
A Proposal for Modules in �Prolog?

Dale Miller

Computer Science Department
University of Pennsylvania

Philadelphia, PA 19104-6389 USA
dale@saul.cis.upenn.edu

Abstract. Higher-order hereditary Harrop formulas, the underlying log-
ical foundation of �Prolog [NM88], are more expressive than �rst-order
Horn clauses, the logical foundation of Prolog. In particular, various
forms of scoping and abstraction are supported by the logic of higher-
order hereditary Harrop formulas while they are not supported by �rst-
order Horn clauses. Various papers have argued that the scoping and
abstraction available in this richer logic can be used to provide for mod-
ular programming [Mil89b], abstract data types [Mil89a], and state en-
capsulation [HM90]. None of these papers, however, have dealt with the
problems of programming-in-the-large, that is, the essentially linguistic
problems of putting together various di�erent textual sources of code
found, say, in di�erent �les on a persistent store into one logic program.
In this paper, I propose a module system for �Prolog and shall focus
mostly on its static semantics.

1 Module syntax should be declarative

Several modern programming languages are built on declarative, formal lan-
guages: for example, ML and Scheme are based on the �-calculus and Prolog is
based on Horn clauses. Initial work on developing such languages was �rst con-
cerned with programming-in-the-small: problems with programming-in-the-large
were attacked later. At that point, a second language was often added on top of
the initial language. For example, parsing and compiler directives, such as use,
import, include, and local, were added. This second language generally had
little connection with the original declarative foundation of the initial language:
it was born out of the necessity to build large programs and its function was
expediency. The meaning of the resulting hybrid language is often complex since
it loses some of its declarative purity.

Occasionally, programming design is inicted with what we may call the
\recreating the Turing machine" syndrome. Turing machines were important be-
cause they were the �rst formal system that obviously computed and were clearly
easy to implement (at least the bounded version of them). They have not been
considered seriously as programming languages for several reasons, including the

? An earlier version of this paper was �rst presented at the 1992 Workshop on �Prolog.
The work presented here is supported in part by grants ONR N00014-88-K-0633, NSF
CCR-91-02753, and DARPA N00014-85-K-0018.

di�culty of understanding and reasoning about transition tables. Often the de-
velopment of modular constructions in programming languages follows a similar
path: it is generally easy to develop a language for programming-in-the-large
that obviously separates and hides details and for which e�cient implementa-
tions are possible. Often, however, it is di�cult to reason about the meaning of
the resulting language.

In order to avoid this syndrome we should ask that any proposal for pro-
gramming-in-the-large meet several of the following high-level criteria.

1. There should be a non-trivial notion of the equivalence of modules that
would guarantee that a module within a larger program can be replaced by
an equivalent module without making an impact on the behavior of a larger
program. This property is sometimes called representation independence (see
Section 3). Within logic programming, there might be various versions of
this requirement: for example, it may be �ne on some occasions to allow
equivalent modules to produce the same answers although they may produce
them with di�erent multiplicities.

2. Constructs for programming-in-the-large should not complicate the meaning
of the underlying, declarative language. For example, in Prolog, a particular
challenge is to get modular programming to work smoothly with higher-order
programming (uses of call/1).

3. Rich forms of abstraction, hiding, and parameterization should be possi-
ble. Within logic programming, we can ask for the ability to abstract over
individuals, functions, predicates, and collections of program clauses.

4. Modules should support transitions from speci�cation to implementation. In
particular, it would be desirable to have a rich calculus of transformations
of program clauses and modules, including, for example, partial evaluation,
fold/unfold, and even compilation.

5. Important aspects of a module's meaning should be available and veri�ed
without examining the module in detail. Notions of interfaces often support
this property.

6. The additional syntax for programming-in-the-large should also be readable,
natural, and support separate compilation and re-usability.

The success of a proposal for modular programming should not be judged
simply on its obviousness or easy of implementation: it should also be judged on
its ability to support a large number of properties such as these.

There are some logical systems that can be used as a basis of logic pro-
gramming and that contain natural notions of scope for program clauses and
constants. For example, the logic of hereditary Harrop formulas, parts of which
were developed independently by Gabbay and Reyle [GR84], McCarty [McC88a,
McC88b], and Miller [Mil86, Mil89b, Mil90], allows for a simple stack-based
structuring of the runtime program and set of constants. The modal logic of Gior-
dano, Martelli, and Rossi [GMR88] provides an interesting variation on hered-
itary Harrop formulas that has a di�erent runtime structuring of programs. A
recent linear logic re�nement of hereditary Harrop formulas by Hodas and Miller

[HM94] modi�es the stack-based discipline of programs by allowing some pro-
gram clauses to be deleted once they are used within a proof. For a recent survey
of proposals for modular programming in logic programming, see [BLM94].

The approach we shall take in this paper to developing a declarative modular
programming language is to reduce programming-in-the-large to programming-
in-the-small in such a way that modular programming can be explained com-
pletely in terms on the logical connectives of the underlying language. That is, a
linked collection of modules would be mapped to a (possibly large) collection of
(possibly large) formulas. Furthermore, we would like the combinators for build-
ing modules to correspond closely to logical connectives. The static semantics

of a collection of modules is speci�ed by describing how such modules denote
a collection of constants and program clauses. The dynamic semantics of a col-
lection of modules is speci�ed by describing the collection of goal formulas that
can be proved from them. Given the richness of hereditary Harrop formulas and
their variants, the main challenge in specifying the static semantics of modules
appears to be determining the scope and types of constants.

2 A speci�c module proposal

We shall now turn to a speci�c proposal for modules for �Prolog. Since the
underlying logic of �Prolog is that of the intuitionistic (actually minimal) theory
of hereditary Harrop formulas, we shall consider how modules can be mapped
into such formulas. It would be interesting to consider a similar mapping into
either the modal or linear logic variants of these formulas mentioned above. We
shall not, however, consider these other variations here.

2.1 General comments

�Prolog extends �rst-order Horn clauses by allowing higher-order quanti�ca-
tion and by allowing richer collections of logical connectives. As it turns out,
the main scoping primitives for the module facility proposed here do not come
from the higher-order quanti�cation: in fact, the propositional logic fragment
of �Prolog supports the stack-based treatment of programming clauses. Higher-
order quanti�cation does play a role, however, in providing scope for predicate
and function symbols as well as in providing for higher-order programming (an
important abstraction separate from the module proposal here).

Both the proof theoretic and model theoretic treatments of �Prolog's foun-
dation treat a program as a pair containing a signature and a set of clauses. For
example, the proof theoretic treatment of �Prolog given in [Mil90] uses sequents
of the form �;P �! G, where � is a signature (a collection of typed constants)
and P is a set of �-formulas (closed formulas all of whose non-logical constants
are contained in �). Similarly, a canonical model for a large fragment of the
logic underlying �Prolog can be given as a Kripke model where possible worlds
are pairs h�;Pi, where � is a signature and P is a set of �-formulas [Mil92].
Thus it will not be surprising that the module proposal presented will be based

also on pairing signatures with program clauses. Even if �Prolog was not a typed
language signatures would be important since the set of constants available to
a computation changes, and describing how that set of constants changes would
make use of a notion of signature similar to that used here. Gunter [Gun91] also
makes use of signatures in developing a module calculus for �Prolog.

What follows is just a draft of a proposal: much of it has not yet been debated
by those currently using and building implementations of �Prolog. Also, most
experience with �Prolog has been with small programs. Few people have yet
had experience with large �Prolog programs. This proposal is hopefully another
step in determining a viable solution to programming-in-the-large in the logic
programming setting. This proposal should also be relevant to modular pro-
gramming for logic programming based only on �rst-order Horn clauses: several
aspects of this proposal can make sense in that logically weaker setting.

2.2 Persistent store

A persistent store, such as the Unix �le system, is (currently) outside the scope
of the logical core of �Prolog and Prolog. Thus some non-logical predicates are
required at the core of our module facility to deal with the persistent store. In
particular, the predicate

type load string -> o

performs a side-e�ect: it is used to reect some of the persistent store into the
space of meaningful �Prolog objects. As edits are done on �les, new calls to
load are needed to update these objects. An attempt to prove the atom load

name takes the string name as a reference to an actual �le. The resolution of this
string into a �le can be done in possibly many ways. The method used in LP2.7
[MN88] is to maintain a list of Unix path names and to search in them for a �le
whose name is name augmented with \.mod". If such a �le is found, then it is
parsed and type checked. Other methods to resolve the string name with a �le
are possible.

2.3 Kinds and types

�Prolog allows type constructors in order to build compound types. One such
type constructor -> is for building \function space" and it is the only one that
is built into �Prolog. Other type constructors can be declared via the kind

declaration. For example,

kind bool type.

kind list type -> type.

kind pair type -> type -> type.

As this example show, kind expressions are simple expressions involving only
type and ->, with the later nesting only to the right (only \�rst-order kinds"

are allowed). Qualifying a type constructor with a non-negative integer (0 instead
of type, 1 instead of type -> type, etc.) could also have worked here.

Types will be used to qualify constants. Types are any �rst-order term struc-
ture built from type variables and type constructors. The presence of type vari-
ables provides �Prolog with a degree of polymorphism.Type variables are tokens
within type expressions that have an initial uppercase letter. The following are
some declarations.

type nil list A.

type :: A -> list A -> list A.

infixr :: 4.

type append list A -> list A -> list A -> o.

type memb A -> list A -> o.

�Prolog has numerous built-in types, including type o, the type of �Prolog for-
mulas. Lists are given polymorphic type (as in ML) and are built from the empty
list nil and the (in�x) list constructor ::. The term (1::2::3::nil) is of type
(list int) and would be written in Prolog as [1,2,3].

The subsumption relation on types is that familiar from �rst order logic: a
type is subsumed by another type if the �rst is a substitution instance of the
second.

2.4 Static semantics for types and terms

We shall assume that types are properly formed (they respect kind declarations)
and that formulas and terms are well typed. See [NP92] for a fuller discussion
of this aspect of static semantics.

2.5 Signatures

Signatures are lists of tokens assigned kinds and types, and are denoted by the
syntactic variable �. The same token can be given a type and a kind. In�x dec-
larations are also stored as members of signatures. The following is an example
of a signature.

kind list type -> type.

type :: A -> list A -> list A.

infixr :: 4.

type nil list A.

type memb, member A -> list A -> o.

type append, join list A -> list A -> list A -> o.

The two keywords infixl and infixr declare that the following token is to
be parsed and printed as an in�x symbol, with default to either the left or
the right. The number following the token must be in the range 0 to 9, and
denotes the grouping priority of that symbol. A formula is a �-formula if it
is a correctly typed, closed formula all of whose non-logical constants are from

�. Since modules are collections of formulas, we shall use signatures to qualify
(type) modules.

It will be useful to have signature descriptions to represent possibly long
signatures. For this, we shall use the keywords signature, type, kind, infixl,
infixr, accumulate, local, and localkind. The keyword signature is used
to name a signature and the keywords type, kind, infixl, and infixr are used
simply to enumerate the members of a signature. For example, below is a simple
signature.

signature lists.

kind list type -> type.

type :: A -> list A -> list A.

infixr :: 4.

type nil list A.

type memb, member A -> list A -> o.

type append, join list A -> list A -> list A -> o.

Three other keywords are also allowed to describe signatures. The keyword
accumulate takes a list of signature names: its intended meaning is to insert
the listed signatures. The two keywords local and localkind are used to limit
the scope of types and kinds so that they are actually not part of this signature.
The local keyword can take a type declaration as an optional third argument;
similarly with localkind. The following is another example of a signature (as-
suming that the one listed above has been de�ned.)

signature rev.

accumulate lists.

type reverse list A -> list A -> o.

local revaux list A -> list A -> list A -> o.

local join.

Constants can be given multiple types within the same module or within accu-
mulating chains of modules. It is an error if these types are not comparable via
subsumption. Otherwise, the type assumed is the least general of those types.

Signature descriptions are elaborated into signatures using the following rules.
First, eliminate all accumulate keywords by replacing them with the signatures
they name. In doing this, if a constant is given two in�x declarations, then it
is an error if those two declarations are not identical. Second, local can be
dropped by deleting it and any constant of the same name in the accumulated
signature. If localkind is present, then �rst check to see if there are constants
in the signature that have a type containing this type constructor. If so, produce
an error. Otherwise, simply drop this declaration.

The notion of signature containment is given simply as follows: �1 is con-
tained in �2 if

{ for every constant in �1 given a kind, that constant is given the same kind
in �2,

{ for every constant in �1 given a type � , that constant is given a type in �2

that subsumes � , and
{ for every constant in �1 given an in�x declaration, that constant is given
the identical in�x declaration in �2.

This notion of signature containment will be needed for de�ning equal signatures
and for a certain kind of dynamic quali�cation of modules (see subsection 2.10).

The rev signature above thus elaborates to the following signature:

signature rev.

kind list type -> type.

type :: A -> list A -> list A.

infixr :: 4.

type nil list A.

type memb, member A -> list A -> o.

type append list A -> list A -> list A -> o.

type reverse list A -> list A -> o.

We shall assume that there is a special system signature that contains dec-
larations for all logical and built-in constants of a given �Prolog system. For
example, it would contain the fact that the reverse implication symbol :- is an
in�x symbol associating to the left and that it has type o -> o -> o.

2.6 Module syntax

Modules will be built from kinds, types, and program clauses using the following
keywords: type, kind, infixr, infixl, local, localkind, module, accumulate,
and import. The meaning of type, kind, infixr, and infixl, are as they were
for signature descriptions. The keyword module names a module (similar to
the keyword signature). The keywords local and localkind provide scope
to constants and type constructors (respectively) within a module: the dynamic
semantics of localwill be interpreted as an existential quanti�er, as described in
[Mil89a]. The keywords accumulate and import will be described further below.
It is possible for a formula to explicitly mention the name of a module. This is
done using the \module implication" construction. For example, the expression
mod ==> G denotes the formula E => G, where the module mod elaborates to the
formula E. There is also a syntax for \quali�ed module implications" written as
===> mod sig G where mod is a module name and sig is a signature name and
G is a goal formula. This syntax is used in the case that mod is not known at
parse-time: the module that eventually �nds it way into this position must have
a signature that is contained in the signature named by sig { the latter must
be known at parse-time. Thus, it is possible at this point to have a run-time
signature error, which would force computation to quit. Module implications
will be described more below.

Although only the keyword modulemust appear at the front of a module, for
the convenience of parsing and reading modules, we assume that it is an error if
a declaration of a constant appears after the �rst occurrence using that constant.

All declarations are global within a module. Figure 1 contains two examples of
modules.

module lists.

kind list type -> type.

type :: A -> list A -> list A.

type nil list A.

type memb, member A -> list A -> o.

type append, join list A -> list A -> list A -> o.

infixr :: 4.

memb X (X::L).

memb X (Y::L) :- memb X L.

member X (X::L) :- !.

member X (Y::L) :- member X L.

append nil K K.

append (X::L) K (X::M) :- append L K M.

join nil K K.

join (X::L) K M :- memb X K, !, join L K M.

join (X::L) K (X::M) :- join L K M.

module rev.

accumulate lists.

type reverse list A -> list A -> o.

local rev list A -> list A -> list A -> o.

local join.

reverse L K :- rev L K nil.

rev nil K K.

rev (X::L) K (X::Acc) :- rev L K Acc.

Fig. 1. The lists and rev modules.

2.7 Static semantics for modules

The static semantics of modules is used to determine which signature and pro-
gram clauses are intended by a given module name or module description. Since
we are attempting to reduce modules to formulas, recursion between modules
is not allowed: that is, if mod1 imports or accumulates mod2 then mod2 can not
import or accumulate, either directly or indirectly, module mod1.

A signature description is built from a module as follows.

1. Keep all type, kind, local, and localkind declarations as they are.
2. All module names used with import and accumulate keywords, as well as

all module names used in module implications have their signatures accu-
mulated. As far as signatures are concerned, importing is the same as ac-
cumulation. The di�erence between these two declarations appears in their
e�ect on the construction of program clauses.

3. If the \quali�ed module implication" (===> mod sig) G is used, then the
signature named by sig is accumulated instead of the module mod.

Notice that it is possible for local and localkind to provide scope to constants
that are brought into a module via import, accumulate, ==>, and ===> (as
in Figure 1). If import or accumulate is used in a module and there is no
corresponding module with the correct name, then a signature with that name
is used. Thus modules without clauses can simply be written as signatures.

The static semantics of the import keyword construction is a bit more in-
volved than that for accumulate and follows closely the description given in
[Mil89b] and implemented in LP2.7 and eLP [EP89]. If a module mod1 contains
the line

import mod2 mod3.

then the modules mod2 and mod3 are made available (via implications) during
the search for proofs of the body of clauses listed in mod1. Thus, if the formulas
E2 and E3 are associated with mod2 and mod3, then a clause G � A listed in
mod1 is elaborated to the clause ((E2 ^E3) � G) � A. The fact that this gives
a sensible dynamic semantics is explained below.

Notice that a module denotes both a set of program clauses and a signa-
ture. The signature that is inferred from a module can be used as an interface:
when parsing and compiling modules, only the signature of an accumulated or
imported module need be read.

2.8 Environment support

The process of parsing a module will also be accompanied by type checking
and type inference. In particular, a �le containing a module need not explicitly
attribute a type to all constants and variables. In this case, the programming
environmentmust be able to infer a reasonable type for the undeclared constants.
Type inference can be done much as it is in ML: see [NP92] for more discussion
on possible type inference procedures for �Prolog.

Signature checking and inference will also need to be done by the environ-
ment. Checking involves making certain that when modules are accumulated
and imported, constants are not given incomparable types and declarations in
two di�erent signatures.

2.9 Dynamic semantics for modules

I shall assume that the reader is already familiar with the operational (dynamic)
semantics of hereditary Harrop formulas, in particular, with the meaning of

implications and universal quanti�ers in goals. For a description of this aspect
of these formulas, see any one of the following papers: [BLM94, Mil90, MNPS91,
NM88].

Although the meaning of the accumulate keyword is simple, it is not present
in either LP2.7 or eLP. It is similar to the use directive of Prolog/Mali. If a
module mod1 contains the line

accumulate mod2 mod3.

then it is intended that the program clauses in mod2 and mod3 are available at the
end of the list of program clauses listed explicitly in mod1. Thus, when selecting
clauses in this module for backchaining over, accumulated clauses are selected
after those listed in the module.

A description of the import keyword bene�ts from some recent work on
provability in intuitionistic logic. For example, both Hudelmaier [Hud89] and
Dyckho� [Dyc92] have demonstrated that the implication-left rule (of Gentzen's
formulation of sequent calculus [Gen69]) can be re�ned with respect to e�ective
proof search. For example, the implication-left rule can be split into several cases
depending on the form of the implication. The following is one of these rules:

�;P; E;G � D �! G �;P; D �! G0

�;P; (E � G) � D �! G0
:

Consider the case when the formulas D and G0 are the same atomic formula A
(as is the case with backchaining):

�;P; E;G � A �! G

�;P; (E � G) � A �! A
:

Notice that the formula (E � G) � A could be the result of importing a module
E into a module containing the clause G � A. Notice that backchaining on a
clause in this module provides an operational reading of importing: the imported
module is added to the current clauses along with the un-elaborated clauses from
the initial module.

A generalization of this inference rule would be the following:

�;P; E;^n
i=1(Gi � Ai) �! Gj

�;P;^n
i=1((E � Gi) � Ai) �! A

where Aj is equal to A, for some j = 1; : : : ; n. The completeness of this rule can
be found in [KNW93].

In the above inference rule, assume that the formula E is of the form 9�x:D
where the list of typed, bound variables �x are not in the signature �. This
inference rule could then be modi�ed to be

�; �x;P; D;^n
i=1(Gi � Ai) �! Gj

�;P;^n
i=1((E � Gi) � Ai) �! A

:

Thus, backchaining using a clause contained in a module that imports a second
module containing local constants causes the imported module's local constants

(here the variables �x) and clauses (here the formulas D) to be loaded to the
current signature and program.

An important aspect of �Prolog's operational semantics is given by what is
called the AUGMENT search rule: to prove the goal D � G from the signature
� and program P, attempt to prove G from the signature � and the augmented
program P [fDg. An important variation of the AUGMENT search rule is
presented in [KNW93] where the AUGMENT search rule is modi�ed to be the
AUGMENT' search rule. This new rule is used only when the formula D is a
module name and not for more general formulas: thus an operational (but not
declarative) distinction between programming-in-the-large and small arises. The
AUGMENT' rule essentially says that if the current program space already con-
tains a module, that module should not be added again to the current program:
that is, there should be at most one copy of a module in the current program
space at a time. The goal mod ==> mod ==> G is operationally the same as mod
==> G. Such an optimization is unlikely at the level of formulas because of the
cost of checking duplicates and because of the following example. Consider a
goal of the form (p a) => (p X) => G, where X is a logical variable. If we were
to check to see if (p X) is in the current context, we must decide whether or
not to allow the uni�cation of X with a. If such uni�cation is allowed, then a
new source of incompleteness is introduced: for example, if G above is (p b),
then that query would not be proved although it is provable. If uni�cation is
not done, then it is possible for two copies of a clause to appear in the program
space (let G be X = a), the very thing that we were attempting to avoid. Thus, it
seems sensible to avoid dealing with this situation and apply AUGMENT' only
to module names.

2.10 Questions and additional features

Below are some questions and possible additional features that could be incor-
porated in the module system sketched above.

Parametric modules. When a module is de�ned using the module keyword, it
might be possible to add to it a signature over which that module is parametric.
An example could be given as follows.

module {quicksort kind Aty type.

type Order Aty -> Aty -> o}.

type qsort list Aty -> list Aty -> o.

local split Aty -> list Aty -> list Aty -> list Aty -> o.

import lists.

qsort nil nil.

qsort (X::L) K :- split X L Low High, qsort Low R,

qsort High S, append R (X::S) K.

split X (Y::L) (Y::K) M :- Order X Y, !, split X L K M.

split X (Y::L) K (Y::M) :- split X L K M.

The argument signature is described using only the kind and type keywords
and the order in which items are listed in this signature is important. The �rst
occurrence of Aty is a binding occurrence for both the type of Order as well
as the types for qsort and split. The corresponding signature for quicksort
should probably be written as

signature {quicksort kind Aty type.

type Order Aty -> Aty -> o}.

type qsort list Atype -> list Atype -> o.

accumulate lists.

A use of such a module can be given as

?- {quicksort int <} ==> qsort (2::3::4::nil) L.

Parsing this module implication ==> is a bit di�erent from parsing other terms:
in particular, the subexpression {quicksort int <} should be treated by the
parser as a subterm over the signature

type qsort int list -> int list -> o.

accumulate lists.

plus the signature items in the system module, where int and < is are given
declarations. Since uses of parametric modules may contain terms that can be
open, parametric modules would need to be processed using the AUGMENT
and not AUGMENT' search rule.

In this example, it is only the predicate variable Order that is abstracted
and not the clauses that may de�ne the predicate that eventually instantiates it.
Thus, if Order were instantiated with the predicate constant lessthan, clauses
for lessthan could come from the current environment as well as from the
module quicksort itself (if such clauses appeared there).

Using constants to denote modules and signatures. The names for mod-
ules and signatures should be converted to constants that are given types, say
modname and signame, and declarations for these names need to be added (de-
structively) to the system module. In this way, the names of loaded modules
will be available globally in a way that mirrors the persistent store on which the
textual description of modules reside. Thus, ==> and ===> would have the types

kind modname, signame type.

type ==> modname -> o -> o.

type ===> modname -> signame -> o -> o.

For the purposes of compilation and parsing, once a module is parsed and
checked, the signature �le for that module should be placed on the persistent
store. It should only be this second �le that is needed during parsing and com-
piling of other modules. The aux �les generated by Prolog/Mali [BR92] are
essentially signatures that parallel modules.

Quanti�cation over module names. It may be possible to permit variables
to range over modules if we are willing to admit runtime signature checking of
modules. For example, consider a goal of the form (===> mod sig G). Here mod
is a module whose signature is contained in that given by sig: this check would
be done when this goal is attempted. Thus, in determining the static properties
of a goal with this syntax, simply use the signature sig instead of attempting
to determine the signature for mod, which may be a variable. Thus, the goal

?- memb M (mod1::mod2::mod3::nil), ===> M sig G.

would search for a module that can be used to establish the goal G. If all the
modules mod1, mod2, and mod3 have a signature contained in the signature sig,
then no runtime error is generated by this goal. The syntax (===> M sig G)

is essentially the same as (M ==> G) except that M must be restricted by the
signature sig. Notice that it will not be possible to quantify over signature
names.

Other declarations. Other declarations besides those for kind, type, and in�x
might also be allowed for constants and predicates. For example, certain types
could be speci�ed as being open or closed and certain predicates could have
declarations describing how atomic goals could be suspended if certain argument
positions are unbound.

Relationship to other aspects of an interpreter. The interaction of the
module system with input/output and with the top-level of an interpreter (the
read-prove-print loop) must also be considered carefully. A quite sensible ap-
proach to avoiding problems here is to take the approach of many programming
languages (although, not taken by Prolog) of only printing out and reading in
numbers and strings. Since these are globally available (declared implicitly in the
\system" module) problematic interactions between modules and input/output
can be averted. If a program wishes to read or print items of data types other
than numbers and strings, parsers and printers must be written.

3 Formal aspects of this proposal

Connecting modular and higher-order programming.The interaction
between modular programming and higher-order programming can be complex.
In the setting here, it is possible for predicate names to appear within terms

and for the code that describes such predicates to appear and disappear from
the current program. Thus, the clauses de�ning a predicate may not be present
when the predicate inside a term is �nally called. In a recent draft of the evolv-
ing Prolog standard, the resolution of such conicts was based on rather ad hoc
considerations. With the proposal here, we are fortunate to have access to a
higher-order theory of hereditary Harrop formulas [MNPS91] to help us resolve
problems about this interaction. Having explicit signatures, explicit quanti�ca-
tion, and uni�cation support for local constants helps to give more structure to
this problem.

Representation independence. The design of �Prolog has been motivated in
part by the desire to make logic play as large a role as possible in e�orts to ex-
tend the expressiveness of logic programming. Of the many reasons for pursuing
declarative languages, one is the fact that such deep meta-theoretic properties
as cut-elimination and model theoretic semantics can be used to reason about
the text of programs directly. Thus, analyzing programming-in-the-small within
\pure" �Prolog can be attacked using these deep principles. We can hope that
the collections of modules can also be studied using these same principles.

As an example of such reasoning, consider the problem of representation in-

dependence for abstract data types. If we follow the line of argument given in
[Mil89a] (and above) for coding abstract data types, representation independence
follows directly. For example, consider the following two existentially quanti�ed
formulas, E1 and E2, which provide di�erent implementations of queues. (I shall
use the syntactic variable E to range over possibly existentially quanti�ed def-
inite formulas.) Here, we use �Prolog's sigma to denote existential quanti�ers:
informally, we can think of the quanti�er expression sigma qu\(sigma f\(as
the declaration local qu, f at the top of a module.

sigma qu\(sigma f\(

pi L\ (empty (qu L L)),

pi X\(pi L\(pi K\(enter X (qu L (f X K)) (qu L K)))),

pi X\(pi L\(pi K\(remove X (qu (f X L) K) (qu L K)))))).

sigma emp\(sigma g\(

(empty emp),

pi X\(pi L\ (enter X L (g X L))),

pi X\ (remove X (g X emp) emp),

pi X\(pi L\(pi K\(remove X (g Y L) (g Y K) :-

remove X L K))))).

Let ` be intuitionistic provability and let `+ be an enrichment of ` that is
conservative over ` and that also makes it possible to reason about data struc-
tures (that is, induction must be incorporated). Then if we show that E1 and
E2 are equivalent in `+, that is, E1 `+ E2 and E2 `+ E1, then the following
argument is immediate: if �;E1 ` G then �;E1 `

+ G since `+ enriches `; by

cut-elimination (assumed also for `+), �;E2 `+ G; �nally, by conservative ex-
tension, �;E2 ` G. Thus, if a goal G is provable using E1, it is provable using
E2 (the converse is similar). The fact that abstractions are based on logic made
this argument particularly direct.

4 Conclusion

A proposal for programming-in-the-large is given for �Prolog. It is based on in-
troducing keywords and declarations into the basic syntax of formulas and types
in such a way that their declarative meaning can be reduced to the declara-
tive principles of programming-in-the-small. Given that the latter language here
is based on hereditary Harrop formulas and that these formulas have various
structuring and abstraction mechanisms, programming-in-the-large is capable
of exploiting notions of modules, local declarations, importing, and parametric
modules.

References

[BLM94] M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming.
Journal of Logic Programming, 1994. To appear.

[BR92] Pascal Brisset and Olivier Ridoux. The architecture of an implementation
of �Prolog: Prolog/Mali. In Dale Miller, editor, Proceedings of the 1992

�Prolog Workshop, 1992.

[Dyc92] Roy Dyckho�. Contraction-free sequent calculi for intuitionistic logic. Jour-
nal of Symbolic Logic, 57(3), September 1992.

[EP89] Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of
�Prolog. Implemented as part of the CMU ERGO project, May 1989.

[Gen69] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Sz-
abo, editor, The Collected Papers of Gerhard Gentzen, pages 68{131. North-
Holland Publishing Co., Amsterdam, 1969.

[GMR88] L. Giordano, A. Martelli, and G. F. Rossi. Local de�nitions with static
scope rules in logic languages. In Proceedings of the FGCS International

Conference, Tokyo, 1988.

[GR84] D. M. Gabbay and U. Reyle. N-Prolog: An extension of Prolog with hypo-
thetical implications. I. Journal of Logic Programming, 1:319{355, 1984.

[Gun91] Elsa L. Gunter. Extensions to logic programming motivated by the con-
struction of a generic theorem prover. In Peter Schroeder-Heister, editor,
Extensions of Logic Programming: International Workshop, T�ubingen FRG,

December 1989, volume 475 of Lecture Notes in Arti�cial Intelligence, pages
223{244. Springer-Verlag, 1991.

[HM90] Joshua Hodas and Dale Miller. Representing objects in a logic programming
language with scoping constructs. In David H. D. Warren and Peter Szeredi,
editors, 1990 International Conference in Logic Programming, pages 511{
526. MIT Press, June 1990.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intu-
itionistic linear logic. Journal of Information and Computation, 1994. (To
appear). Available from ftp.cis.upenn.edu, pub/papers/miller/ic92.dvi.Z.

[Hud89] J�org Hudelmaier. Bounds for cut elimination in intuitionistic propositional

logic. PhD thesis, University of T�ubingen, T�ubingen, 1989. To appear in
Archive of Mathematical Logic.

[KNW93] Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing a
notion of modules in the logic programming language �prolog. In E. Lamma
and P. Mello, editors, Proceedings of the 1992 Workshop on Extensions to

Logic Programming, number 660 in Lecture Notes in Computer Science.
Springer-Verlag, 1993.

[McC88a] L. T. McCarty. Clausal intuitionistic logic I. �xed point semantics. Journal
of Logic Programming, 5:1{31, 1988.

[McC88b] L. T. McCarty. Clausal intuitionistic logic II. tableau proof procedure.
Journal of Logic Programming, 5:93{132, 1988.

[Mil86] Dale Miller. A theory of modules for logic programming. In Robert M.
Keller, editor, Third Annual IEEE Symposium on Logic Programming, pages
106{114, Salt Lake City, Utah, September 1986.

[Mil89a] Dale Miller. Lexical scoping as universal quanti�cation. In Sixth Inter-

national Logic Programming Conference, pages 268{283, Lisbon, Portugal,
June 1989. MIT Press.

[Mil89b] Dale Miller. A logical analysis of modules in logic programming. Journal

of Logic Programming, 6(1-2):79{108, January 1989.
[Mil90] Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi,

editor, Logic and Computer Science, pages 329{359. Academic Press, 1990.
[Mil92] Dale Miller. Abstract syntax and logic programming. In Logic Program-

ming: Proceedings of the First and Second Russian Conferences on Logic

Programming, number 592 in Lecture Notes in Arti�cial Intelligence, pages
322{337. Springer-Verlag, 1992.

[MN88] Dale Miller and Gopalan Nadathur. �Prolog Version 2.7. Distribution in
C-Prolog and Quintus sources, July 1988.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-
form proofs as a foundation for logic programming. Annals of Pure and

Applied Logic, 51:125{157, 1991.
[NM88] Gopalan Nadathur and Dale Miller. An Overview of �Prolog. In Fifth In-

ternational Logic Programming Conference, pages 810{827, Seattle, Wash-
ington, August 1988. MIT Press.

[NP92] Gopalan Nadathur and Frank Pfenning. The type system of a higher-order
logic programming language. In Frank Pfenning, editor, Types in Logic

Programming, pages 245{283. MIT Press, 1992.

This article was processed using the LaTEX macro package with LLNCS style

