
Visions of CS, 14 April 2010 1/24

Finding Unity in Computational Logic

Dale Miller
Parsifal team

INRIA - Saclay & LIX, Ecole Polytechnique
Palaiseau, France

Visions of CS, 14 April 2010 2/24

Software and hardware correctness is importance

There is an old chestnut for justifying strong foundations.

You can’t build a tall building on a sandy beach.

The modern update requires moving off the beach.

If you are in a canoe, a small leak might be okay; if you are
in a submarine, a small leak is lethal.

Plugging your computer into the internet is similar to descending
into the depth of the sea: if there is a crack in your security, it will
be exploited quickly.

One cannot be relaxed about buggy software and hardware
anymore....

Visions of CS, 14 April 2010 3/24

Logic as a framework for correctness

We expect logic to be secure and universal.

Leibniz hoped for a universal formal language in which all disputes
could be answered simply by

Let us calculate . . . and see who is right.

Logic is secure (sound) and universal (complete): e.g., first-order,
classical logic.

On such a secure foundation, one can build set theory and much of
mathematics.

Visions of CS, 14 April 2010 4/24

A brief history of computational logic

An early dream for automated logic:

Let us implement logic (and why not, since its syntactic
side is organized around a small set of proof principles): we
shall then have an implementation of mathematics.

This earliest work yielded many important lessons:

• Roles of unification, backtracking search, etc.

• Only the simplest problems could be captured in practice with
universal methods.

Visions of CS, 14 April 2010 5/24

Revising the goals of pure automation

Model checking and logic programming represent a continued
interest in the automation of inference rules.

Such systems can achieve hundreds of thousands of inferences per
second, but these inferences are tiny and computation oriented.

Universal methods failed to capture universal solutions:

• In model checking, the state explosion problem limits quickly
potential solutions.

• In logic programming, logic specifications are seldom “good”
algorithms.

Visions of CS, 14 April 2010 6/24

The rise of interactive provers

This early phase of automation was partially supplanted by
interactive proof environments: Nqthm, Mizar, Coq, NuPRL, HOL,
PVS, Matita, etc.

Most of these systems chose either classical, first-order logic with
induction or an intuitionistic, higher-order logic as a suitable
framework for encoding mathematics.

Many systems were influenced directly or indirectly by Automath
and LCF.

Visions of CS, 14 April 2010 7/24

Specialization and fracturing

Paths to successful applications of computational logic system
require specialization.

• Pick a domain and specialize. This approach has lead a number
of highly successful systems: SAT solvers, deductive databases,
type systems, static analysis, logic circuits, etc.

• Work within frameworks. Coq and Isabelle (the “next 700
theorem provers”).

What we now refer to as computational logic is a highly fragmented
topic: both as an applied subject and as a theoretical subject.

Visions of CS, 14 April 2010 8/24

The cost of fragmentation is high

This fracturing of logic comes with a high cost to the discipline and
it greatly diminishes its potential.

• Theoretical and implementation results in one slice are seldom
exported to other slices.

• Tactics, libraries, and packages for one framework may not
transfer to other frameworks.

• People may view their sub-domain as being universal: missing
features are re-invented even if they exist in another slice.

• What should we teach?

Visions of CS, 14 April 2010 9/24

A Methodology for Unity

Step 1: Drop mathematics as an intermediate

The traditional approach to reasoning about computation in
today’s ambitious frameworks follow a two step approach.

1: Implement mathematics by picking a general, well understood
formal system such as first-order logic, set theory, or a
higher-order (constructive) logic.

2: Reduce computation to mathematics. Encode computation via
some model theoretic (denotational) semantics or as an
inductive definition over an operational semantics.

Mathematics does not provide canonical solutions to many
intensional aspects of computation: e.g., algorithms, bindings,
resources.

Visions of CS, 14 April 2010 10/24

A Methodology for Unity

Step 2: Use proof theory as an alternative framework

The proof theory of the sequent calculus, in particular, can provide
a unifying framework for computational logic.

• Proof theory is more intimately related to computation given its
reliance on (mostly) finitary methods.

• Proof theory provides elegant treatments of various intensional
aspects of computation (for example, resources in linear logic
and binders in terms).

• Proof theory provides rich and flexible avenues of representing
and reasoning about computation.

Visions of CS, 14 April 2010 11/24

A Methodology for Unity

Step 3: Develop a big logic with many sublogics

• Combine classical, intuitionistic, and linear logics.

• Allow higher-order, first-order, propositional subsets.

• Allow undefined (atomic) and defined (least and greatest fixed
points) formulas.

Sequent calculi with cut-elimination theorems allows us to view a
wide range of connectives as fitting together orthogonally.

Consistency and “conservative extension” theorems are usually
trivial consequences of cut-elimination.

Visions of CS, 14 April 2010 12/24

A Methodology for Unity

Step 4: Exploit focused proof systems

Focused proof systems allow one to build macro-level inference
rules from micro-level (introduction rules). The resulting
macro-rules also satisfy the cut-elimination theorem.

• Focusing requires assigning polarity to subformulas. Different
choices yield different inference systems: natural deduction,
tableaux, free deduction, etc.

• Via fixed points, computations can be incorporated inside
macro-rules.

• We can engineer a wide range of proof systems.

• Unfocused proofs are just focused proofs with lots of “delays”.

Visions of CS, 14 April 2010 13/24

Unity must stress a common denominator

Unity should embrace

• concurrency, which includes sequentiality,

• relations, which includes functions, and

• non-determinism, which includes determinism.

This view of unity does not embrace denotational semantics nor
the Curry-Howard correspondence (a.k.a. proofs-as-programs).
These seem more related to deep results about particular
formalisms.

The proof search approach to computational specification more
directly supports these elements than does the proof
normalization approach.

Visions of CS, 14 April 2010 14/24

Unity must not be trivial

Some results, some methodology, some discipline must be available
to bring all these results together.

Proof theory and cut-elimination provides

• a common language for formulas and proofs;

• duality between abstraction/hiding (e.g., binding) and
“re-implementation” (e.g., substitution); and

• orthogonality of logical connectives and features; and

• consistency and conservative extension.

Completeness of focused proof systems is another broadly
applicable result.

Visions of CS, 14 April 2010 15/24

A primer for proof theory

Structural rules:

Contraction:
Γ, B, B ` ∆
Γ, B ` ∆

Γ ` ∆, B,B

Γ ` ∆, B

Weakening:
Γ ` ∆

Γ, B ` ∆
Γ ` ∆

Γ ` ∆, B

Identity rules:

B ` B
Initial

Γ1 ` ∆1, B Γ2, B ` ∆2

Γ1, Γ2 ` ∆1, ∆2
Cut

Introduction rules:
Γ, B1, B2 ` ∆

Γ, B1 ∧B2 ` ∆
Γ1 ` ∆1, B1 Γ2 ` ∆2, B2

Γ1, Γ2 ` ∆1,∆2, B1 ∧B2

Γ, B[t/x] ` ∆
Γ,∀xB ` ∆

Γ ` ∆, B[y/x]
Γ ` ∆,∀xB

Visions of CS, 14 April 2010 16/24

Sequents, structural rules, and contexts

Gentzen invented the sequent calculus to solve a problem in the
unity of logic.

• He wanted cut-elimination to work for both classical and
intuitionistic logic.

• His attempts to prove the Hauptsatz using natural deduction
failed and lead him to the sequent calculus.

• Remarkably, the difference between classical and intuitionistic
logic appeared as a restriction on structural rules (no
contraction on the right-hand-side).

With the introduction of linear logic, Girard has expanded on these
themes of using the sequent calculus, the structural rules, and
cut-elimination.

Our proposal for a unity of logic continues this story line with a
new ingredient: focused proof systems.

Visions of CS, 14 April 2010 17/24

Focused proof systems

Invertible introduction inference rules

Γ, B1, B2 ` ∆
Γ, B1 ∧B2 ` ∆

Γ ` ∆, B[y/x]
Γ ` ∆, ∀xB

Non-invertible introduction rules

Γ, B[t/x] ` ∆
Γ, ∀xB ` ∆

Γ1 ` ∆1, B1 Γ2 ` ∆2, B2

Γ1, Γ2 ` ∆1, ∆2, B1 ∧B2

Focused proofs are built in two phases: one with only invertible
rules (the “negative” or “asynchronous” phase); one with only
non-invertible rules (the “positive” or “synchronous” phase).

Visions of CS, 14 April 2010 18/24

The LKF Focused proof systems for classical logic

` Θ, C ⇑ Γ
` Θ ⇑ Γ, C

Store
` Θ ⇑N

` Θ ⇓N
Release

` P, Θ ⇓ P

` P, Θ ⇑ · Focus ` ¬P, Θ ⇓ P
Id (literal P)

` Θ ⇑ Γ, t−
` Θ ⇑ Γ, A ` Θ ⇑ Γ, B

` Θ ⇑ Γ, A ∧− B

` Θ ⇑ Γ
` Θ ⇑ Γ, f−

` Θ ⇑ Γ, A, B

` Θ ⇑ Γ, A ∨− B

` Θ ⇑ Γ, A[y/x]
` Θ ⇑ Γ,∀xA

` Θ ⇓ t+
` Θ ⇓A ` Θ ⇓B

` Θ ⇓A ∧+ B

` Θ ⇓Ai

` Θ ⇓A1 ∨+ A2

` Θ ⇓A[t/x]
` Θ ⇓ ∃xA

P is positive, N is negative, C is a positive formula or a negative
literal, Θ is a multiset of C’s

Visions of CS, 14 April 2010 19/24

Fixed point µ and equality = as connectives

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

` Θ ⇑ Γ, B(µB)t̄
` Θ ⇑ Γ, µBt̄

` Θ ⇓B(µB)t̄
` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n terms.

Here, µ denotes neither the least nor the greatest fixed point.
These distinction arise if we add induction and co-induction.

Visions of CS, 14 April 2010 20/24

Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X) :- nat X.

leq 0 Y :- true.

leq (s X) (s Y) :- leq X Y.

Above, as a logic program and below, as fixed points.

nat = µ(λpλx.(x = 0) ∨+ ∃y.(s y) = x ∧+ p y)

leq = µ(λqλxλy.(x = 0) ∨+ ∃u∃v.(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).

Visions of CS, 14 April 2010 21/24

The engineering of proof systems

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m,n are natural numbers and N1, N2 are negative formulas.

There are exactly two possible macro rules:

` Θ ⇓N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.

Visions of CS, 14 April 2010 22/24

The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[P
A−→ P ′ ⊃ ∃Q′ [Q A−→ Q′ ∧ sim P ′ Q′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.

The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P A−→ P ′ ⊃ ·] is a negative “macro connective”. There
are no choices in expanding this macro rule.

• ∃Q′[Q A−→ Q′ ∧+ ·] is a positive “macro connective”. There can
be choices for continuation Q′.

These macro-rules now match exactly the sense of simulation.

Visions of CS, 14 April 2010 23/24

Benefits: The unity of computational logic

systems

We now see a framework where logic programming, model
checking, and theorem proving exist together.

• Logic programming is choosing a path in an unfolding of a fixed
point (“may” behavior”). Stress is on programs.

• Model checking mixes “must” behaviors (considering all cases)
with “may”. Stress is on models.

• Theorem proving additionally allows the use of invariants to
characterize all (possibly infinite) unfoldings. Stress is on
tactics, etc.

We can now view programs, models, and tactics as different sets of
macro-level rules on the same set of micro-level rules.

Visions of CS, 14 April 2010 24/24

Benefits: Broad spectrum proof certificates

A variety of existing computational logic systems build (implicitly
or explicitly) proofs of various sorts: natural deduction (λΠ),
sequent calculus, tableaux, DPLL, tables, etc.

These proof styles can be described as focused collections of
micro-rules.

An interpreter of micro-rules (for roughly linear logic) can then
become a simple, trustable, and broad spectrum proof checker.

Proof compression can arise when some proof details are dropped
and the proof checker must spend more time searching for a (small)
proof.

