

This concludes the proof of Lemma 5.3; each unoccupied absciss corresponds to the

central edge of a red S-pattern, and each unoccupied ordinate corresponds to the central

edge of a blue S-pattern.

Conclusion. This chapter has introduced new straight-line drawing algorithms for
irreducible triangulations and quadrangulations, based on transversal structures.
Our algorithms are of the face-counting type, like the straight-line drawing algo-
rithm introduced by Schnyder [102] for triangulations and improved by Bonichon
et al [16] for any 3-connected maps. Face-counting algorithms have a very simple
description (they are easily performed by hand on small examples) and are close to
the underlying combinatorics, making it possible to perform a precise probabilistic
analysis of the grid size. Our analysis ensures that the grid size used by the al-
gorithms is asymptotically almost surely a square grid (up to small fluctuations).
The results are recapitulated in the following table, where the distribution of maps
in a family is uniform on the subset with fixed number n of vertices.

Family Algorithm Grid size

3-connected CompactSchnyderDraw
√

7−1
2 n×

√
7−1
2 n

triangulations CompactSchnyderDraw 7
8n× 7

8n

irr. triangulations 4-gon CompactTransversalDraw 11
27n× 11

27n

quadrangulations DrawQuad 13
27n× 13

27n



Conclusion et perspectives

Dans cette thèse nous avons exploité quelques jolies propriétés combinatoires
des cartes planaires, reposant notamment sur la notion d’α-orientations minimales.
Ces propriétés structurelles donnent naissance à des algorithmes très efficaces et
élégants sur les cartes planaires. Dans le cas de la génération aléatoire et du codage,
les algorithmes découlent de bijections avec des familles d’arbres, ces bijections
s’appuyant sur les α-orientations minimales. Dans le cas du dessin, les algorithmes
découlent de structures combinatoires (par exemple, les forêts de Schnyder) qui
peuvent être formulées comme des α-orientations. Les algorithmes de dessin peu-
vent ensuite être analysés à l’aide des bijections avec familles d’arbres, comme nous
l’avons vu au chapitre 5.

On voit là se former un schéma assez général dans lequel les α-orientations
jouent un rôle crucial, à la fois pour énumérer (bijectivement), générer, coder,
et dessiner des cartes planaires. Dans une optique de généralisation, il est donc
intéressant de considérer les problèmes que nous avons pu résoudre sur certaines
α-orientations (e.g. les orientations eulériennes) et regarder dans quel cadre ces
résultats pourraient s’étendre.

Ainsi, au chapitre 1, nous avons mentionné le comptage d’orientations bipolaires
planes sommées sur toutes les cartes ayant un certain nombre de sommets et de
faces. Ce problème nous a été inspiré par la méthode bijective introduite par N.
Bonichon [15] pour compter le nombre de forêts de Schnyder sommés sur toutes
les triangulations ayant un certain nombre de sommets. Dans les deux cas, la
solution repose sur une décomposition arborescente de ces structures. Il serait
intéressant d’étudier si ces méthodes bijectives se formalisent dans un cadre général
de décompositions arborescentes, ce qui permettrait notamment d’espérer compter
les structures transversales sommées sur toutes les triangulations irréductibles d’une
certaine taille.

Au chapitre 2, nous nous sommes concentrés sur le calcul d’α-orientations et
plus particulièrement d’α-orientations minimales. Il y a peu d’espoir qu’un al-
gorithme générique linéaire permette de calculer l’α-orientation minimale étant
donnée une fonction α, ou même de trouver une α-orientation s’il en existe une.
En effet, le problème se rapproche d’un problème de flot ou encore de calcul
d’un couplage parfait, des problèmes qui ont reçu beaucoup d’attention et dont la
meilleure complexité connue reste surlinéaire. Cependant, pour les structures qui
nous intéressent {orientations eulériennes, orientations bipolaires, forêts de Schny-
der, structures transversales}, nous avons décrit des algorithmes linéaires calculant
la structure minimale. Ce qui est frappant est que ces algorithmes se ressemblent
beaucoup. Ils procèdent itérativement par conquête, la zone conquise augmentant
à chaque étape par le choix d’un certain sommet (ou chemin, ou face) sur le front
de conquête puis orientation des arêtes qui lui sont incidentes. Dans ces conditions,
il est frustrant de devoir à chaque fois recommencer les preuves, qui ont beaucoup
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de points communs. Il serait plus satisfaisant de décrire un algorithme générique
trouvant la α-orientation minimale pour une fonction α donnée, et qui se spécialise
en un algorithme linéaire pour chacune des structures étudiées dans cette thèse.
Nous avons actuellement une ébauche d’algorithme, qui repose sur un principe
d’épluchage de cycle analogue à celui utilisé pour calculer l’orientation eulérienne
minimale.

Les bijections présentées au chapitre 3 appellent à une meilleure compréhension
et classification. Il semble par exemple surprenant de ne pas réussir à appliquer la
méthode basée sur les α-orientations minimales aux familles de cartes 3-connexes
et aux triangulations irréductibles, d’autant que ces deux familles s’énumèrent bien
et qu’elles se prêtent à un autre type de bijection. Il semble qu’il existe deux
mondes assez distincts: celui des bijections de type enraciné, pour lesquelles l’arbre
se retrouve par un parcours en profondeur sur une α-orientation minimale, et celui
des bijections de type non enraciné, pour lesquelles l’arbre se retrouve de manière
purement locale à partir d’une orientation dérivée d’une α-orientation minimale.
À ce titre, la bijection avec arbres étiquetés de Marcus et Schaeffer [86] semble
rentrer plutôt dans la deuxième catégorie (une fois reformulée de manière adéquate).
Comme cette bijection se généralise en genre supérieur, il serait intéressant de
réfléchir à une possible extension en genre supérieur des bijections de type non
enraciné présentées en Section 2. Une autre extension possible concerne les cartes
avec bord, par exemple les triangulations du disque. De manière équivalente, on
cherche à énumérer des cartes dont toutes les faces internes ont degré 3 et la face
externe a degré fixe k ≥ 3. Pour les triangulations, une jolie méthode bijective
a été mise en place par Poulalhon et Schaeffer [95]. L’idée consiste à intégrer la
face polygonale dans l’arbre bourgeonnant, ce qui implique que cette face n’est
pas la face externe à la fin de la clôture de l’arbre en une carte (on parle alors de
carte annelée car il y a deux faces marquées: la face polygonale et la face externe).
Cette méthode semble bien s’appliquer aux bijections de type enraciné présentées
en Section 1. Il semble un peu plus difficile d’appliquer la méthode aux bijections
de type non enraciné, pour le moment nous avons des formulations bijectives qui
sont sans doute correctes mais attendent encore une preuve rigoureuse.

Enfin, il reste de nombreuses questions à explorer dans le domaine du dessin de
graphes. Nous avons montré que les algorithmes par comptage de faces fournissent
une grille plus petite dans le cas moyen que dans le cas le pire. Cependant la taille de
la grille reste linéaire par rapport au nombre de sommets. D’autres algorithmes de
dessin, qui reposent sur la notion de plus long chemin depuis un sommet source [78],
ont peut-être un meilleur comportement dans le cas moyen. Il serait intéressant
d’effectuer des simulations de ces algorithmes et d’observer la taille moyenne de
la grille: par exemple une grille en cnα × cnα pour α < 1 correspondrait à une
compacité bien meilleure par rapport aux algorithmes par comptage de faces. Reste
à savoir si une analyse de tels algorithmes de dessin peut être menée en utilisant nos
outils bijectifs, comme cela a été fait pour les algorithmes par comptage de faces.
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[59] É. Fusy. Counting d-polytopes with (d+3) vertices. Electronic Journal of Combinatorics,
13(1), 2006.
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