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Abstract. Probabilistic trust has been adopted as an approach to taking security
sensitive decisions in modern global computing environments. Existing proba-
bilistic trust frameworks either assume fixed behaviour for the principals or in-
corporate the notion of ‘decay’ as an ad hoc approach to cope with their dynamic
behaviour. Using Hidden Markov Models (HMMs) for both modelling and ap-
proximating the behaviours of principals, we introduce the HMM-based trust
model as a new approach to evaluating trust in systems exhibiting dynamic be-
haviour. This model avoids the fixed behaviour assumption which is considered
the major limitation of existing Beta trust model. We show the consistency of the
HMM-based trust model and contrast it against the well known Beta trust model
with the decay principle in terms of the estimation precision.

1 Introduction

In modern open network systems where principals can autonomously enter and leave
the environment at any time, and generally in a global computing environment, any
particular principal has incomplete information about other principals currently in the
same environment. In such an environment, interactions of a principal A with other
principals are not assumed to be at the same level of satisfaction, or even safety, to A.
One approach of taking security sensitive decisions in a global computing environment
regarding interactions with principals is to adopt the notion of probabilistic trust, which
can broadly be characterised as aiming to build probabilistic models upon which to
base predictions about principals’ future behaviours. Using these models, the trust of a
principal A in another principal B is the probability distribution, estimated by A, over
outcomes of the next interaction with B. Here the estimation process is based on the
history of interactions h with the principal B. This notion of trust ensembles the trusting
relationship between humans as seen by Gambetta [8].

In many existing frameworks the so-called Beta model [12] is adopted. This is a
static model in the precise sense that the behaviour of any principal is assumed to be
representable by a fixed probability distribution over outcomes, invariantly in time. That
is each principal p is associated with a fixed real number 0 ≤ Θp ≤ 1 indicating the
assumption that an interaction involving p yields success with probability Θp. Using
this assumption, the Beta model for trust is based on applying Bayesian data analysis
(see e.g. [20]) to the history of interactions h with a given principal p to estimate the
probability Θp that an interaction with p yields success. In this framework the family of
beta probability density functions (pdfs) is used, as a conjugate prior, together with the
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data h to derive a posterior beta probability density function for Θp. Full explanation
can be found in [12, 19].

There are several examples in the literature where the Beta model is used, either
implicitly or explicitly, including Jøsang and Ismail’s Beta reputation system [12], the
systems of Mui et al. [15] and of Buchegger [4], the Dirichlet reputation systems [11],
TRAVOS [21], and the SECURE trust model [5]. Recently, the Beta model and its
extension to interactions with multiple outcomes (the Dirichlet model) have been used
to provide a first formal framework for the analysis and comparison of computational
trust algorithms [19, 16, 13]. In practice, these systems have found space in different
applications of trust, e.g., online auctioning, peer-to-peer filesharing, mobile ad-hoc
routing and online multiplayer gaming.

One limitation of current Beta based probabilistic systems is that they assume a
fixed probabilistic behaviour for each principal; that is for each principal, there exists a
fixed probability distribution over possible outcomes of its interactions. This assump-
tion of fixed behaviour may not be realistic in many situations, where a principal possi-
bly changes its behaviour over time. Just consider, e.g., the example of an agent which
can autonomously switch between two internal states, a normal ‘on-service’ mode and
a ‘do-not-disturb’ mode. This limitation of the Beta model systems has been recognised
by many researchers [12, 4, 22]. This is why several papers have used a ‘decay’ princi-
ple to favour recent events over information about older ones [12]. The decay principle
can be implemented in many different ways, e.g., by a using a finite ‘buffer’ to remem-
ber only the most recent n events, or linear and exponential decay functions, where
each outcome in the given history is weighted according to the occurrence time (old
outcomes are given lower weights than newer ones). Whilst decay-based techniques
have proved useful in some applications, we have shown in [7] that the decay principal
is useful (for the purpose of estimating the predictive probability) only when the system
behaviour is highly stable, that is when it is very unlikely to change its behaviour.

Given the above limitations of existing probabilistic trust systems, we try to de-
velop a more general probabilistic trust framework which is able to cover cases where
a principal’s behaviour is dynamic. Following the probabilistic view of the behaviour,
one can represent the behaviour of a principal p at any time t by a particular state S t

which is characterised by a particular probability distribution over possible outcomes
of an interaction with p. If p exhibits a dynamic behaviour, it indeed transits between
different states of behaviour. This suggests using a multiple state transition system to
represent the whole dynamic behaviour of a principal, where each state is defined by a
probability distribution over observables. Since the definition of hidden Markov mod-
els (HMMs) coincides with this description, we elect to use HMMs for modelling and
approximating the dynamic behaviour of principals.

Aiming at avoiding the assumption of fixed behaviour in Beta systems, we introduce
the HMM-based trust as a more sophisticated trust model which is capable of capturing
the natural dynamism of real computing systems. Instead of modelling the behaviour
of a principal by a fixed probability distribution representing one state of behaviour,
the behaviour of a principal p is approximated by a finite state HMM γ, called the
approximate behaviour model. Then, given any sequence of outcomes of interactions
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with p, the approximate model γ is used to estimate the probability distribution over
the potential outcomes of the next interaction with p. We call the resulting probability
distribution the estimated predictive probability distribution of p under the approximate
model γ. Following the existing notion of probabilistic trust, the estimated predictive
probability distribution represents the trust in the principal p.

In order to evaluate the quality of the HMM-based trust, we contrast its estimated
predictive probability distribution against the real predictive probability distribution
which depends on the real behaviour of the concerned principal. For this purpose, we
adopt the relative entropy measure [14, 6]. Relying on this measure we evaluate the ex-
pected estimation error as a measure for the quality of the trust evaluation. Note that
this notion of estimation error has been used for comparison between trust algorithms
in other works. See for example [16, 19].

Original contribution of the paper. In this paper we describe the basics of the HMM-
based trust model. Namely, the methods of obtaining the approximate behaviour model
γ for a principal p, and also estimating the probability distribution over possible out-
comes of the next interaction with p using γ. We show that maximising the probability
of the observations, using the Baum-Welch algorithm detailed in [2, 18], minimises the
expected estimation error and therefore is a consistent method for obtaining the approx-
imate behaviour HMM γ. For the sake of comparison to the traditional Beta trust model
with a decay factor, we use Monte-Carlo methods to evaluate the expected estimation
error in both cases.

Structure of the paper. The next section briefly describes the Beta trust model and the
decay principle. Section 3 provides a basic and precise description for hidden markov
models. Subsequently, the basic model of HMM-based trust is described in Section 4.
Then it is formally shown in Section 5 that the maximum likelihood estimation, as the
basis of the HMM-based trust model, is adequate in the sense that it minimises the
expected relative entropy between the real and estimated predictive probability distri-
butions. Section 6 provides an experimental comparison between the HMM-based trust
model and the well known Beta trust model with decay factor. Finally we conclude our
results in section 7.

2 Beta model with a decay factor

In the Beta trust model introduced by [12] an interaction with any principal yields either
success s or failure f. It is also based on the assumption that any interaction with a given
principal p yields success with a fixed probability θp. Under this assumption a sequence
of ` outcomes h` = o0 · · · o`−1 is a sequence of Bernoulli trials, and the number of
successful outcomes in h` is probabilistically distributed by a binomial distribution. The
objective of the Beta trust model is then to estimate the parameter θp given a historical
sequence of outcomes h`.

Using the Bayesian data analysis (see e.g. [20]), θp is seen as a random variable
whose prior (initial) probability density function (pdf) is updated to a posterior pdf
using given observations. With the fact that the beta pdf is a conjugate prior to the
binomial distribution, the posterior pdf of θ given the sequence h is also a beta pdf. The
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Beta trust model then gives an estimate for θp as the expected value of its posterior beta
pdf. This estimate, denoted by B (s | h), is related to the sequence h` as follows.

B (s | h`) =
#s (h`) + 1

#s (h`) + #f (h`) + 2
(1)

where #s (h`) and #f (h`) are the numbers of successful and unsuccessful interactions in
h` respectively.

In order to cope with the cases where the behaviour of a principal is dynamic,
the notion of exponential decay (or forgetting) has been incorporated in the Beta trust
model [12]. The intuitive idea is to capture the most recent behaviour of the principal
by favouring the recent outcomes over old ones. This is performed by associating each
outcome oi in h` with an exponential weight r`−i−1, where 0 ≤ r ≤ 1 is called the de-
cay (forgetting) factor. Observe that recent outcomes are associated with higher weights
than older outcomes. With the decay factor r, the Beta estimate for the distribution over
{s, f} is denoted by Br (. | h`), and given by the following equations.

Br(s | h`) =
mr(h`) + 1

mr(h`) + nr(h`) + 2
, Br(f | h`) =

nr(h`) + 1
mr(h`) + nr(h`) + 2

(2)

and

mr(h`) =
`−1∑
i=0

r`−i−1δi(s) nr(h`) =
`−1∑
i=0

r`−i−1δi(f) (3)

for

δi(X) =
{

1 if oi = X
0 otherwise (4)

Note that incorporating the decay principle in the Beta trust model is implemented by
replacing the counts #s (h`) and #f (h`) in Equation (1) by the sum of weights associated
with the past outcomes. Although this approach has been used in many works, we have
shown in [7] that it is not effective when the principal’s behaviour is highly dynamic;
that is when the system tends to change its state of behaviour, characterised by the
exhibited probability distribution over possible outcomes. Another major limitation of
this approach is that it appears hard to formally determine the optimal value for the
decay factor from only observations.

3 Hidden Markov Models (HMMs)

A Hidden Markov Model (HMM) [1] is a well-established probabilistic model essen-
tially based on a notion of system state. Underlying any HMM there is a Markov chain
modelling (probabilistically) the system’s transitions between a set of internal states.
Each state in this chain is associated with a particular probability distribution over the
set of possible outcomes (observations). The output of an HMM is a sequence of out-
comes where each outcome is sampled according to the probability distribution of the
underlying state. In the following, we denote the state of the HMM and the observation
at time t by qt and ot respectively.
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Definition 1 (hidden Markov model). A (discrete) hidden Markov model (HMM) is
a tuple λ = (Q, π, A,O, B) where Q is a finite set of states; π is a distribution on Q,
the initial distribution; A : Q × Q → [0, 1] is the state transition matrix, with Ai j =

P (qt+1 = j | qt = i) and
∑

j∈Q Ai j = 1; O is a finite set of possible observations; and
B : Q × O → [0, 1] is the observation probability matrix, with Bik = P (ot = k | qt = i),∑

k∈O Bik = 1.

HMMs provide the computational trust community with several obvious advan-
tages: they are widely used in scientific applications, and come equipped with effi-
cient algorithms for computing the probabilities of events and for parameter estimation
(cf. [18]), the chief problem for probabilistic trust management. It is worth noticing that

1

0.1

++ 2
0.12

kk

π1 = 0.5
B(1, s) = 0.95
B(1, f) = 0.05

O = {s, f}
π2 = 0.5
B(2, s) = 0.05
B(2, f) = 0.95

Fig. 1. Example Hidden Markov Model.

an HMM is a generalisation of the Beta model. Indeed, in the context of computational
trust, representing the behaviour of a principal p by a HMM λp provides a different
distribution B j over O for each possible state j of p. In particular, the states of λp can be
seen as a collection of independent Beta models, the transitions between which are gov-
erned by the Markov chain formed by π and A, as principal p switches its internal state.
According to the above definition of HMM, the probability of a sequence of outcomes
h = o1 o2 · · · on given a HMM λ is given by the following equation.

P(h | λ) =
∑

q1,...,qn∈Q

π(q1) · Bq1o1 · Aq1q2 · Bq2o2 · · · Aqn−1qn · Bqnon

The above probability is evaluated efficiently by an algorithm called the forward-backward
algorithm. One instance of this algorithm, called the forward instance, is based on in-
ductively (on time t) evaluating the forward variable αt( j) = P(o1 o2 · · · ot, qt = j | λ),
that is the joint probability that the partial sequence o1 o2 · · · ot is observed and the state
at time t is j. The required probability P(h | λ) is then obtained by

P(h | λ) =
∑
j∈Q

αn( j)

Alternatively, P(h | λ) can be obtained using the backward instance of the algorithm,
where the backward variable βt( j) = P(ot+1 ot+2 · · · on, | qt = j, λ) is inductively (on
time t) evaluated. More details on these instances of the forward-backward algorithm
can be found in [18].
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Another major problem of HMMs is to find the model λwhich maximises the above
probability of a sequence h. This problem has been addressed by Baum and his col-
leagues whose efforts resulted in the Baum-Welch algorithm [2, 18]. This algorithm
iteratively estimates the parameters of an HMM λ which maximises the probability of
a given sequence of outcomes h. One limitation of this algorithm is that it finds a local
maxima in the model space rather than the global one.

Example 1. Figure 1 shows a two-state HMM over the observation set {s, f}. Both states
are relatively stable. That is the probability of making both transitions 1 7→ 2 and 2 7→ 1
are relatively small (0.1,0.12 respectively). Also at state 1, it is very likely to observe s
(with probability 0.95), whereas at state 2 it is very likely to observe f (with probability
0.95). This HMM describes the behaviour of a stable principal whose internal state is
unlikely to change.

In the area of trust, we remark that Markovian models have also been used in [10] to
model the evolution of trust in the users of collaborative information systems. However,
in our work, HMMs model the principal’s behaviour upon which trust is computed.

4 HMM-based trust model

As described in the introduction, the HMM-based trust relies on approximating the
behaviour of any given principal by a finite-state HMM γ called the approximate be-
haviour model. The approximate behaviour model is then used to estimate the predictive
probability distribution. In order to precisely define this model, it is required to define a
method for computing the approximate behaviour model γ, and also for estimating the
predictive probability distribution using γ. As a general notation which will be used in
these definitions we will write the probability of any random variable ζ, under a given
probabilistic model R, as P (ζ | R).

For computing γ, the maximum likelihood criterion is adopted as follows. Let y =
y0 y2 · · · y`−1 be an observed sequence of outcomes of interactions with a given princi-
pal, where ` is an arbitrary length. Let also Rn denote any n-state HMM. Then, using
the sequence y, the n-state approximate behaviour model γ is obtained by the following
equation.

γ = argmax
Rn

P (h` = y | Rn) (5)

That is γ is the n-state HMM under which the probability of the given history y is max-
imised. The HMM model γ can be therefore obtained by the Baum-Welch algorithm
which is described briefly in Section 3 and detailed in [2, 18].

Now we address the problem of estimating the predictive probability distribution
given a particular sequence of outcomes. Let h` = o0 o1 · · · o`−1 be a random variable
representing any sequence of observed outcomes of interaction with the principal p,
where o0 and o`−1 represent respectively the least and the most recent outcomes, and
` is an arbitrary length. Extending this notation to future outcomes, the outcome of
the next interaction with p is denoted by o`. Note that each outcome oi is therefore a
random variable representing the outcome at time i. Let also O = {1, 2, . . . , κ} be the
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alphabet of each single outcome. Using the n-state approximate behaviour HMM γ de-
fined by Equation (5), the estimated predictive probability distribution given a particular
sequence of outcomes w is denoted byHγ(. | w) and defined by the following equation.

Hγ (z | w) = P (o` = z | h` = w, γ) =
P (h` = w, o` = z | γ)

P (h` = w | γ)
(6)

where z ∈ O. The above probabilities are efficiently evaluated by the forward-backward
algorithm briefly described in Section 3, and detailed in [18].

5 Consistency of maximum likelihood estimation

Like other existing probabilistic trust models, the objective of the HMM-based trust
model is to estimate the predictive probability distribution for a given principal p, that
is the probability of each possible outcome in the next interaction with p. Therefore it
is a fundamental requirement that the approximate behaviour model γ computed for p
is chosen such that the error of such an estimation is minimised.

To analyse this error, we need to model the real behaviour of the principal p. This
allows expressing the real predictive probability distribution of p. The estimation error
can be therefore evaluated as the difference between the real and estimated predictive
probability distributions. In this section it is shown that the maximum likelihood crite-
rion, defined by Equation (5) for choosing the approximate behaviour model provides
a consistent method to minimise the estimation error.

5.1 Modelling the Real System

In this work we are interested in studying systems which exhibit a dynamic behaviour,
that is changing their behaviour over time. We mathematically model the behaviour of
the system at any time by a particular probability distribution over possible outcomes.
A system p with a dynamic behaviour can be therefore modelled by a multiple state
transition system where each state exhibits a particular behaviour (probability distribu-
tion). This naturally leads to choosing a generic Hidden Markov Model (HMM) λ as
the real model of p’s behaviour.

Here the state of a system real model λ at the time of observing oi is denoted by the
random variable qi. Thus, given that the current underlying state is x, i.e. q`−1 = x, we
can compute the real predictive probability distribution, denoted by P (. | x, λ), that is
the probability of each possible next observation, z ∈ O, using the following equation.

P (z | x, λ) = P (o` = z | q`−1 = x, λ)

=
∑
y∈Qλ

P (q` = y | q`−1 = x, λ) P (o` = z | q` = y, λ)

=
∑
y∈Qλ

(Aλ)xy (Bλ)yz (7)

where Qλ, Aλ, and Bλ are respectively the set of states, the state transition matrix, and
the observation probability matrix of λ. We shall also work under the hypothesis that
λ is ergodic. This corresponds to demanding that the Markov chain underlying λ is
irreducible and aperiodic (more details on these properties can be found in [9, 17, 3]).
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5.2 The estimation error

In this paper the relative entropy measure [6] is used for evaluating the difference be-
tween the real and estimated predictive probability distributions, given by Equations (7)
and (6) respectively. Namely, given a sequence of outcomes h` = w and the current state
q`−1 = x, this difference measure is written as follows.

D
(
P (. | x, λ) || Hγ (. | w)

)
=

∑
z∈O

P (z | x, λ) log
(

P (z | x, λ)
Hγ (z | w)

)
(8)

The above difference can be seen as the estimation error given a particular current
state q`−1 of λ, and the sequence of outcomes h`. Hence we define the expected esti-
mation error as the expected relative entropy between the real and estimated predictive
probability distributions, where the expectation is evaluated on the underlying random
variables q`−1 and h`. This error is denoted by Error`

(
λ,Hγ

)
. Thus,

Error`
(
λ,Hγ

)
= E

[
D

(
P (. | q`−1, λ) || Hγ (. | h`)

)]
(9)

Now we formally show that choosing the approximate behaviour model γ by maximis-
ing the likelihood of a given sufficiently long sequence y (by Equation (5)) minimises
the expected estimation error.

Equation (9) can be written as follows.

Error`
(
λ,Hγ

)
=

∑
w∈O`

∑
x∈Qλ

P (h` = w, q`−1 = x | λ) ·

· D
(
P (. | x, λ) || Hγ (. | w)

)
(10)

Using Equation (8) we rewrite the above equation.

Error`
(
λ,Hγ

)
=

∑
w∈O`

∑
x∈Qλ

P (h` = w, q`−1 = x | λ) ·

·
∑
z∈O

P (z | x, λ) log
(

P (z | x, λ)
Hγ (z | w)

)
(11)

Substituting P (z | x, λ) andHγ (z | w) using Equations (7) and (6) respectively, we write
the above equation as follows.

Error`
(
λ,Hγ

)
=

∑
w∈O`

∑
x∈Qλ

P (h` = w, q`−1 = x | λ) ·

·
∑
z∈O

P (o` = z | q`−1 = x, λ) log
(

P (o` = z | q`−1 = x, λ)
P (o` = z | h` = w, γ)

)
=

∑
w∈O`

∑
x∈Qλ

∑
z∈O

P (o` = z | q`−1 = x, λ) ·

· P (h` = w, q`−1 = x | λ) log
(

P (o` = z | q`−1 = x, λ)
P (o` = z | h` = w, γ)

)
(12)
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Since the next outcome o` depends only on the current state q`−1 regardless of the
history sequence h`, we have

P (o` = z | q`−1 = x, λ) = P (o` = z | h` = w, q`−1 = x, λ) (13)

Thus Equation (12) becomes

Error`
(
λ,Hγ

)
=

∑
w∈O`

∑
x∈Qλ

∑
z∈O

P (o` = z | h` = w, q`−1 = x, λ) ·

· P (h` = w, q`−1 = x | λ) log
(

P (o` = z | q`−1 = x, λ)
P (o` = z | h` = w, γ)

)
=

∑
w∈O`

∑
x∈Qλ

∑
z∈O

P (o` = z, h` = w, q`−1 = x | λ) log
(

P (o` = z | q`−1 = x, λ)
P (o` = z | h` = w, γ)

)
(14)

The above equation can be simplified to the following equation.

Error`
(
λ,Hγ

)
= E

[
log P (o` | q`−1, λ)

]
− E

[
log P (o` | h`, γ)

]
(15)

Observe that the first term in the above equation depends only on the real behaviour
model λ, while the second term depends on both the real and approximate behaviour
models λ and γ. Denoting the first and second terms respectively by C` (λ) and H` (λ, γ),
we rewrite the above equation as following.

Error`
(
λ,Hγ

)
= C` (λ) − H` (λ, γ) (16)

Assuming that (Aγ)i j > 0, that is the state transition probabilities of γ are strictly posi-
tive, it has been proved by Baum and Petrie in [1] that the following limit exists.

lim
`→∞

H` (λ, γ) = H (λ, γ) (17)

Observe also that the limit lim`→∞C` (λ) = C (λ) exists. This is because the ergodicity
of λ implies that the distribution of the random variable q`−1 converges to a stationary
(fixed) distribution according to which the expectation E

[
log P (o` | q`−1, λ)

]
is evalu-

ated. The convergence of both C` (λ) and H` (λ, γ) implies the convergence of the esti-
mation error (as ` → ∞) to an asymptotic estimation error denoted by Error

(
λ,Hγ

)
,

and expressed as follows.

Error
(
λ,Hγ

)
= C (λ) − H (λ, γ) (18)

Also, (by Theorem 3.2 in [1]) the log-probability of any observation sequence h` is
related to H (λ, γ) as follows.

1
`

log P (h` | γ)
a.s.
→ H (λ, γ) (19)
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The above equation means that the log-probability of a random sequence h` under the
approximate model γ, divided by its length converges almost surely to H (λ, γ). Here
‘almost surely’ (also known as ‘almost everywhere’ and ‘with probability 1’) conver-
gence means that the probability that the function 1

`
log P (h` | γ) converges to the above

limit is 1. That is

P
(

lim
`→∞

1
`

log P (h` | γ) = H (λ, γ)
)
= 1

Equation (19) implies that choosing an approximate model γ which maximises the
probability of a sufficiently long sequence h` almost surely maximises H(λ, γ), and
therefore reduces the asymptotic estimation error given by Equation (18). Thus, the
maximum data likelihood criterion, expressed by Equation (5) is a consistent method
to obtain the approximate behaviour model, which is used to estimate the predictive
probability distribution.

6 Comparison with Beta-based trust with decay principle

In this section we contrast the HMM-based trust model described above against the ex-
isting Beta trust model with exponential decay, described in [12] and Section 2 in terms
of the expected estimation error. Here the estimation error is defined as the relative en-
tropy between the real and estimated predictive probability distributions. In Section 5.2
above, we used the results obtained by Baum and Petrie in [1] to derive an expression
for the expected estimation error (see Equation (16)). It appears difficult to evaluate this
error analytically, or even numerically. So we use a simulation framework for HMMs
to simulate the real model and adopt Monte Carlo methods to evaluate the estimation
error using both HMM-based and Beta-based trust models, and therefore perform the
comparison.

6.1 Evaluation of estimation error using Monte Carlo simulation

In general, any probabilistic trust model is described by an estimating algorithm Aσ,
with a parameter σ. The estimating algorithm is fed with any observation sequence h
generated by the real system λ and computes an estimated predictive probability distri-
bution denoted by Aσ(. | h). In the case of Beta trust model, the estimating algorithm is
denoted by Br, where the parameter r is the decay factor, and the estimated predictive
probability distribution Br(. | h) is evaluated by Equations (2). In the case of HMM-
based trust model, on the other hand, the estimating algorithm is denoted byHγ, where
the parameter γ is an approximate behaviour HMM. Note that the parameter γ is ob-
tained by maximising the probability of any sufficiently long sequence y generated by
λ as shown in Section 4. The estimated predictive probability distribution Hγ(. | h) is
evaluated by Equation (6).

Given a real HMM model λ, let the random variables h` denote any generated sequence
of observations of length `. Let also the random variable q` denote the underlying hid-
den state sequence. Given an estimating algorithm Aσ (e.g. Br or Hγ), the expected
estimation error using Aσ is given by the following equation.

Error` (λ, Aσ) = E
[
D (P (. | q`, λ) || Aσ (. | h`))

]
(20)
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The above expected error can be approximated by the following Monte-Carlo proce-
dure.

1. Simulate the real model λ to generate a large sample S m of size m:

S m = {(w1, u1), (w2, u2), . . . , (wm, um)}

where w j and u j are respectively the observation sequence, and the underlying state
sequence generated in the jth simulation run.

2. For each pair
(
w j, u j

)
,

(a) compute both P
(
. | u j, λ

)
and Aσ (. | h`), that is the real and estimated predictive

probability distributions, respectively.
(b) Evaluate the estimation error, denoted by e j, as

e j = D
(
P

(
. | u j, λ

)
|| Aσ

(
. | w j

))
(21)

3. Approximate the required expected estimation error by evaluating the sample aver-
age.

Error` (λ, Aσ) ≈
1
m

m∑
j=1

e j (22)

The above approximation of the expected estimation error by the sample average is
based on the law of large numbers. Note that the approximation error can be made
arbitrarily small by making the sample size m sufficiently large.

6.2 Experiments

Throughout our comparison we will a 4-state real model λwith the observation alphabet
O = {1, 2}, the observation probability matrix is

Bλ =


1.0 0.0
0.7 0.3
0.3 0.7
0.0 1.0

 (23)

and the state transition matrix is

Aλ =



s 1 − s
3

1 − s
3

1 − s
3

1 − s
3

s 1 − s
3

1 − s
3

1 − s
3

1 − s
3

s 1 − s
3

1 − s
3

1 − s
3

1 − s
3

s


(24)

where the parameter s is called the system stability, which indicates the tendency of the
system to staying in the same state rather than transiting to a different one.
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In the following experiments, we study the effect of the system stability on both Beta
estimation with a decay factor and HMM based estimation. For simplicity we confine
our HMM-based trust model to use only 2-state approximate behaviour models. We
also base our trust estimation on sequences of length 300. For different stability values
0 ≤ s < 1 and decay values 0 ≤ r ≤ 1, we apply the Monte-Carlo procedure described
above to evaluate the expected estimation error using both Beta (Br) and HMM (Hγ)
trust algorithms. Each generated sample is of size 10000.

Figure 2 shows Beta and HMM estimation errors when the system λ is unstable
(s < 0.5). It is obvious that the minimum error value for Beta error is obtained when the
decay tends to 1. The reason for this is that an unstable system is relatively unlikely to
stay in the same state, and therefore unlikely to preserve the previous distribution over
observations. If the estimation uses low values for the decay, then the resulting estimate
for the predictive probability distribution is close to the previous distribution; this is
unlikely to be the same as in the next time instant, due to instability. On the other hand,
using a decay r tending to 1 favours equally all previous observations, and the resulting
probability distribution is expected to be the average of the distributions exhibited by the
model states. Such an average provides a better estimate for the predictive probability
distribution than approximating the distribution of the most recent set of states using
low decay values.

It is also obvious that the HMM estimation error is lower than Beta estimation error.
The reason is that the 2-state HMM γ is a more flexible model to approximate the real
HMM λ than the Beta model which is, with decay 1, equivalent to 1-state HMM model.
It is worth noting that when stability is 0.25, the minimum expected beta error is 0,
when the decay is 1. The HMM-estimation error is also approximately 0. In this case
all elements of the transition matrix Aλ are equal and therefore, the whole behaviour
can effectively be modelled by a single probability distribution over observations. This
single probability distribution is perfectly approximated by taking the whole history
into account using Beta model with decay 1, and also with 2-state HMM where both
states are equivalent.

Figure 3 shows Beta and HMM estimations errors when the system λ is stable (sta-
bility > 0.5). Observe that both Beta with decay 1 and HMM estimation errors are
increasing as the stability is higher. The reason is that, at relatively high stability, old
observations become irrelevant to the current behaviour which determines the real pre-
dictive probability distribution. Hence, the estimation based on the whole history using
HMM or Beta with decay 1 is worse than the estimation with the same parameters when
the system is unstable, where both old and recent outcomes are relevant to the current
behaviour.

Observe also in the cases of high stability that HMM based estimation is better than
Beta estimation for most values of decay. However, for a particular range of decay,
Beta estimation is slightly better than HMM estimation. Using any decay value in this
range for Beta estimation has the effect of considering only relatively recent outcomes
which characterize the current system behaviour and therefore give a better estimation
for the predictive distribution. Although using any value from this specific range of
decay makes Beta estimation better than HMM estimation, it appears hard to formally
determine this range given only observations. When the stability is 1, the assumption of
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Fig. 2. Beta and HMM estimation errors versus decay factor given stability < 0.5

irreducibility is violated (see Section 5.1). In this case any sequence y of observations
characterises only one single state and therefore the approximate behaviour model γ
trained on y fails to approximate the whole behaviour of the real system.

7 Conclusion

In this paper we introduced the foundations for the HMM-based trust model. This model
is based on approximating the behaviour of the principal by the n-states HMM γ which
maximises the likelihood of the available history of observations. The approximate be-
haviour model γ is then used to evaluate the estimated predictive probability distribution
given any sequence of observations. Modelling the real dynamic behaviour of princi-
pals by hidden Markov models, and using the results obtained by Baum and Petrie in
[1], we justified the consistency of the HMM-based trust model. This justification relies
on showing that maximising the likelihood of a given observation sequence minimises
the relative entropy between the real and estimated predictive probability distributions.
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Fig. 3. Beta and HMM estimation errors versus decay factor given stabilities 0.6, 0.7, 0.8, and 0.9

To assess the estimation quality of a particular trust algorithm, we use the notion of
expected estimation error that is the expected difference between the real and predictive
probability distribution. Since we have no means yet to evaluate the expected estima-
tion error expressed by Equation (18) for the HMM-based trust model using analytical
or numerical methods, we use a Monte-Carlo algorithm, described in Section 6.1, for
evaluating the expected estimation error.

Using an implementation of this algorithm, and adopting the relative entropy as a
measure for the estimation error, we performed an experimental comparison between
HMM-based trust algorithm and the Beta-based trust algorithm with an exponential de-
cay scheme. The results of this comparison are given in Section 6.2. These results shows
that HMM-based trust algorithm gives a better estimation for the predictive probability
distribution when the principal behaviour is highly dynamic. When the real behaviour
is more stable (less dynamic), the Beta-based algorithm with the optimal value of decay
gives slightly better estimation than the HMM-based algorithm.
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