Sequent Calculus:
 Cut elimination and proof search (Lecture 3)

Dale Miller

INRIA Saclay \& Ecole Polytechnique, France
Pisa, 14 April 2014

Sequent calculus for classical and intuitionistic logics.

How does the "single-conclusion" restriction restrict rules?

(1) In an I-proof, there are no occurrences of contraction on the right.

How does the "single-conclusion" restriction restrict rules?

(1) In an I-proof, there are no occurrences of contraction on the right.
(2) In the implication left rule, the rhs of the conclusion must be the rhs of the right premise. That is, the inference rule

$$
\frac{\Sigma: \Gamma_{1} \vdash \Delta_{1}, B \quad \Sigma: \Gamma_{2}, C \vdash \Delta_{2}}{\Sigma: \Gamma_{1}, \Gamma_{2}, B \supset C \vdash \Delta_{1}, \Delta_{2}} \supset \mathrm{~L}
$$

is really the inference rule

$$
\frac{\Sigma: \Gamma_{1} \vdash B \quad \Sigma: \Gamma_{2}, C \vdash E}{\Sigma: \Gamma_{1}, \Gamma_{2}, B \supset C \vdash E} \supset \mathrm{~L}
$$

Cut elimination: permuting a cut up

Here, $i \in\{1,2\}$. Change this fragment to

The cut rule is on a smaller formula.

Cut elimination: permuting a cut up

This part of the proof can be changed locally to

$$
\begin{align*}
& \begin{array}{c}
\stackrel{\Xi_{2}}{\Sigma: \Gamma_{2} \vdash A_{1}, \Delta_{2} \quad \Sigma: \Gamma_{1}, A_{1} \vdash A_{2}, \Delta_{1}} \\
\Sigma: \Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}, A_{2} \\
\text { cit }
\end{array} \begin{array}{c}
\Xi_{3} \\
\Sigma: \Gamma_{3}, A_{2} \vdash \Delta_{3}
\end{array} \\
& \Sigma: \Gamma_{1}, \Gamma_{2}, \Gamma_{3} \vdash \Delta_{1}, \Delta_{2}, \Delta_{3} \tag{cut}
\end{align*}
$$

Although there are now two cut rules, they are on smaller formulas.

Cut elimination: permuting a cut away

$$
\frac{\Sigma: \Gamma_{1} \vdash \Delta, B \quad \overline{\Sigma: \Gamma_{2}, B \vdash B} \text { init }}{\Sigma: \Gamma_{1}, \Gamma_{2} \vdash \Delta, B} \text { cut }
$$

Rewrite this proof to the following.

$$
\frac{\Sigma}{\Sigma: \Gamma_{1} \vdash \Delta_{1}, B} \overline{\Sigma: \Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, B} w L
$$

We have removed one occurrence of the cut rule.
N.B. Notice that if Γ_{2} is empty then the $w L$ is not needed.

Cut elimination

Theorem. If a sequent has a \mathbf{C}-proof (respectively, I-proof) then it has a cut-free C-proof (respectively, I-proof).

This theorem was stated and proved by Gentzen 1935.
Gentzen invented the sequent calculus so that he could formulate one proof of this Hauptsatz for both classical and intuitionistic logic.

Structural rules were key to describing the difference between these two logics.

Cut elimination

Theorem. If a sequent has a C-proof (respectively, I-proof) then it has a cut-free C-proof (respectively, I-proof).

This theorem was stated and proved by Gentzen 1935.
Gentzen invented the sequent calculus so that he could formulate one proof of this Hauptsatz for both classical and intuitionistic logic.

Structural rules were key to describing the difference between these two logics.

Think to all the other ways you know for describing the difference between them (excluded middle, constructive vs non-constructive, Kripke semantics, etc).

Consequences of cut elimination

Theorem. Logic is consistency: It is impossible for there to be a proof of B and $\neg B$.

Proof. Assume that $\vdash B$ and $B \vdash$ have proofs. By cut, \vdash has a proof. Thus, it also has a cut-free proof, but this is impossible.

Theorem. A cut-free proof system of a sequent is composed only of subformula of formulas in the root sequent.

Proof. Simple inspection of all rules other than cut. (Assuming first-order quantification here.)

Should I eliminate cuts in general?

Consequences of cut elimination

Theorem. Logic is consistency: It is impossible for there to be a proof of B and $\neg B$.

Proof. Assume that $\vdash B$ and $B \vdash$ have proofs. By cut, \vdash has a proof. Thus, it also has a cut-free proof, but this is impossible.

Theorem. A cut-free proof system of a sequent is composed only of subformula of formulas in the root sequent.

Proof. Simple inspection of all rules other than cut. (Assuming first-order quantification here.)

Should I eliminate cuts in general? NO! Cut-free proofs of interesting mathematical statement often do not exists in nature.

If you are using cut-free proofs, you are probably modeling computation or model checking.

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.
Issue 2: The structural rules of weakening and contraction can be applied (almost) anytime.
Solution: Build these rules into the other rules.

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be applied (almost) anytime.
Solution: Build these rules into the other rules.
Issue 3: What term to use in the $\exists \mathrm{R}$ and $\forall \mathrm{L}$ rules?
Solution: Use logic variables and unification (standard theorem proving technology).

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be applied (almost) anytime.
Solution: Build these rules into the other rules.
Issue 3: What term to use in the $\exists \mathrm{R}$ and $\forall \mathrm{L}$ rules?
Solution: Use logic variables and unification (standard theorem proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent, which should be selected for introduction? Solution:

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be applied (almost) anytime.
Solution: Build these rules into the other rules.
Issue 3: What term to use in the $\exists \mathrm{R}$ and $\forall \mathrm{L}$ rules?
Solution: Use logic variables and unification (standard theorem proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent, which should be selected for introduction?
Solution: Good question. We concentrate on this issue next using focused proof systems.

Some "focusing" behavior

Given the inference figure (a variant of $\supset \mathrm{L}$), where A is atomic.

$$
\frac{\Gamma \longrightarrow G \quad \Gamma, D \xrightarrow{\bar{\Xi}} A}{\Gamma \longrightarrow A}, \text { provided } G \supset D \in \Gamma
$$

can we restrict what is the last inference rule in $\bar{\equiv}$?
In intuitionistic logic, we can insist that \equiv ends with either

- an introduction rule for D (if D is not atomic) or
- an initial rule with $A=D$ (if D is atomic).

Backchaining as focusing behavior

Let D be the formula (for atomic A^{\prime})

$$
\forall \bar{x}_{1}\left(G_{1} \supset \forall \bar{x}_{2}\left(G_{2} \supset \cdots \forall \bar{x}_{n}\left(G_{n} \supset A^{\prime}\right) \ldots\right)\right)
$$

and consider the sequent $\Sigma: \Gamma, D \leftarrow A$, for atomic A.
We can insist that if one applies a left introduction rule on D, the it cascades into a series of $\forall \mathrm{L}, \supset \mathrm{L}$, and initial rule.

That is, there is a substitution θ such that $A=A^{\prime} \theta$ and $\Sigma: \Gamma \vdash G_{i} \theta$ are provable $(i=1, \ldots, n)$.

This cascade of introduction rules will be called a "focus".

Backward and Forward Chaining

$$
\frac{\Gamma \longrightarrow a \quad \Gamma, b \longrightarrow G}{\Gamma, a \supset b \longrightarrow G} a, b \text { are atoms, focus on } a \supset b
$$

Negative atoms: The right branch is trivial; ı.e., $b=G$.
Continue with $\Gamma \longrightarrow a$ (backward chaining).
Positive atoms: The left branch is trivial; ı.e., $\Gamma=\Gamma^{\prime}$, a. Continue with $\Gamma^{\prime}, a, b \longrightarrow G$ (forward chaining).

Let G be $f i b(n, f)$ and let Γ contain $f i b(0,0)$, $f i b(1,1)$, and

$$
\forall n \forall f \forall f^{\prime}\left[f i b(n, f) \supset f i b\left(n+1, f^{\prime}\right) \supset f i b\left(n+2, f+f^{\prime}\right)\right] .
$$

The nth Fibonacci number is F iff $\Gamma \vdash G$.
If $\operatorname{fib}(\cdot, \cdot)$ is negative then the unique proof is exponential in n.
If $f i b(\cdot, \cdot)$ is positive then the shortest proof is linear in n.

