
July 2003 1/51

Proof Search Foundations for Logic Programming

Dale Miller

INRIA Futurs and École Polytechnique

Outline

1. Roles of logic in specifying computation

2. Focus on proof search (logic programming)

3. Proof search in classical and intuitionistic logic

4. Two linear logic programming languages

July 2003 2/51

Roles of Logic in the Specification of Computation

In the specification of computational systems, logics are generally used in one of
two approaches.

Computation-as-model: Computations are mathematical structures
representing computations via nodes, transitions, and state (for example, Turing
machines, etc). Logic is used in an external sense to make statements about those
structures. E.g. Hoare triples, modal logics.

Computation-as-deduction: Logical deduction is used to model computation
directly.

Functional programming. Programs are proof and computation is modeled using
proof normalization (λ-conversion, cut-elimination).

Logic programming. Programs are theories and computation is the search for
(cut-free) sequent proofs. For example, code the fact x has value 5 as the atomic
formula (x 5) or that agent Alice has memory M as (a M) (both x and a are
predicates). The dynamics of computation are encoded in the changes to
sequents that occur during the search for a proof.

July 2003 3/51

Observations

If you add more logical connectives, in FP you don’t get new programs but more
types. In LP you get more programs. In particular, linear logic has made a big
impact on logic programming design: each new connective is a new combinator
for new programs.

Adding logical connectives modularly enriches an LP’s expressiveness. For
example, the interplay between higher-orders and modules is not affected by
adding linear resources/concurrency. To get the meaning, just read off the proof
theory.

Cut-elimination provides for a formal basis for justifying this modularity.

July 2003 4/51

Kowalski’s equation revisited

Algorithm = Logic + Control.

This equation makes the important point that there is a gap between first-order
Horn clause specifications and algorithmic specifications. Unfortunately, this
equation has been elaborated into:

Programming = Logic + Control + I/O +

+ Higher-order programming

+ Data abstractions

+ Modules

+ Concurrency + . . .

Such extensions are generally ad hoc: logic, which was the motivation and the
intriguing starting point, is now put in a minor ghetto. Questions about how
various features interact start to dominate the language design. If static analysis
is done on purely logical expressions, it can be done deeply and richly. On the
mess above, it is severely restricted or impossible.

July 2003 5/51

A goal of declarative programming

A more interesting project would be to get closer to the goal:

Programming = Logic.

If this equation is at all possible, then one will certainly need to rethink what is
meant by “Programming” and by “Logic”.

In these lectures, we explore an interpretation of “Logic” that makes use of
elements of higher-order logic and linear logic.

July 2003 6/51

Three Logics

Classical Logic: A logic for “truth.” Think of truth tables or models a la Tarski.
Truth is not dynamic: it is fixed.

` p ∨ ¬p

Intuitionistic Logic: A logic of proof and construction. Think of type theory or
the λ-calculus.

6` p ∨ ¬p

Linear Logic: A logic of resources. Think of multiset rewriting, vending
machines, etc.

• Two quarter can become a cup of coffee and a dime.

• A process can become its continuation and a network message.

July 2003 7/51

Logic programming considered abstractly

Programs and goals are written using logic syntax.

Computation is the process of “proving” that a given goal follows from a given
program.

The notion of “proving” should satisfy at least two properties:

1. It should have some deep meta-theoretical properties such as cut-elimination
and/or sound and complete model theory. That is, it should be the basis for
declarative programming.

2. The interpretation of logical connectives in goals should have a fixed
“search” semantics: that is, the interpretation of logical connectives is
independent of context. This interpretation of logical connectives is a central
feature of logic programming.

Because of this latter property, logic programming is sometimes referred to as
called proof search.

July 2003 8/51

Goal Directed Search

To construct a proof of the sequent ∆ −→ G, where G is not atomic, use the
right introduction rule.

∆ −→ G1 ∆ −→ G2

∆ −→ G1 & G2

∆, D −→ G

∆ −→ D ⇒ G

A logic makes a abstract logic programming language if such a simple search
strategy is complete.

With a multiple-conclusion sequent setting, we would like to generalize this to be
simultaneous right introductions.

∆, D −→ G1, G3, Γ ∆, D −→ G2, G3,Γ
∆ −→ G1 & G2, D ⇒ G3, Γ

If enough introduction rules permute, you can “simulate” simultaneous
introduction.

July 2003 9/51

Zoo of linear logic connectives

−◦ linear implication (lollipop)

! reuse modal (bang)
? dual modal (why not)

⇒ intuitionistic implication, A⇒ B ≡ !A−◦B

& additive conjunctions (with)
⊗ multiplicative conjunctions (tensor)

⊕ additive disjunctions
...

............
.................................. multiplicative disjunctions (par)

> additive truth: >& A ≡ A

1 multiplicative truth: 1⊗A ≡ A

0 additive false: 0⊕A ≡ A

⊥ multiplicative false: ⊥ ...
............
.................................. A ≡ A

(−)⊥ negation
∀,∃ quantifiers

July 2003 10/51

A Series of Logic Programming Languages

Horn clauses (Prolog) Unrestricted use of {&,>} but ∀,⇒ are restricted to the
top-level only. For example, ∀x̄(A1 & · · ·& An ⇒ A0).

Hereditary Harrop formulas (λProlog) Unrestricted use of {∀,⇒, &,>}. For
example, ∀x((Bx & ∀y(Cxy ⇒ Dy))⇒ Dx).

Lolli (a linear refinement of λProlog) Unrestricted use of {∀,−◦,⇒,&,>}. For
example, ∀x((Bx−◦ ∀y(Cxy ⇒ Dy))⇒ Dx).

Linear Objects (LO) Unrestricted use of {&,>,
...

............
.................................. ,⊥} with only top-level

occurrences of ∀,−◦.
∀x̄(G−◦A1

...
............
.................................. · · · ... An)(n ≥ 1)

Forum Unrestricted use of {∀,−◦,⇒, &,>,
...

............
.................................. ,⊥}. For example,

∀x(Bx−◦ ∀y(Cxy ⇒ Dy)⇒ Dx
...

............
.................................. Bx)

July 2003 11/51

Forum is a presentation of all of linear logic

The linear logic connectives missing from Forum are definable.

B⊥ ≡ B −◦ ⊥ 0 ≡ >−◦ ⊥ 1 ≡ ⊥−◦ ⊥
! B ≡ (B ⇒ ⊥)−◦ ⊥ B ⊕ C ≡ (B⊥ & C⊥)⊥ B ⊗ C ≡ (B⊥ ...

............
.................................. C⊥)⊥

∃x.B ≡ (∀x.B⊥)⊥

The collection of connectives in Forum are not minimal. For example, ? and ...
............
.................................. ,

can be defined in terms of the remaining connectives.

? B ≡ (B −◦ ⊥)⇒ ⊥ and B
...

............
.................................. C ≡ (B −◦ ⊥)−◦ C

July 2003 12/51

A proof system for intuitionistic logic

A sequent Γ −→ C contains a set of formulas Γ and a single formula C.

Γ, B −→ B
initial Γ −→ > >R

Γ, B1 −→ C

Γ, B1 & B2 −→ C
&L

Γ, B2 −→ C

Γ, B1 & B2 −→ C
&L

Γ −→ B Γ −→ C
Γ −→ B & C

&R

Γ −→ B Γ, C −→ E

Γ, B ⇒ C −→ E
⇒ L

Γ, B −→ C

Γ −→ B ⇒ C
⇒ R

Γ, B[t/x] −→ C

Γ,∀x.B −→ C
∀L Γ −→ B[y/x]

Γ −→ ∀x.B
∀R,

provided that y is not free in the lower sequent.

Γ′ −→ B Γ, B −→ C

Γ′ −→ C
cut,

provided Γ ⊆ Γ′.

Given that left-hand contexts are sets, if the pattern matches Γ, B, it might be
the case that B ∈ Γ.

July 2003 13/51

Backchaining as left-introduction rules

Γ −→ B Γ −→ C
Γ −→ B & C

&R Γ, A −→ A
initial

Γ, B & C ⇒ A −→ A
⇒ L

Γ −→ B

Γ −→ C Γ, A −→ A
initial

Γ, C ⇒ A −→ A
⇒ L

Γ, B ⇒ C ⇒ A −→ A
⇒ L

Of course, B ⇒ (C ⇒ A) ≡ (B & C)⇒ A is the familar curry/uncurry
equivalence. The formula (B & C)⇒ A is written in Prolog as

A :- B, C.

July 2003 14/51

Expressive strength: changes in context

Consider a cut-free proof of the sequent Γ −→ A. Let Γ′ −→ A′ be a sequent
somewhere in this proof. (Assume that A and A′ are atomic formulas.)

In all cases, Γ ⊆ Γ′. Contexts can only grow as one moves up through a proof.

If Γ is a set of Horn clauses, then, in fact, Γ′ = Γ. Proof search with Horn clauses
is flat and does not allow abstractions (eg, modules).

The atoms A and A′ can be related arbitrarily. Thus, the dynamics of a
computation must be captured within atoms; that is, within non-logical contexts.
Thus, the dynamics is out of the reach of logical principles (modus ponens,
cut-elimination, etc).

Linear logic will allow much greater ability to code dynamics within logical
contexts.

July 2003 15/51

Proof system for a fragment of linear logic

B −→ B
initial

∆ −→ > >R

∆, Bi −→ C

∆, B1 & B2 −→ C
&L (i = 1, 2)

∆ −→ B ∆ −→ C

∆ −→ B & C
&R

∆1 −→ B ∆2, C −→ E

∆1,∆2, B −◦ C −→ E
−◦ L

∆, B −→ C

∆ −→ B −◦ C
−◦R

∆, B1, B2 −→ C

∆, B1 ⊗B2 −→ C
⊗ L

∆1 −→ B ∆2 −→ C

∆1, ∆2 −→ B ⊗ C
⊗R

∆ −→ C

∆, !B −→ C
! W

∆, ! B, !B −→ C

∆, ! B −→ C
! C

∆, B −→ C

∆, ! B −→ C
! D

!∆ −→ B

! ∆ −→ ! B
!R

∆, B[t/x] −→ C

∆, ∀x.B −→ C
∀L ∆ −→ B[y/x]

∆ −→ ∀x.B
∀R,

provided that y is not free in the lower sequent.

∆ −→ B ∆′, B −→ C

∆, ∆′ −→ C
cut

July 2003 16/51

Goal-directed search in linear logic

The notion of “goal-directed proofs” can be formalized using the following
technical notion: A cut-free proof is uniform if every sequent with a non-atomic
right-hand side is the conclusion of a right-introducion rule.

In intuitionistic logic, the following are provable but not with uniform proofs:

p ∨ q ⇒ q ∨ p ∃x.px⇒ ∃x.px

q & (q ⇒ (r ∨ s))⇒ (r ∨ s)

In linear logic, the following are provable but not with uniform proofs:

p⊗ q −◦ q ⊗ p ! p−◦ ! p

q −◦ (q −◦ (r ⊗ s))−◦ (r ⊗ s)

For these reasons, ∨, ∃, ⊗, and ! are not generally allowed unrestricted in logic
programming languages.

July 2003 17/51

Proof system for Lolli

Γ;A −→ A
initial

Γ, B;∆, B −→ C

Γ, B;∆ −→ C
absorb

Γ;∆ −→ > >R

Γ;∆, Bi −→ C

Γ;∆, B1 & B2 −→ C
& L

Γ;∆ −→ B Γ;∆ −→ C

Γ;∆ −→ B & C
& R

Γ;∆1 −→ B Γ;∆2, C −→ E

Γ;∆1,∆2, B −◦ C −→ E
−◦ L

Γ; ∆, B −→ C

Γ; ∆ −→ B −◦ C
−◦R

Γ; ∅ −→ B Γ;∆, C −→ E

Γ;∆, B ⇒ C −→ E
⇒ L

Γ, B;∆ −→ C

Γ; ∆ −→ B ⇒ C
⇒ R

Γ;∆, B[t/x] −→ C

Γ;∆, ∀x.B −→ C
∀L Γ; ∆ −→ B[y/x]

Γ;∆ −→ ∀x.B
∀R

provided that y is not free in the lower sequent.

Γ′;∆1 −→ B Γ; ∆2, B −→ C

Γ′;∆1, ∆2 −→ C
cut

Γ′; ∅ −→ B Γ, B;∆ −→ C

Γ′;∆ −→ C
cut!

Two forms of the cut rule for L. Both rules have the proviso that Γ ⊆ Γ′.

July 2003 18/51

How to Toggle a Switch

Occurrences of ⊗-R can be allows (as with ∃-R, ∨-R, etc).

Γ;∆1 −→ B Γ;∆2 −→ C

Γ;∆1, ∆2 −→ B ⊗ C
⊗R

Consider the Lolli (Forum) program:

toggle G ◦− ∃u∃v[sw v ⊗ flip v u⊗ (sw u−◦G)].
f lip on off.

f lip off on .

Assume that these three clauses are members of Ψ.

Ψ; sw on −→ sw on

Ψ; flip on off −→ flip on off

Ψ;−→ flip on off

...
Ψ; ∆, sw off −→ G

Ψ;∆ −→ sw off−◦G

Ψ;∆, sw on −→ sw on ⊗ flip on off⊗ (sw off−◦G)
Ψ;∆, sw on −→ ∃v∃u[sw v ⊗ flip v u⊗ (sw u−◦G)]

Ψ; ∆, sw on −→ toggle G

July 2003 19/51

Reversing a list in Prolog

Move one item from top of one list to the top of the other list.

(1::2::3::nil) nil.

(2::3::nil) (1::nil).

(3::nil) (2::1::nil).

nil (3::2::1::nil).

This can be encoded as the program

rv nil (3::2::1::nil).

rv (X::L) M :- rv L (X::M).

and the query

rv (1::2::3::nil) nil.

Not really a good program since it is written for one list only.

Notice that reverse is symmetric. Proof: Flip both rows and columns!

July 2003 20/51

A better specification

Put the previously written code into “local block” definitions within another
definition. Then abstract out (1::2::3::nil) and (3::2::1::nil) for
variables.

∀L, K[

(∀rv ((∀M, N, X(rv N (X :: M)−◦ rv (X :: N) M))⇒ rv nil K −◦ rv L nil))

−◦ reverse L K]

The base case is assumed linearly! An attempt to prove

reverse (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil)

results in the introduction of a new predicate rv and the attempt to prove that
from the two clauses

rv nil (3 :: 2 :: 1 :: nil)

! ∀M, N, X(rv N (X :: M)−◦ rv (X :: N) M)

it follows that
rv (1 :: 2 :: 3 :: nil) nil.

July 2003 21/51

Reverse is symmetric

Theorem. Reverse is symmetric; that is, if ` reverse L K then ` reverse K L.

Proof. Assume that ` reverse L K. Thus, the body of reverse’s clause must be
provable.

`∀rv ((∀M,N, X(rv N (X :: M)−◦ rv (X :: N) M))⇒ rv nil K −◦ rv L nil)

Now, instantiate this quantifier with the term λxλy.(rv y x)⊥, and we have that

`(∀M,N,X((rv (X :: M) N)⊥−◦(rv M (X :: N))⊥)⇒(rv K nil)⊥−◦(rv nil L)⊥

Using the linear logic equivalence of the contrapositive rule: p⊥ −◦ q⊥ ≡ q −◦ p,
we have

`(∀M, N,X(rv M (X :: N)−◦ rv (X :: M) N))⇒ rv nil L−◦ rv K nil

By universal generalization over rv, we have

`∀rv ((∀M,N, X(rv M (X :: N)−◦ rv (X :: M) N))⇒ rv nil L−◦ rv K nil)

This matches the body of the reverse problem if we switch L and K. Thus, we can
conclude that ` reverse K L.

July 2003 22/51

An application of linear logic:

Representing and reasoning about sequent systems

Joint work with Elaine Pimentel

Universidade Federal de Minas Gerais, Belo Horizonte Brazil

Outline

1. Metalogical settings for specifying proof systems.

2. Some generalizations of multiset rewriting in linear logic

3. Representing sequents and inference rules

4. Entailment between encodings of proof systems

5. Establishing object-level cut elimination

July 2003 23/51

Intuitionistic-based frameworks and natural deduction

Higher-order logics and dependently typed λ-calculi based on intuitionistic logic
have been proposed for encoding natural deduction systems.

• higher-order hereditary Harrop formulas: Isabelle, λProlog, etc.

• LF: Twelf, etc.

(A)
...

B C

D

(prove A⇒ prove B) ∧ prove C ⇒ prove D.

July 2003 24/51

Advantages of using meta-logics and frameworks

Bound variables — in formulas and in proofs (eigenvariable) — are treated
uniformly and declaratively by the meta-level (higher-order abstract syntax is
generally supported).

Meta-level β-normalization can directly provide object-level substitution.

When reasoning about specifications, “substitution lemmas” often come for free.

Proof search in intuitionistic logic is well studied and has several robust
implementations.

July 2003 25/51

Which framework for specifying sequent calculus?

Clearly, sequents can be encoded into existing frameworks by representing them
as pairs of lists of formulas, etc.

But sequent calculus has numerous dualities:

left right
positive negative

initial cut
synchronous asynchronous

A framework should account for such dualities directly (problematic in
intuitionistic logic).

Structural rules play a significant role in defining logical connectives in sequent
calculi.

Sequent calculus seems to be more general than natural deduction.

Linear logic makes a good candidate: it has a involutive negation, allows
contraction and weakening to be controlled, and refines intuitionistic logic.

July 2003 26/51

Flat Forum

For the purpose of specifying sequent calculus, we need only a subset of Forum.

A formula of Forum is a flat goal if it does not contain occurrences of −◦ and ⊃,
and all occurrences of the modal ? have atomic scope. A formula of the form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ A1
...

............
.................................. · · · ... An), (m,n ≥ 0)

is called a flat clause if G1, . . . , Gm are flat goals, A1, . . . , An are atomic
formulas, and occurrences of the symbol ↪→ are either occurrences of −◦ or ⊃.

The formula A1
...

............
.................................. · · · ... An is the head of such a clause, while for each

i = 1, . . . ,m, the formula Gi is a body of this clause. If n = 0, then we write the
head as simply ⊥ and say that the head is empty.

Negation B⊥ is equivalent to B−◦ ⊥.

We sometimes use uncurried clauses via the logical equivalences:

(B ⊗ C)−◦H ≡ B −◦ C −◦H (∃x.B x)−◦H ≡ ∀x.(B(x)−◦H)†

(B ⊕ C)−◦H ≡ (B −◦H) & (C −◦H) (! B)−◦H ≡ B ⊃ H 1−◦H ≡ H.

† Provided x is not free in H.

July 2003 27/51

Flat Forum sequents

Sequents in full Forum (linear logic) are of the form Ψ; ∆ −→ Γ;Υ where Ψ and
Υ are sets of formulas that can be used unbounded number of times and ∆ and
Γ are multisets of formulas that are bounded in their use.

The logic program is generally identified with Ψ.

When using flat Forum, the zone Ψ does not change in proof search and ∆ will
be empty. Thus, we do not write the left-hand side of Forum sequents.

The sequent
−→ B1, . . . , Bn; C1, . . . , Cm

is related to the linear logic formula

B1
...

............
.................................. . . .

...
............
.................................. Bn

...
............
.................................. ?C1

...
............
.................................. . . .

...
............
.................................. ?Cm.

July 2003 28/51

Backchaining and multiset rewriting

Multiset rewriting can be captured naturally in proof search. Assume, for
example, that the clause

a
...

............
.................................. b ◦− c

...
............
.................................. d

...
............
.................................. e.

is a member of the logic program specification (in Ψ). Consider the following
proof fragment.

−→ c, d, e, Γ;Υ
−→ c, d

...
............
.................................. e, Γ;Υ

−→ c
...

............
.................................. d

...
............
.................................. e,Γ;Υ

a→ a; Υ b→ b; Υ
a

...
............
.................................. b→ a, b; Υ

c
...

............
.................................. d

...
............
.................................. e−◦ a

...
............
.................................. b→ a, b, Γ; Υ

−→ a, b, Γ;Υ decide !

We can interpret this proof fragment as a reduction of the multiset a, b, Γ to the
multiset c, d, e, Γ by backchaining on the clause displayed above.

Members of Υ are considered permanent members of the multiset, as well.

July 2003 29/51

Splitting and copying of contexts

Backchaining on the clause G1 −◦G2 ⊃ G3 −◦B1
...

............
.................................. B2 (which is logically

equivalent to (G1 ⊗ ! G2 ⊗G3)−◦B1
...

............
.................................. B2) to prove the sequent

−→ B1, B2,A; Υ

yields an attempt to prove the three sequents

−→ G1,A1; Υ −→ G2; Υ −→ G3,A2; Υ

where A is split into A1 and A2.

Backchaining on the clause G1 & G2 −◦B to prove the sequent

−→ B,A; Υ

yields an attempt to prove the two sequents

−→ G1,A; Υ −→ G2,A; Υ.

Here, context is copied.

July 2003 30/51

Encoding sequents

Let b·c and d·e be two meta-level predicates, both of type bool→ o, used to
identify which object-level formulas appear on the left and right of the sequent
arrow. The ? modal is used to mark the formulas to which weakening and
contraction can be applied.

Consider encoding the object-level sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0)
as a meta-level formula or a meta-level sequent. Examples of encodings might be
the following.

Linear scheme: bB1c ...
............
.................................. · · · ... bBnc ...

............
.................................. dC1e ...

............
.................................. · · · ... dCme or

−→ bB1c, . . . , bBnc, dC1e, . . . , dCme; ·.

Classical scheme: ?bB1c ...
............
.................................. · · · ... ?bBnc ...

............
.................................. ?dC1e ...

............
.................................. · · · ... ?dCme or

−→ ·; bB1c, . . . , bBnc, dC1e, . . . , dCme.

Intuitionistic scheme: ?bB1c ...
............
.................................. · · · ... ?bBnc ...

............
.................................. dC1e ...

............
.................................. · · · ... dCme or

−→ dC1e, . . . , dCme; bB1c, . . . , bBnc.

July 2003 31/51

Encoding additive and multiplicative inference rules

Consider the additive introduction rules for conjunction.

∆, A −→ Γ
∆, A ∧B −→ Γ

∧ L1
∆, B −→ Γ

∆, A ∧B −→ Γ
∧ L2

∆ −→ Γ, A ∆ −→ Γ, B

∆ −→ Γ, A ∧B
∧ R

These three inference rules can be specified in Forum using the clauses

(∧L1) bA ∧Bc ◦− bAc. (∧R) dA ∧Be ◦− dAe& dBe.
(∧L2) bA ∧Bc ◦− bBc.

Consider the multiplicative inference rules for this connective.

∆, A,B −→ Γ
∆, A ∧B −→ Γ

∧ L
∆1 −→ Γ1, A ∆2 −→ Γ2, B

∆1, ∆2 −→ Γ1, Γ2, A ∧B
∧ R

These two rules can be encoded using the following Forum clauses.

(∧L) bA ∧Bc ◦− bAc ...
............
.................................. bBc. (∧R) dA ∧Be ◦− dAe ◦− dBe.

Notice that the clause for right introduction could be written equivalently in
linear logic as

dA ∧Be ◦− dAe ⊗ dBe.

July 2003 32/51

Encoding quantifier introduction rules

Using quantification at higher-order types, it is a simple matter to encode the
inference rules for object-level quantifiers.

(∀L) b∀Bc ◦− bBxc. (∀R) d∀Be ◦− ∀xdBxe.
Here, the symbol ∀ is used for both meta-level and object-level quantification: at
the object-level ∀ has the type (i→ bool)→ bool. Thus the variable B above has
the type i→ bool.

Meta-level treatment of substitution and eigenvariables directly implements the
appropriate restrictions at the object-level.

Notice that the clause for (∀L) in uncurried form is

b∀Bc ◦− ∃xbBxc.

Thus, these quantifier rules make use of two (dual) meta-level quantifiers.

July 2003 33/51

The cut and initial rules

Until now, all clauses are introduction rules have heads that are (meta-level)
atomic formulas. Encodings of cut and initial rules are different.

The initial rule

B −→ B
is encoded using the clause

(Initial) bBc ...
............
.................................. dBe.

This clause has two atoms in its head and none in its body. The cut rule

∆1 −→ Γ1, B ∆2, B −→ Γ2

∆1, ∆2 −→ Γ1, Γ2

can be specified simply as the clause

(Cut) ⊥◦− bBc ◦− dBe.
This clause has an empty head and two atoms in its body. Other cut-rules are
possible:

⊥◦− ?bBc ◦− dBe ⊥◦− bBc ◦− ?dBe ⊥◦− ?bBc ◦− ?dBe

July 2003 34/51

Cut and initial provide dual information

The initial formula bBc ...
............
.................................. dBe is logically equivalent to bBc⊥ −◦ dBe.

The cut formula ⊥◦− bBc ◦− dBe is logically equivalent to dBe −◦ bBc⊥.

Taken together, we have (the not surprising fact) that left and right are duals of
each other:

dBe ≡ bBc⊥.

Of course, if the cut and initial rules involve some modals (as in intuitionistic or
classical encodings of sequents), then this equivalence will also involve modals.

July 2003 35/51

Advantages of such encodings

• The Forum specifications do not deal with context explicitly (side formulas):
they only mention the formulas that are directly involved in the inference rule.

• The distinction between additive and multiplicative inference rules is achieved
using the appropriate linear logic connective.

• Object-level quantifiers and substitution is handled directly by the meta-logic.

• The structural rules of contraction and thinning can be captured together
using the ? modal.

• Since the encodings yield abstract logic programming, procedures for proof
search and unification in linear logic can be used to help fashion implementations
of object-logics.

• Since the encoding of proof systems is natural and direct, we hope to be able
to use the rich meta-theory of linear logic to help draw conclusions about
object-level proof systems.

July 2003 36/51

Disadvantages of such encodings

• Since the meta-level is commutative, non-commutative proof systems
cannot be encoded directly. One might turn this into a test: can a proposed
non-commutative logic be used at the meta-level to capture non-commutative
object-logics?

• Logics that require hypersequents for their characterized seem unlikely
candidates for this framework.

• This kind of work generally only captures “conventional” proof systems, not
the avant guard ones.

July 2003 37/51

Specification of the LK sequent calculus

(⊃ L) bA ⊃ Bc ◦− ?dAe ◦− ?bBc. (⊃ R) dA ⊃ Be ◦− ?bAc ...
............
.................................. ?dBe.

(∧L1) bA ∧Bc ◦− ?bAc. (∧R) dA ∧Be ◦− ?dAe& ?dBe.
(∧L2) bA ∧Bc ◦− ?bBc. (∨R1) dA ∨Be ◦− ?dAe.
(∨L) bA ∨Bc ◦− ?bAc& ?bBc. (∨R2) dA ∨Be ◦− ?dBe.
(∀L) b∀Bc ◦− ?bBxc. (∀R) d∀Be ◦− ∀x ?dBxe.
(∃L) b∃Bc ◦− ∀x ?bBxc. (∃R) d∃Be ◦− ?dBxe.
(fL) bfc ◦− >. (tR) dte ◦− >.

(Cut) ⊥ ◦− ?bBc ◦− ?dBe. (Initial) bBc ...
............
.................................. dBe.

July 2003 38/51

Specification of the LJ sequent calculus

(⇒ L) bA⇒ Bc ◦− dAe ◦− ?bBc. (⇒ R) dA⇒ Be ◦− ?bAc ...
............
.................................. dBe.

(∧L1) bA ∧Bc ◦− ?bAc. (∧R) dA ∧Be ◦− dAe& dBe.
(∧L2) bA ∧Bc ◦− ?bBc. (∨R1) dA ∨Be ◦− dAe.
(∨L) bA ∨Bc ◦− ?bAc& ?bBc. (∨R2) dA ∨Be ◦− dBe.
(∀L) b∀Bc ◦− ?bBxc. (∀R) d∀Be ◦− ∀xdBxe.
(∃L) b∃Bc ◦− ∀x ?bBxc. (∃R) d∃Be ◦− dBxe.
(fL) bfc ◦− >. (tR) dte ◦− >.

(Cut) ⊥ ◦− ?bBc ◦− dBe. (Initial) bBc ...
............
.................................. dBe.

July 2003 39/51

Introducing polarities

(Pos) bBc ◦− ?bBc.
(Neg) dBe ◦− ?dBe.

The converses of the Pos and Neg implications are, of course, linear logic
theorems.

If one studies the LU (Logic of Unity) logic of Girard, these two clauses are
applied not to all formula but only to certain formulas. Controlling polarity
makes it possible for classical, intuitionistic, and linear logic to co-exist in one
logic. The paper in the proceedings contains a new proof of cut-elimination of
LU.

July 2003 40/51

Modular presentations of classical and intuitionistic logics

The essential difference between the theories LJ and LK is the different set of
occurrences of the ? modal. Let LK0 and LJ0 be the result of removing the cut
and initial rules as well as deleting the ? modal from the LK and LJ.

Define the two new theories

LJ ′ = LJ0 ∪ {Cut, Initial, Pos2} and

LK ′ = LK0 ∪ {Cut, Initial, Pos2, Neg2}.
While LJ ′ is a strengthening of LJ, they can both prove the same object-level,
intuitionistic sequents. Similarly for LK ′ and LK .

July 2003 41/51

Collapsing of modal prefixes

The Cut and Initial rules of LK prove the equivalences

∀B. ?dBe ≡ (?bBc)⊥ ∀B. ?dBe ≡ !dBe ∀B. ?bBc ≡ !bBc.

The Cut and Initial rules of LJ prove the equivalences

∀B.dBe ≡ (?bBc)⊥ ∀B.dBe ≡ !dBe.

In the cases of LJ and LK , that duality forces the collapse of some of modals.

As is well known, linear logic has 7 distinct modalities:

empty, !, ?, ? !, ! ?, ! ? !, ? ! ? .

In the LK theory, however, all those modals collapse into just two when applied
to a b·c-atom or a d·e-atom. In the presence of LJ, they collapse to four when
applied to d·e-atoms.

Such collapsing limits the distinction available for controlling the use of formulas
during proof search.

July 2003 42/51

The calculus LKQ and LKT calculi

(⊃ L) bA ⊃ Bc ◦− dAe ⇒ ?bBc. (⊃ R) dA ⊃ Be ⇒ ?bAc ...
............
.................................. ?dBe.

(∀L) b∀Bc ⇒ ?bBxc. (∀R) d∀Be ⇒ ∀x ?dBxe.
(Cut) ⊥ ◦− dAe ◦− ?bAc. (Initial) bAc ...

............
.................................. dAe.

⊥ ◦− ?dAe ⇒ ?bAc.

(⊃ L) bA ⊃ Bc ⇒ ?dAe ◦− bBc. (⊃ R) dA ⊃ Be ◦− ?bAc ...
............
.................................. ?dBe.

(∀L) b∀Bc ◦− bBxc. (∀R) d∀Be ◦− ∀x ?dBxe.
(Cut) ⊥ ◦− ?dAe ◦− bAc. (Initial) bAc ...

............
.................................. dAe.

⊥ ⇒ ?dAe ◦− ?bAc.

See: Danos, Joinet, and Schellinx, LKQ and LKT: sequent calculi for second
order logic based upon dual linear decompositions of classical implication,
Workshop on Linear Logic 1993.

July 2003 43/51

A non-standard inference system: IIL*

(Initial) bAc ...
............
.................................. dAe ◦− > ◦− atomic(A).

(⇒ R) dB ⇒ Ce ◦− dBe ...
............
.................................. bCc.

(⇒ 1L) bA⇒ Bc ...
............
.................................. dDe ◦− dAe& (bBc ...

............
.................................. dDe) ◦− atomic(A).

(⇒ 2L) b(A⇒ B)⇒ Cc ...
............
.................................. dDe ◦− (bB ⇒ Cc ...

............
.................................. dA⇒ Be) & (bCc ...

............
.................................. dDe).

Due to Dyckhoff; Lincoln, Scedrov, and Shankar [APAL93]; and several others.

July 2003 44/51

Deriving NJ from LJ

From LJ we have:

∀B.dBe⊥ ≡ ?bBc ∀B.dBe ≡ !dBe ∀B.bBc ≡ ?bBc
Thus, all occurrences of bBc and ?bBc can be replaced by dBe⊥. The
introduction rules for implication

(⇒ L) bA⇒ Bc ◦− dAe ◦− ?bBc.
(⇒ R) dA⇒ Be ◦− ?bAc ...

............
.................................. dBe.

are thus transformed to

dA⇒ Be⊥ ◦− dAe ◦− dBe⊥.

dA⇒ Be ◦− dAe⊥ ...
............
.................................. dBe.

which are equivalent to

(⇒ E) dBe ◦− dAe ◦− dA⇒ Be
(⇒ I) dA⇒ Be ◦− dAe ⇒ dBe.

These are the usual ⇒ elimination rule of natural deduction.

July 2003 45/51

Disjunction and existential in LJ

The story for the disjunction and existential is (predictably) more complicated.

(∨R) dA ∨Be ◦− dAe ⊕ dBe.
(∨L) bA ∨Bc ◦− ?bAc& ?bBc.
(∃R) d∃Be ◦− dBxe.
(∃L) b∃Bc ◦− ∀x. ?bBxc).

(∨I)′ dA ∨Be ◦− dAe ⊕ dBe.
(∨E)′ ⊥ ◦− dA ∨Be ◦− (dAe ⇒ ⊥) & (dBe ⇒ ⊥).

(∃I)′ d∃Be ◦− dBxe.
(∃E)′ ⊥ ◦− d∃Be ◦− ∀x.dBxe ⇒ ⊥.

(∨I) dA ∨Be ◦− dAe ⊕ dBe.
(∨E) dEe ◦− dA ∨Be ◦− (dAe ⇒ dEe) ◦− (dBe ⇒ dEe).
(∃I) d∃Be ◦− dBxe.
(∃E) dEe ◦− d∃Be ◦− ∀x.dBxe ⇒ dEe.

July 2003 46/51

Some results about encoded proofs systems

Definition: An introduction clause is a closed flat formula of the form

∀x1 . . . ∀xn[q(¦(x1, . . . , xn))←↩ B1 ←↩ B2 ←↩ . . .←↩ Bm],

where n, m ≥ 0, ¦ is an object-level connective of arity n (n ≥ 0), and atoms
occurring in a body of this clause are either of the form p(xi) or p(xi(y)). Here, p

and q are either b·c or d·e.
Definition: A canonical proof system is a set P of flat Forum clauses such that
(i) the initial clause is a member of P, (ii) exactly one cut clause is a member of
P, and (iii) all other clauses in P are introduction clauses with the additional
restriction that, for every pair of atoms of the form bT c and dSe in a body, the
head variable of T differs from head variable of S. A formula that satisfies
condition (iii) is also called a canonical clause.

July 2003 47/51

Coherent proof systems

Definition: Write the all the left and right introduction rules for the connective
¦ in the uncurried form as

∀x̄(b¦(x1, . . . , xn)c ◦− Bl) and ∀x̄(d¦(x1, . . . , xn)e ◦− Br)

Let C be the cut clause that appears in P. The object-level connective ¦ has
dual left and right introduction rules if ! C ` ∀x̄(Bl −◦Br−◦ ⊥) in linear logic.

A canonical system is called coherent if the left and right introduction rules for
every object-level connective are duals.

July 2003 48/51

To show, for example, that LJ is coherent, the following must be proved.

(⇒) ! Cut2 ` ∀A∀B[(?bAc ⊕ ?dBe)−◦ (dAe& dBe)−◦ ⊥]

(∧) ! Cut2 ` ∀A∀B[(dAe ⊗ ?bBc)−◦ (?bAc ...
............
.................................. dBe)−◦ ⊥]

(∨) ! Cut2 ` ∀A∀B[(?bAc& ?bBc)−◦ (dAe ⊕ dBe)−◦ ⊥]

(∀) ! Cut2 ` ∀B[∃x(?bBxc)−◦ ∀xdBxe−◦ ⊥]

(∃) ! Cut2 ` ∀B[∀x(?bBxc)−◦ ∃xdBxe−◦ ⊥]

(t) ! Cut2 ` 0−◦ >−◦ ⊥
(f) ! Cut2 ` > −◦ 0−◦ ⊥

All are provable in Forum easily. Here, Cut2 is ∀B(dBe −◦ ?bBc−◦ ⊥).

July 2003 49/51

Derivability of one proof system from another

Theorem: If P is a coherent proof system and {C1, . . . , Cn} is a set of canonical
clauses (possibly including the initial clause) then P ` ! C1 & . . . & ! Cn if and
only if forall i = 1, . . . , n, there is a Forum proof of height 3 or less of P ` Ci.

NB: derivability is generally much simpler to establish than admissibility. The
later generally requires induction.

We show now an admissibility result: cut is admissible in a system without cut.

July 2003 50/51

Object-level cut-elimination holds for coherent systems

Theorem: Let P be a coherent system and B be an object-level formula. If
!P ` dBe is provable, then there is an object-level cut-free proof of the Forum
sequent P; · −→ dBe; ·.
Theorem: Determining whether or not a canonical proof system is coherent is
decidable. In particular, determining duality of a right and left introduction rule
connective can be done by bounding proof search to a depth of v + 2 where v is
the maximum number of meta-level atomic subformulas in the bodies of the
introduction clauses. (Usually v = 2.)

Related work:

• Arnon Avron and Iddo Lev, Canonical Propositional Gentzen-Type Systems,
IJCAR 2001.

• Frank Pfenning, Structural Cut Elimination, LICS95.

July 2003 51/51

A brief list of references

• Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov,
Uniform proofs as a foundation for logic programming, Annals of Pure
and Applied Logic, vol. 51 (1991), pp. 125–157.

• Joshua Hodas and Dale Miller, Logic programming in a fragment of
intuitionistic linear logic, Information and Computation, vol. 110
(1994), no. 2, pp. 327–365.

• Dale Miller, Forum: A multiple-conclusion specification language,
Theoretical Computer Science, vol. 165 (1996), no. 1, pp. 201–232.

• Dale Miller and Elaine Pimentel, Using linear logic to reason about sequent
systems. Proceedings of Tableaux 2002, LNCS.

• Jawahar Chirimar, Proof Theoretic Approach to Specification Languages,
PhD Thesis, U. Pennsylvania, Feb 1995. Applications of linear logic to
programming languages, RISC processors, and π-calculus.

