
Handout for Lecture 8
Dale Miller, 21 September 2011

Note: Most of the the text in Sections 1 and 2 are from [4], and in Sections 3 and 4 are from [3].

1 Macro inference rules

Focused proof systems such as LKF allow us to change the size of inference rules with which we work. Let
us call individual introduction rules “micro-rules”. An entire phase within a focused proof can be seen as a
“macro-rule”. In particular, consider the following derivation.

` Θ,D ⇑ N1 · · · ` Θ,D ⇑ Nn

` Θ,D ⇓ D
` Θ,D ⇑ ·

Here, the selection of the formula D for the focus can be taken as selecting among several macro-rules: this
derivation illustrates one such macro-rule: the inference rule with conclusion ` Θ,D ⇑ · and with n ≥ 0
premises ` Θ,D ⇑ N1, . . . , ` Θ,D ⇑ Nn (where N1, . . . ,Nn are negative formulas). We shall say that this
macro-rule is positive.

Similarly, there is a corresponding negative macro-rule with conclusion, say, ` Θ,D ⇑ Ni, and with
m ≥ 0 premises of the form ` Θ,D,C ⇑ ·, where C is a multiset of positive formulas or negative literals.

In this way, focused proofs allow us to view the construction of proofs from conclusions of the form
` Θ ⇑ · as first attaching a positive macro rule (by focusing on some formula in Θ) and then attaching
negative inference rules to the resulting premises until one is again to sequents of the form ` Θ′ ⇑ ·. Such a
combination of a positive macro rule below negative macro rules is often called a bipole [1].

Focusing can be broken at any point via delays. Within LKF, we can define the delaying operators

∂+(B) = B ∧+ t+ and ∂−(B) = B ∧− t−.

Clearly, B, ∂−(B), and ∂+(B) are all logically equivalent but ∂−(B) is always negative and ∂+(B) is always
positive. If one wishes to break a positive macro rule resulting from focusing on a given positive formula
into smaller pieces, then one can insert ∂−(·) into that formula. Similarly, inserting ∂+(·) can limit the size
of a negative macro rule. By inserting many delay operators, a focused proof can be made to emulate an
unfocused proof.

2 Fixed points and equality

In order for capture some interesting computational problems, the logic of propositional connectives and
first-order quantifiers can be augmented with equality and fixed point operators. Consider the left and right
introduction rules for = and µ given in Figure 1. Notice that since the left and right introduction rules for µ
are the same, µ is self-dual: that is, the De Morgan dual of µ is µ. It is possible to have a more expressive
proof theory for fixed points that provides also for least and greatest fixed points (see, for example, [3, 2]):
in that case, the De Morgan dual of the least fixed point is the greatest fixed point.

1



Γ, B(µB)t̄ ` ∆

Γ, µBt̄ ` ∆

Γ ` ∆, B(µB)t̄
Γ ` ∆, µBt̄

Γσ ` ∆σ
Γ, s = t ` ∆

†
Γ, s = t ` ∆

‡
Γ ` ∆, t = t

Figure 1: Introduction rules for = and µ. B is a formula with n ≥ 0 variables abstracted and t̄ is a list of n
terms. The † proviso requires the terms s and t to be unifiable and σ to be their most general unifier. The ‡
proviso requires that the terms s and t are not unifiable.

` Θσ ⇑ Γσ

` Θ ⇑ Γ, s , t
†

` Θ ⇑ Γ, s , t
‡

` Θ ⇓ t = t

` Θ ⇑ Γ, B(µB)t̄
` Θ ⇑ Γ, µBt̄

` Θ ⇓ B(µB)t̄
` Θ ⇓ µBt̄

Figure 2: Focused inference rules for = and µ. The proviso † and ‡ and the definition of σ are the same as
above.

Example Identify the natural numbers as terms involving 0 for zero and s for successor. The following
simple logic program defines two predicates on natural numbers.

nat 0 ⊂ true.

nat (s X) ⊂ nat X.

leq 0 Y ⊂ true.

leq (s X) (s Y) ⊂ leq X Y.

The predicate nat can be written as the fixed point

µ(λpλx.(x = 0) ∨ ∃y.(s y) = x ∧ p y)

and binary predicate leq (less-than-or-equal) can be written as the fixed point

µ(λqλxλy.(x = 0) ∨ ∃u∃v.(s u) = x ∧ (s v) = y ∧ q u v).

In a similar fashion, any Horn clause specification can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).

These two logical connectives can be added to LKF as follows. First, we classify both = and µ as positive
connectives (this choice is forced for equality while µ can be polarized either way). The (one-sided) focused
versions of the introduction rules above are given in Figure 2.
Example Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m and n are natural numbers and leq is the fixed point expression displayed above but this time with
all occurrences of ∧ and ∨ polarized with their positive variants. If both N1 and N2 are negative formulas,

2



then there are exactly two possible macro rules: one with premise ` Θ ⇑ N1 when m ≤ n and one with
premise ` Θ ⇑ N2 when n ≤ m (thus, if m = n, either premise is possible). In this sense, a macro inference
rule can contain an entire Prolog-style computation.

Example Macro rules can be built to match many computational situations. Consider, for example,
defining simulation as the (greatest) fixed point of the equivalence

sim P Q ≡ ∀P′∀A[P
A
−→ P′ ⊃ ∃Q′[Q

A
−→ Q′ ∧ sim P′ Q′]].

Although the right-hand-side of this definition looks complex, we show how it is possible to see proof search

with this formula as being exactly two macro inference rules. First, the expression P
A
−→ P′ is, presumably,

given via some SOS (structured operational semantic) specifications. Such specifications are simple, syntax-
directed inference rules that can be captured as a least fixed point expression. As above, we will view such

fixed point expressions as purely positive formulas. Thus, the expression ∀P′∀A[P
A
−→ P′ ⊃ ·] is a negative

macro rule: since all possible actions A and continuations P′ must be computed, there are no choices to be
made in building a proof for this expression. (Here, we are assuming that the implication B ⊃ C is rendered

as ¬B ∨− C in the polarized setting.) On the other hand, focusing on the expression ∃Q′[Q
A
−→ Q′ ∧+ ·]

yields a non-invertible, positive macro rule. In this way, the focused proof system is aligned directly with
the structure of the actual (model-checking) problem. Notice that if one wishes to communicate a proof of
a simulation to a proof checker, no information regarding the use of the negative macro rule needs to be
communicated since the proof checker can also perform the computation behind that inference rule (i.e.,
enumerating all possible transitions of a given process P).

3 Induction and co-induction

Proposition. The following inference rules are derivable:

` P, P⊥
init

` Γ, B(νB)~t
` Γ, νB~t

νR

MALL rules First-order structure

` 1
` Γ, P ` ∆,Q
` Γ,∆, P ⊗ Q

` Γ, P,Q
` Γ, P M Q

` Γ
` Γ,⊥

` Γ, Pt
` Γ,∃x.Px

` Γ, Pc
` Γ,∀x.Px

c new

` ∆,>

` Γ, P ` Γ,Q
` Γ, P & Q

` Γ, Pi
` Γ, P0 ⊕ P1 ` t = t

{` Γθ : θ ∈ csu(s .
= t)}

` Γ, s , t

Fixed points (where S is closed, ~x is new)

` Γ, B(µB)~t
` Γ, µB~t

µ
` Γ, S~t ` BS ~x, (S ~x)⊥

` Γ, νB~t
ν

` µB~t, νB~t
µν

Figure 3: Inference rules for µMALL=

3



These results are standard, cf. [5]. The proof of the second one relies on monotonicity and is obtained
by applying the ν rule with B(νB) as the co-invariant.

Definition We classify as asynchronous (resp. synchronous) the connectives M, ⊥, &, >, ∀, ,, ν (resp. ⊗,
1, ⊕, 0, ∃, =, µ). A formula is said to be asynchronous (resp. synchronous) when its top-level connective
is asynchronous (resp. synchronous). A formula is said to be fully asynchronous (resp. fully synchronous)
when all of its connectives are asynchronous (resp. synchronous). Finally, a body λpλ~x.Bp~x is said to
be fully asynchronous (resp. fully synchronous) when the formula Bp~x is fully asynchronous (resp. fully
synchronous).

Notice, for example, that λpλ~x.p~x is fully asynchronous and fully synchronous.

Proposition The following structural rules are admissible provided that B is fully asynchronous:

` Γ, νB~t, νB~t
` Γ, νB~t

νC ` Γ

` Γ, νB~t
νW

Hence, the following structural rules hold for any fully asynchronous formula P:

` Γ, P, P
` Γ, P C ` Γ

` Γ, P W

Proposition. The following structural rules are admissible provided that B is fully asynchronous:

` Γ, νB~t, νB~t
` Γ, νB~t

νC ` Γ

` Γ, νB~t
νW

Hence, the following structural rules hold for any fully asynchronous formula P:

` Γ, P, P
` Γ, P C ` Γ

` Γ, P W

The rules for equality are not surprising. The main novelty here is the treatment of fixed points. De-
pending on the body, both µ and ν rules can be applied any number of times — but not with any co-invariant
concerning ν. Notice for example that an instance of µν can be η-expanded into a larger derivation, unfolding
both fixed points to apply µν on the recursive occurrences. As a result, each of the fixed point connectives
has two rules in the focused system: one treats it as “an atom” and the other one as an expression with
“internal structure.”

Here, µ is treated during the synchronous phase and ν during the asynchronous phase. (Other choices are
possible.) Roughly, what the focused system implies is that if a proof involving a ν-expression proceeds by
co-induction on it, then this co-induction can be done at the beginning; otherwise that formula can be ignored
in the whole derivation, except for the µν rule. Focusing on a µ-expression yields two choices: unfolding or
applying the initial rule for fixed points. If the body is fully synchronous, the focusing will never be lost. For
example, if nat is the (fully synchronous) expression µ(λnat.λx. x = 0 ⊕ ∃y.x = s y ⊗ nat y), then focusing
puts a lot of structure on a proof of Γ ⇓ nat t: either t is a ground term representing a natural number and Γ

is empty, or t = snx for some n ≥ 0 and Γ is {(nat x)⊥}.

Theorem. The focused system is sound and complete with respect to µMALL=.

4



Asynchronous phase

` Γ ⇑ P,Q,∆
` Γ ⇑ P M Q,∆

` Γ ⇑ P,∆ ` Γ ⇑ Q,∆
` Γ ⇑ P & Q,∆

` Γ ⇑ ∆

` Γ ⇑ ⊥,∆ ` Γ ⇑ >,∆

{` Γθ ⇑ ∆θ : θ ∈ csu(s .
= t)}

` Γ ⇑ s , t,∆

` Γ ⇑ Pc,∆
` Γ ⇑ ∀x.Px,∆

c new

` Γ ⇑ S~t,∆ `⇑ BS ~x, S ~x⊥

` Γ ⇑ νB~t,∆
~x new

` Γ, νB~t ⇑ ∆

` Γ ⇑ νB~t,∆

Synchronous phase

` Γ ⇓ P ` Γ′ ⇓ Q
` Γ,Γ′ ⇓ P ⊗ Q

` Γ ⇓ Pi

` Γ ⇓ P0 ⊕ P1

`⇓ 1 `⇓ t = t

` Γ ⇓ Pt
` Γ ⇓ ∃x.Px

` Γ ⇓ B(µB)~x
` Γ ⇓ µB~x ` νB~x ⇓ µB~x

Switching (where P is synchronous, Q asynchronous)

` Γ, P ⇑ ∆

` Γ ⇑ P,∆
` Γ ⇓ P
` Γ, P ⇑

` Γ ⇑ Q
` Γ ⇓ Q

Figure 4: A focused proof-system for µMALL=

4 Examples

We shall now give a few theorems in µMALL=. Although we do not give their derivations here, we stress
that all of these examples are proved naturally in the focused proof system. The reader will also note that
although µMALL= is linear, these derivations are intuitive and their structure resemble that of proofs in
intuitionistic logic.

We first define a few least fixed points expressing basic properties of natural numbers. We assume two
constants z and s of respective types n and n→ n. Note that all these definitions are fully synchronous.

nat
de f
= µ(λnatλx. x = z ⊕ ∃y. x = s y ⊗ nat y)

even
de f
= µ(λevenλx. x = z ⊕ ∃y. x = s (s y) ⊗ even y)

plus
de f
= µ(λplusλaλbλc. a = z ⊗ b = c

⊕ ∃a′∃c′.a = s a′ ⊗ c = s c′ ⊗ plus a′ b c′)

leq
de f
= µ(λleqλxλy. x = y ⊕ ∃y′. y = s y′ ⊗ leq x y′)

half
de f
= µ(λhalfλxλh. (x = z ⊕ x = s z) ⊗ h = z

⊕ ∃x′∃h′. x = s (s x′) ⊗ h = s h′ ⊗ half x′ h′)

The following statements are theorems, all of which can be proved by induction. The main insights
required for proving these theorems involve deciding which fixed point expression should be introduced by
induction: the proper invariant is not the difficult choice here since the context itself is adequate in these
cases.

` ∀x. nat x( even x ⊕ even (s x)
` ∀x. nat x( ∀y∃z. plus x y z
` ∀x. nat x( plus x z x
` ∀x. nat x( ∀y. nat y( ∀z. plus x y z( nat z

5



In the last theorem, the assumption (nat x)⊥ is not needed and can be weakened (see earlier Proposition).
In order to prove (∀x. nat x ( ∃h. half x h) one has to use a complete induction, i.e., use the strengthened
invariant (λx. nat x ⊗ ∀y. leq y x( ∃h. half y h).

A typical example of co-induction involves the simulation relation. Assume that step : state→ label→
state→ o is an inductively defined relation encoding a labeled transition system. Simulation can be defined
using the definition

sim
de f
= ν(λsimλpλq. ∀a∀p′. step p a p′ ( ∃q′. step q a q′ ⊗ sim p′ q′).

Reflexivity of simulation (∀p. sim p p) is proved easily by co-induction with the co-invariant (λpλq. p = q).
Instances of step are not subject to induction but are treated “as atoms”. Proving transitivity, that is,

∀p∀q∀r. sim p q( sim q r ( sim p r

is done by co-induction on (sim p r) with the co-invariant (λpλr. ∃q. sim p q ⊗ sim q r). The focus is first
put on (sim p q)⊥, then on (sim q r)⊥. The fixed points (sim p′ q′) and (sim q′ r′) appearing later in the
proof are treated “as atoms”, as are all negative instances of step.

Except for the totality of half, all these theorems seem simple to prove using a limited number of heuris-
tics. For example, one could first try to treat fixed points “as atoms”, an approach that would likely fail
quickly if inappropriate. Second, depending on the “rigid” structure of the arguments to a fixed point ex-
pression, one might choose to either unfold the fixed point or attempt to use the surrounding context to
generate an invariant.

References

[1] J.-M. Andreoli. Focussing and proof construction. Annals of Pure and Applied Logic, 107(1):131–163,
2001.

[2] D. Baelde. A linear approach to the proof-theory of least and greatest fixed points. PhD thesis, Ecole
Polytechnique, Dec. 2008.

[3] D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Dershowitz and
A. Voronkov, editors, International Conference on Logic for Programming and Automated Reasoning
(LPAR), volume 4790 of LNCS, pages 92–106, 2007.

[4] D. Miller. Finding unity in computational logic. In ACM-BCS-Visions Conference, Apr. 2010.

[5] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Pennsylvania
State University, May 2004.

6


