Sequent Calculus: Focused proof systems (Lecture 4)

Dale Miller

INRIA Saclay & Ecole Polytechnique, France

Pisa, 15 April 2014

Presenting and applying a focused proof system for classical logic.

Dale Miller Sequent Calculus: Focused proof systems (Lecture 4)

Some inference rules are *invertible*, *e.g.*,

$$\frac{A, \Gamma \longrightarrow B}{\Gamma \longrightarrow A \supset B} \qquad \frac{\Gamma \longrightarrow A \quad \Gamma \longrightarrow B}{\Gamma \longrightarrow A \land B} \qquad \frac{\Gamma \longrightarrow B[y/x]}{\Gamma \longrightarrow \forall x.B}$$

First focusing principle: when proving a sequent, apply invertible rules exhaustively and in any order.

This is the *negative phase* of proof search: if formulas are "processes" in an "environment," then these formulas "evolve" without communications ("asynchronously") with the environment.

Some inference rules are not generally invertible, e.g.,

$$\frac{\Gamma_1 \longrightarrow A \quad \Gamma_2 \longrightarrow B}{\Gamma_1, \Gamma_2 \longrightarrow A \land B} \qquad \frac{\Gamma \longrightarrow B[t/x]}{\Gamma \longrightarrow \exists x.B}$$

Some *backtracking* is generally necessary within proof search using these inference rules.

Second focusing principle: non-invertible rules are applied in a "chain-like" fashion.

This is the *positive phase* of proof search.

Focusing proof systems generally extend the neg/pos distinction to atoms.

We shall assume that somehow all atoms are given a *bias*, that is, they are either positive or negative.

A *positive formula* is either a positive atom or has a top-level connective whose right-introduction rule is not invertible.

A *negative formula* is either a negative atom or has a top-level connective whose right-introduction rules is invertible.

Uniform proofs [M, Nadathur, Scedrov, 1987] describes goal-directed search and backchaining.

LLF: [Andreoli, 1992]: a focused proof system for linear logic.

 $LKT/LKQ/LK^{\eta}$: focusing systems for classical logic [Danos, Joinet, Schellinx, 1993]

LJQ [Herbelin, 1995] permits forward-chaining proof. *LJQ*' [Dyckhoff & Lengrand, 2007] extends it.

 λRCC [Jagadeesan, Nadathur, Saraswat, 2005] mixes forward chaining and backward chaining (in a subset of intuitionistic logic).

LJF [Liang & M, 2009] allows forward and backward proof in all of intuitionistic logic. LJT, LJQ, λ RCC, and LJ are subsystems.

LKF (following) provides focusing for all of classical logic.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Andreoli (1992) was the first to give a focused proof system for a full logic (linear logic).

The proof system for MALL (multiplicative-additive linear logic) is remarkably elegant and unambiguous.

Some complexity arises from using the exponentials (!, ?): in particular, exponentials terminate focusing phases.

We now present two comprehensive focused proof systems for classical logic.

- LKF for *classical logic*
- LKF for *classical logic* with fixed points and equality

Classical logic and one-sided sequents

Two conventions for dealing with classical logic.

- Formulas are in *negation normal form*.
 - $B \supset C$ is replaced with $\neg B \lor C$,
 - negations are pushed to the atoms
- Sequents will be one-sided. In particular, the two sided sequent

$$\Sigma: B_1, \ldots, B_n \vdash C_1, \ldots, C_m$$

will be converted to

$$\Sigma: \quad \vdash \neg B_1, \ldots, \neg B_n, C_1, \ldots, C_m.$$

We also drop the " Σ :" prefix on sequents.

Formulas are *polarized* as follows.

- atoms are assigned bias (either + or -), and
- $\wedge \lor$, t, and f are annotated with either + or -. Thus: \wedge^- , \wedge^+ , \vee^- , \vee^+ , t^- , t^+ , f^- , f^+ .

LKF is a focused, one-sided sequent calculus with the sequents

$$\vdash \Theta \Uparrow \Gamma$$
 and $\vdash \Theta \Downarrow B$

Here, Θ is a multiset of positive formulas and negative literals, Γ is a multiset of formulas, and *B* is a formula.

LKF : focused proof systems for classical logic

$$\frac{\vdash \Theta \Uparrow \Gamma, t^{-}}{\vdash \Theta \Uparrow \Gamma, t^{-}} \quad \frac{\vdash \Theta \Uparrow \Gamma, A \qquad \vdash \Theta \Uparrow \Gamma, B}{\vdash \Theta \Uparrow \Gamma, A \wedge^{-} B} \\ \frac{\vdash \Theta \Uparrow \Gamma}{\vdash \Theta \Uparrow \Gamma, f^{-}} \quad \frac{\vdash \Theta \Uparrow \Gamma, A, B}{\vdash \Theta \Uparrow \Gamma, A \vee^{-} B} \quad \frac{\vdash \Theta \Uparrow \Gamma, A[y/x]}{\vdash \Theta \Uparrow \Gamma, \forall x A}$$

LKF : focused proof systems for classical logic

$$\frac{\vdash \Theta \Uparrow \Gamma, t^{-}}{\vdash \Theta \Uparrow \Gamma, t^{-}} \xrightarrow{\vdash \Theta \Uparrow \Gamma, A} \vdash \Theta \Uparrow \Gamma, B}{\vdash \Theta \Uparrow \Gamma, A \wedge^{-} B}$$

$$\frac{\vdash \Theta \Uparrow \Gamma}{\vdash \Theta \Uparrow \Gamma, t^{-}} \xrightarrow{\vdash \Theta \Uparrow \Gamma, A, B}{\vdash \Theta \Uparrow \Gamma, A \vee^{-} B} \xrightarrow{\vdash \Theta \Uparrow \Gamma, A[y/x]}{\vdash \Theta \Uparrow \Gamma, \forall xA}$$

$$\frac{\vdash \Theta \Downarrow A}{\vdash \Theta \Downarrow A \wedge^{+} B} \xrightarrow{\vdash \Theta \Downarrow A_{i}}{\vdash \Theta \Downarrow A_{1} \vee^{+} A_{2}} \xrightarrow{\vdash \Theta \Downarrow A[t/x]}{\vdash \Theta \Downarrow \exists xA}$$

LKF : focused proof systems for classical logic

P positive; P_a positive literal; N negative;

C positive formula or negative literal.

The only form of *contraction* is in the Decide rule

$$\frac{\vdash P, \Theta \Downarrow P}{\vdash P, \Theta \Uparrow \cdot}$$

The only occurrence of *weakening* is in the lnit rule.

$$\overline{\vdash \neg P_a, \Theta \Downarrow P_a}$$

Thus negative non-atomic formulas are treated *linearly* (in the sense of linear logic).

Only positive formulas are contracted.

We can ignore the internal structure of phases and consider only their boundaries.

We can now move from *micro-rules* (introduction rules) to *macro-rules* (pos or neg phases).

The *decide depth* of an LKF proofs is the maximum number of *Decide* rules along any path starting from the end-sequent.

This measures counts "bi-poles": one positive phase followed by a negative phase.

Let *B* be a first-order logic formula and let \hat{B} result from *B* by placing + or - on *t*, *f*, \wedge , and \vee (there are exponentially many such placements).

Theorem. *B* is a first-order theorem if and only if \hat{B} has an LKF proof. [Liang & M, TCS 2009]

Thus the different polarizations do not change *provability* but can radically change the *proofs*.

Recall the Fibonacci series example: one specification yielded an exponential time algorithm or a linear time algorithm depending only on bias assignment.

Let *a*, *b*, *c* be positive atoms and let Θ contain the formula $a \wedge^+ b \wedge^+ \neg c$.

$$\frac{\vdash \Theta \Downarrow a \text{ Init } \vdash \Theta \Downarrow b \text{ Init } \frac{\vdash \Theta, \neg c \Uparrow \cdot}{\vdash \Theta \Uparrow \neg c}}{\stackrel{\vdash \Theta \Downarrow a \wedge^+ b \wedge^+ \neg c}{\vdash \Theta \Uparrow \cdot} Decide} Release$$

This derivation is possible iff Θ is of the form $\neg a, \neg b, \Theta'$. Thus, the "macro-rule" is

$$\frac{\vdash \neg a, \neg b, \neg c, \Theta' \uparrow \cdot}{\vdash \neg a, \neg b, \Theta' \uparrow \cdot}$$

Two certificates for propositional logic: negative

Use \wedge^- and \vee^- . Their introduction rules are invertible. The initial "macro-rule" is huge, having all the clauses in the conjunctive normal form of *B* as premises.

$$\frac{ \overbrace{\vdash L_1, \dots, L_n \Downarrow L_i}_{\vdash L_1, \dots, L_n \Uparrow} Init \\ Decide \\ \vdots \\ \hline{\vdash \cdot \Uparrow B}$$

The proof "certificate" can specify the complementary literals for each premise or it can ask the checker to *search* for such pairs.

Proof certificates can be tiny but require exponential time for checking.

Use \wedge^+ and \vee^+ . Sequents are of the form $\vdash B, \mathcal{L} \uparrow \cdot$ and $\vdash B, \mathcal{L} \Downarrow P$, where *B* is the original formula to prove, *P* is positive, and \mathcal{L} is a set of negative literals.

Macro rules are in one-to-one correspondence with $\phi \in DNF(B)$. Divide ϕ into ϕ^- (negative literals) and ϕ^+ (positive literals).

$$\frac{\{\vdash B, \mathcal{L}, N \uparrow \cdot | N \in \phi^{-}\}}{\frac{\vdash B, \mathcal{L} \Downarrow B}{\vdash B, \mathcal{L} \uparrow \cdot} \text{ Decide}} \text{ provided } \neg \phi^{+} \in \mathcal{L}$$

Proof certificates are sequences of members of DNF(B). Size and processing time can be reduced (in response to "cleverness").

To illustrate the trade-off between proof-size and proof-checking time consider the following simple example.

Let *B* be a propositional formula with a large conjunctive normal form. Let B^- (respectively, B^+) be the result of annotating all the connectives in *B* negative (respectively, positively).

Consider the tautology $C = (p \lor B) \lor \neg p$.

A *negative focused proof* results from computing the conjunctive normal form of C and then observing that each disjunct is trivial.

There are many *positive focused proof* but one has decide depth 2: first move through *C* to pick $\neg p$ and then move again through *C* to pick *p*.

伺 ト イ ヨ ト イ ヨ ト

Herbrand's Theorem.

Let B be a quantifier-free first-order formula. $\exists \bar{x}.B$ is a theorem if and only if there is an $n \ge 1$ and substitutions $\theta_1, \ldots, \theta_n$ such that $B\theta_1 \lor \cdots \lor B\theta_n$ is tautologous.

This theorem is easily proved by the completeness of LKF.