
Finding Unity in Computational Logic

Dale Miller
INRIA Saclay and LIX/École polytechnique

Route de Saclay, 91128 PALAISEAU Cedex, France
dale.miller@inria.fr

While logic was once developed to serve philosophers and mathematicians, it is increasingly serving
the varied needs of computer scientists. In fact, recent decades have witnessed the creation of the new
discipline of Computational Logic. While Computation Logic can claim involvement in many, diverse areas
of computing, little has been done to systematize the foundations of this new discipline. Here, we envision
a unity for Computational Logic organized around recent developments in the theory of sequent calculus
proofs. We outline how new tools and methodologies can be developed around a boarder approach to
computational logic.

Computational logic, unity of logic, proof theory

1. SOFTWARE AND HARDWARE CORRECTNESS
IS CRITICALLY IMPORTANT

Computer systems are everywhere in our societies
and their integration with all parts of our lives is
constantly increasing. There are a host of computer
systems—such as those in cars, airplanes, missiles,
hospital equipment—where correctness of software is
paramount. In the area of consumer electronics, big
changes in the attitude towards correctness has taken
place. A decade ago, bugs and errors in, say, desktop
PCs, music players, and telephones, were mostly
nuisances and were not “life-threatening”: such flaws
were fixed by rebooting the system or by living without a
feature. Today, however, these same devices are tightly
integrated into networks and bugs and errors open us
to attacks from malicious software, breaches in security,
loss of anonymity, etc.

Attempting to establish various kinds of correctness-
related properties of software systems is no longer an
academic curiosity. A typical platitude used to motivate
the development of a strong basis for the correctness
of computer systems was something like “You can’t
build a tall building on a sandy beach; one needs a
solid foundation.” The modern updating of that statement
requires moving off the beach into the water: “If you are
in a canoe, a small leak might be manageable: if you are
in a submarine, a small leak is lethal.” As it is painfully
clear today, plugging your computer into the Internet is
similar to descending into the depth of the sea: if there is
a crack in your security, it will be exploited quickly. One
cannot be relaxed anymore about leaks.

Our ability to provide at least some formal guarantees
about software systems will be directly related to our
ability to deploy new functionality and services. The de-
manding requirements in safety critical systems matched
with our inability to formally establish their correct behav-
ior means that developments and deployments of, say,
avionic systems or high-speed train switches, moves at
a glacial pace and clings to old technological solutions
that have no history of failing. If we cannot distinguish
applets from viruses, we cannot expect people to really
use the rich set of flexible services organized around
mobile code. Our future could resemble William Gibson’s
novel Virtual Light, in which network security was so bad
that important data was transferred by bikers carrying
hard-disks! If we cannot produce software with at least
certain guarantees, the development and deployment of
all the new features and services that we all hope to
see in our hardware and software system will be greatly
delayed.

2. LOGIC IS A KEY

It is to logic that researcher, designers, and practitioners
turn to help address the problems of establishing formal
properties. The importance of logic comes, in part,
because of its universal character and the rich set of
results surround it. Speaking most broadly, logic plays
two main roles. In one such role, logical expressions
themselves form the core programming languages:
functional and logic programming paradigms start here.
In this role, logic does not guarantee correctness per
se but the many deep theoretical properties that have
been established for logic can be directly applied to
the problem of establishing formal properties. A second

c© The Authors. Published by the British
Informatics Society Ltd. 1
Proceedings of . . .

Miller

and more popular role for logic involves using logical
expressions to specify something about how a program
actually works. In this setting, there are two languages,
the ad hoc one of the programming language and the
principled one of logic.

Not only can logic be used to formally establish
correctness (e.g., proving a program correct), its
universal character leads it to be used on a language for
communicating meaning between different entities. For
example, humans designers who wish to communicate
precisely a programming language’s meaning to users
or implementers of that language will use logic-
based formalism to capture such meaning. Also, when
machines need to exchange data and programs, logical
expressions, via typing, memory layout specifications,
correctness certificates (e.g., in the proof carrying code
setting), etc, are often written using logic.

Indeed, logic plays a role in computer science similar
to that played by differential and integral calculus in the
physical sciences and engineering disciplines [12, 21].
Twenty years ago, Martin Davis [12] observed that the
mathematical logic had already an intimate relationship
with computer science.

When I was a student, even the topologists
regarded mathematical logicians as living in
outer space. Today the connections between
logic and computers are a matter of engi-
neering practice at every level of computer
organization. . . . Issues and notions that first
arose in technical investigations by logicians
are deeply involved, today, in many aspects
of computer science.

Since these words were written, the deep involvement of
these two disciplines has grown so rich that it has given
rise to the new field of computational logic.

3. ... BUT LOGIC HAS BEEN BADLY FRACTURED

While there is some recognition that logic is a unifying
and universal discipline underlying computer science, it
is far more accurate to say that its universal character
has been badly fractured in the past few decades along
a number of axes.

• Logic has entered into a wide range of application
areas, including, for example, computer architec-
ture, databases, software engineering, program-
ming languages, computational linguistics, and ar-
tificial intelligence. These different application ar-
eas have been pushing their own agendas on how
logic should be exploited.

• Many logics have been invented in recent years.
The number of adjectives that are now routinely

added to the word “logic” is frightening: first-order
/ higher-order, classical, intuitionistic, linear, modal
(S4, S4, S4.1, S4.2, . . .), temporal (LTL, CTL, . . .),
deontic, dynamic, quantum, etc. With so many
adjectives in common use today, one wonders if
there is any sense to insisting that there is a core
notion of “logic”.

• There are a large number of computational logic
tools: model checkers, interactive and automatic
theorem provers, logic circuit simulators/testers,
type inference systems, etc. Within each of
these categories, there are a plethora of specific
techniques and tools that often have little
relationship to one another.

The use of the word “fractured” here is deliberate.
Developing many different sub-disciplines is a typical
development within maturing disciplines: for example,
within mathematics, there are a great many adjectives
applied to the term algebra. In this case, however, many
of those sub-disciplines of algebras were developed
to provide for commonality by making more abstract
previously developed and disparate algebraic structures.
But one sees little effort within the literature of
computational logic to provide for commonality.

Specialization has made it possible for logic to contribute
significantly in these many application areas and to
attract the interest of many in industry. On the other
hand, this fracturing of logic comes with a high cost
to the discipline and it greatly diminishes its potential.
In particular, theoretical and implementation results
achieved in one slice of applied logic are seldom
exported to other slices. Similarly, great efforts are
applied to develop tools, libraries, and packages for one
tool that are closely related to large efforts based in other
tools. More serious still is that people working in one
narrow domain will sometimes think of their sub-domain
as being the universal formalism: since they are missing
the bigger picture, they invent ways to make their domain
more expressive even when much of what is needed is
already accounted for in (other slices of) logic.

In this paper, we argue that there needs to be forces that
are pushing against this fracturing and that attempts to
see a core of computation logic as being based on few
but deep concepts.

4. THE STATE-OF-THE-ART

4.1. The early dreams for logic

One of the first dreams that one has for logic is that
it is universal in its scope. First-order classical logic,
for example, can be formalized using both syntactic
means (proofs) and semantic means (truth) and it can be
proved that these characterize the same set of formulas:
namely, the theorems. On such a secure foundations,

2

Finding Unify in Computational Logic

one can build, for example, set theory. It was natural,
therefore, to consider universal (complete) methods for
implementing logic as a way to automate proofs in
mathematics and computer science. A slogan of early
work in computational logic might have been: “universal
logic and universal implementation implies universal
solutions”.

Early dreams in automated reasoning, model checking,
and logic programming focused on simple and theoret-
ically complete methods with the hope that they would
be yield comprehensive solutions in practice. The hope
was to have one framework and one implementation that
provided universal applicability.

Automated and interactive provers In the 1960-
1970’s, there was a great deal of work implementing
automated systems for first-order logic that was based
on such complete paradigms as resolution [38] or on
conditional rewriting [8]. Such early work produced
a great deal of information about proof strategies
and methods to implement formal logical systems
effectively (unification, backtracking search, rewriting
strategies, etc). Another lesson from these early
systems was more disappointing: those systems came
no where near achieving the ambitions of effective,
universal deployment. Only “toy” theorems could be
proved automatically. Furthermore, the nature of logic
automation was such that the usually speed up in
program execution that resulted from improvements in
hardware and compilers would not make much of a
dent in the “state-explosion” that occurred with such
provers. Starting around the same time (and continuing
to today), a number of interactive proof environments for
mathematics were developed: Automath [13], Nqthm [8],
Mizar, [39], NuPRL [9], Coq [10], PVS [35], and Matita
[4]. (See, for example, Geuvers’s recent survey article
on proof assistants [17].) By in large, these system
chose either first-order logic with induction or a higher-
order constructive logic based on intuitionistic logic as
a suitable framework for encoding mathematics. Also,
while interaction was central to the functioning of such
systems, they all incorporated the ability for integrating
and extending automation to some extent, often using
tactics and tacticals. These kinds of interactive and
largely programmable theorem provers have turned
them into proof editors and proof checkers but this move
has greatly extended their effective deployment.

Model checkers and logic programming By shifting
one’s attentions to simpler theorems involving weaker
properties (for example, shifting from full correctness
to detecting deadlocks), one can employ logic and
deduction using the ideas and techniques found in
model checking [15, 37]. While great successes can be
claimed for such systems, the hope of having a universal
approach to deduction in the model checking setting
again quickly run into the state explosion problem.

If we are willing to deal with still weaker properties,
logic programming techniques can be used to explore
algorithmic aspects of logic. The Prolog language, for
example, exploits the Horn clause fragment of first-order
logic to provide a programming language that can, after a
fashion, turn some declarative specifications into proper
programs. But again, the universality of this dream of
deductively describing a relationship and then getting an
effective implementation of that relationship turned out to
be largely illusory.

4.2. Making an impact by specialization

Much of this early work yielded important results and
lessons. One of those lessons was, however, that
universal methods were usually of little practical use and
that the hope to deploy them in even rather weak settings
was naive. This early work then lead to a new phase in
the employment of logic for mathematics and computer
science.

Pick domains and specialize One way to make
deductive systems more practical involves having
researchers focus on applications and sub-domains.
Once an application domain is narrowed significantly,
specific approaches to deduction in that setting could
be developed. There have been any number of
highly successful examples of this style of narrow-
and-specialize, including, for example, SAT solvers,
deductive databases, type systems, static analysis, logic
circuits, etc. Such systems are making routine and
important contributions in day-to-day practice.

Many different frameworks In [36], Paulson de-
scribed his Isabelle theorem prover as a generic frame-
work in which the “next 700 theorem provers” could
be written. The argument (largely implicit in that paper)
is that writing a theorem prover is a difficult task and
future designers of theorem provers should work within
an established framework. Such a framework can help
to ensure correct implementations of core deduction fea-
tures as well as provide for basic user-interfaces, and in-
tegration with various specialized inference engines (for
example, Presburger arithmetic). Such frameworks are
now popular choices and allow proof system developers
to either explicitly designed new logics (as is the case
in Isabelle) or extended the deductive powers of a core
prover using various library and package mechanisms
(as is the case in many other provers such as Coq, HOL,
and NuPRL). Working entirely within a particular logical
framework is certainly a conservative perspective that is
the appropriate choice in many situations.

4.3. Verification is too big for formal methods

The universal applicability of logic and its associate
proof methods on computer system verification has also
been attached from another angle. De Millo, Lipton, and
Perlis [31] have stressed that formal proofs (in the sense

3

Miller

often attributed to mathematics) is unlikely to work for
the verification of computer systems give that the latter
involves social processes, evolving specifications, and
remarkably complex specifications and programs.

On many occasions in computer science, a negative
result can be productive: witness, for example, who
the undecidability of the halting problem leaded
the extensive study of specialized domains where
decidability can be established. Similarly here: if one
accepts the negative premise that logic and formal
proof cannot solve the problems of verifying computer
systems, then one might expect to see an explosion
of many logics and proofs used on many smaller
aspects of building correct software. For example, the
social processes involved in building computer systems
must communicate precisely among various people
involved in that process. There are many things that
need to be communicated between the members of
the society (tools, types, static analyzes, operational
semantics, examples, counter-examples, etc). Logic,
with its precision and its possibility of universality, can
and has been applied. Not all things, of course, are logic
but logic offers an extremely valuable aid in defining,
formalizing, automating, and communicating many such
aspects of software systems. Thus, the impossibility of
using one logic and formal method leads to the need to
have many specialized logics.

5. BENEFITS OF A UNIFYING FRAMEWORK

Some communities realize this fractured nature of logical
systems and propose ad hoc solutions: standardized
challenge problems, standardized frameworks, XML
formats for formulas and proofs, etc. Other researchers
are involved with finding protocols for plugging one
tool into another tool. While well engineered and
inter-operating systems can have important practical
consequences, we shall insist that we must also
develop a broader and more expressive foundation for
computational logic, one where the many applications of
logic can be explained with a common foundation.

There are a number of important consequences to
providing such a common framework to logic and its
uses in computer systems.

Transfer of implementation techniques A formal
and rich foundation for a wide variety of computational
logic systems will allow for researchers and developers
to see that solutions they have developed in one area—
e.g., data structures, algorithms, or search heuristics—
can be transfer to other areas.

Rich integration of different technologies In a
similar way, it should be possible to see that different
tools are, at least formally, performing deduction in the
same kind of proof systems as another tool: as such,

rich forms of integration of those tools should be made
possible. For example, it is possible for model checking
and inductive/coinductive theorem proving to be seen
as building sequent calculus proofs in a logic with fixed
points [7, 5]. Such a common deductive setting can be
used to more tightly integrate these two rather different
approaches to logic.

New breed of computational logic systems One
reason to push for new foundations over engineered
integration is that such new foundations should make
it possible to provide for completely new approaches to
the architecture and scope of logic-based systems. For
example, linear logic [18] was presented as a revolution
in computation logic and it has, indeed, made it possible
to rethink a great deal of the conceptual nature of logic.
Today, we have much richer ways of thinking about the
structural rules (e.g., contraction, weakening), about the
role of games and interaction in logic, about concurrency
in proofs, and about organizing inference rules into large-
scale inference rules.

Teaching of logic An extremely important aspect of
the foundation of any science is its ability to explain
clearly the totality of the science. A new foundation
should provide a meaningful way to organize and present
most aspects of computational logic systems. In turn,
such developments will lead to new ways to teach logic
so that its unity can be stressed.

6. METHODOLOGY

What exactly is logic? Since we are exploring the
frontiers of what logic can be for computer science, we
do not try to completely define it here. On the other hand,
we have the most ambitious plans for logic. In particular,
we shall always use it as a term that can be ascribed
“beauty” in the sense of the following quotation.

We ascribe beauty to that which is simple; which has no
superfluous parts; which exactly answers its end; which
stands related to all things; which is the mean of many
extremes.

— Ralph Waldo Emerson, The Conduct of Life,
“Beauty” (1860)

In particular: logic is simple, given by its natural and
universal syntax and small sets of inference rules; logic
has no superfluous parts, which is the promised of
such formal results as the cut-elimination theorem; logic
exactly answers its ends for describing static truth or
computational dynamics, as witnessed by soundness
and (relative) completeness results; logic is related to
all things computational and its role in the foundations
of computer science is often compared to the role
of calculus in the foundations of physics [21]; and,
finally, logic is the mean of many extremes given its
intimate use in a range of “extremes” from databases, to

4

Finding Unify in Computational Logic

programming languages, to type systems, to certificates,
to verification, to model checking, etc.

We shall also not try to find a single setting to discuss all
things that have been referred to as logic. In particular,
we shall mostly limit ourselves to classical, intuitionistic,
and linear logic since they have a long and well
established relations to computing. Many other logics,
such as modal, spatial, tense, etc, will be explicitly left
out of this discussion, even though many of them can be
understood as embeddings into or modular extensions
to one of these core logics. Even with a focus on three
core logics, there are a many ways that these can
be elaborated (eg., propositional versus quantifications,
first-order versus higher-order quantification, with or
without equality) and there are even more proof systems
for these logics (sequent, natural deduction, tableaux,
Hilbert-style, matrix methods, etc.).

6.1. Harder problems, better solutions

One should not fear attacking problems of integration
since they often lead to better and more elegant solu-
tions. For example, several computational logic systems
often limit themselves to the classical theory of first-order
Horn clauses (systems such as logic programming, rule-
based systems, and deductive databases). This partic-
ular logic is, however, so weak that many properties
about it holds almost by accident: for example, on this
set of formulas, classical, intuitionistic, and linear logics
coincide. It is not until one considers extensions to Horn
clauses that one finds deeper phenomena. For example,
it was moving to higher-order versions of Horn clauses
that the sequent calculus was first used to replace more
traditional resolution proof systems for Horn clauses.
Once sequent calculus was introduced, a wealth of proof
theory results and innovations (such as linear logic,
focused proof systems, etc) could to be applied to the
proof-search (logic programming) paradigm. Ultimately,
it was discovered that a certain kind of completeness
theorem for logic programming [28] could be applied to
all of (linear) logic [3]. Finally, logic programming and
theorem proving for full logics were integrated into a
common framework.

6.2. The unity of (computational) logic

We shall look to logic to be a universal language
and proof theory as a universal framework to organize
and infer structure about both logic and computation.
Logic can be composed of a great many connectives,
quantifiers, etc. Proof theory teaches us that if we can
achieve cut-elimination for logics, then we can expect
that most features of logic fit together orthogonally.
That is, they do not interact or, if they interact, that
interaction is made evident and controlled. As a result
of this orthogonality, we have the opportunity to see
logic as a rather large collection of possible connectives,
quantifiers, and other operators (e.g., exponentials,

modals, fixed points [7], and subexponentials [33]) and
that we can choose from these as we wish. In this
sense, the propositional classical logic system used
within SAT solvers is, in fact, just one of many subset of,
say, higher-order linear logic. Modern proof theory also
teaches us that contexts and their associated structural
rules (in contrast to introduction and elimination rules)
play an important role in describing logics. But again,
the choice of what structural rules to use is largely
orthogonal to other choices. For example, Gentzen’s
original version of the sequent calculus was developed
to unify the treatment of classical and intuitionistic logic:
the difference between these two logics was governed
by structural rules. Girard later showed that linear logic
could fit into this same scheme by further varying
the structural rules. Richer integration is also possible,
where, say, linear and classical connectives can exist
together [19, 24].

It is also clear that there are limits to some integrations of
logic. In particular, if logic is use to specify computations
(i.e., by having proofs be computation traces) then
reasoning about such computations might well need to
be based on a different logic. The standard division of
object-level and meta-level reasoning works here. Even
in this setting, some important integration is still possible:
in particular, terms structures and their associated
binding operators can be shared between the meta-logic
and the object-logic.

6.3. Reconsidering the role of mathematics

It seems important to reconsider the relationship
between mathematics and computation. In many ways,
mathematics does not provide a good framework
for understanding computation. While denotational
semantics of, say, the λ-calculus might well be
considered a proper mathematical topic, results in, say,
denotational semantics, while deep and revealing, seem
more crafted to an applications and less suited as a
general framework for organizing a wide range of topics.

The roles for logic we consider here deal with not
only specifying computation but also reasoning about
computation: reasoning about mathematics is not, a
priori, our concern. This choice of emphasis actually has
significant consequences. In particular, the traditional
approach to reasoning about computation in almost all
ambitious theorem proving systems today follows the
following two step approach.

Step 1: Implement mathematics. This step is achieved
by picking a general, well understood formal
system. Common choices are first-order logic,
set theory, or some foundation for constructive
mathematics, such as a higher-order intuitionistic
logic. Such a framework is then usually provided
with rich abstraction and modularity mechanisms
that aid in the construction of large theories.

5

Miller

Step 2: Reduce computation to mathematics. Computa-
tion is generally encoded via some model theoretic
semantics (such as denotational semantics) or as
an inductive definition over an operational seman-
tics.

A key methodological element for us here is that we
shall drop mathematics as an intermediate and attempt
to find a more direct and intimate connections between
computation, reasoning, and logic. One main reason that
reasoning about mathematics and about computation
can differ is that many elements of computation have
rather “intensional” treatments whereas the treatment
of things mathematical often are directly treated
extensionally. The notion of algorithm is an example,
of course, of this kind of distinction: there are many
algorithms that can compute the same function (say,
the function that sorts lists). In a purely extensional
treatment, it is functions that are represented directly
and algorithm descriptions that are secondary. If an
intentional default can be managed instead, then
function values are secondary (usually easily captured
via the specification of evaluators or interpreters.

For a more explicit example, consider whether or not the
formula

∀wi. λx.x 6= λx.w

is a theorem. In a setting where λ-abstractions denote
functions (the usual extensional treatment), we have not
provided enough information to answer this question: in
particular, this formula is true if and only if the domain
type i is not a singleton. If, however, we are in a setting
where λ-abstractions denote syntactic expressions, then
it is sensible for this formula to be provable since no
(capture avoiding) substitution of an expression of type
i into λx.w can result in λx.x.

Computation is full of intensional features besides
bindings within syntax, including, for example, the usage
of resources such as time and space. Mathematical
techniques can, of course, treat intensionality, but
experience with such treatments demonstrate that they
do not reach an acceptable level of “canonicity”. Logic
and, particularly, proof theory, can provide rather direct
treatments of many of these intensional aspects of
computation.

Of course, mathematics, as something foreign and
different from computation, might provide interesting and
fresh challenges to our thinking of computation. One
may have mathematical structures based on, say, partial
orders or topological constructions, that pose interesting
insights into how computation might be achieved. In a
similar fashion, the physical world might well provide
interesting ways to rethink computation: the example of
quantum computing immediately come to mind.

6.4. Proof theory as an alternative approach to
meaning

“Proof theory semantics” is a term that has been
used for a number of years, largely in the narrow and
philosophical context of determining the proper meaning
of the logical connectives [22]. Such a style semantics
uses the inference rules (the “uses” of the connectives)
as the origin of meaning and then uses the meta-theory
of, for example, sequent calculus as the formal setting for
organizing that meaning. Girard’s famous slogan “From
the rules of logic to the logic of rules” [20] is another
illustration of the switch from looking for the semantics
of inferences to looking that the semantics offered by
inference rules. Here, we shall develop a plan proposed
in [26] to exploit proof theory as a vehicle for describing
semantics within the broader setting of computation.

Example: To illustrate the immediateness of using
proof theory to provide meaning, we present a simple
example. Alan Turing encoded computation using
strings, machines, and computation traces. He used
these then to reason about the power of computing
via standard enough mathematical techniques (inductive
definitions, set-theoretical constructions, encodings as
functions, etc). While this mathematical framework
was, of course, highly appropriate for his particular
goals of proving the first theorems about limitations
of computation, that framework has not served us
well when we wish to reason about the meaning of
specific computations. In the proof theory approach to
relational programming, computation can be described
using terms, formulas, and cut-free proofs. On one hand,
such cut-free proofs encode computation traces in much
the same way as Turing’s computation traces: however,
there is a great deal of structure and many formal
results surrounding sequent calculus proofs. These
proof theory results make it possible to reason richly
about computation using devices involving abstractions,
substitutions, and cut-elimination [27].

6.5. Exploiting what proof theory does not resolve
canonically

While proof theory provides a remarkably robust and
deep analysis of abstraction, substitution, and duality,
there are several computational phenomena that it
alone does not provide information. For examples, proof
theory does not offer canonical treatments of first-
order quantification, the structure of worlds in modal
logics, focusing polarity of atomic formulas, and the
exponentials. Such non-canonical aspects of proof
theory can often be exploited by the computer scientist.
For example, first-order quantification is richly applied in
a wide range of applications with greatly varying domains
of quantification. Changes in the assignment of focusing
bias for atomic formulas in proof search allows one to
mix forward-chaining and backward-chaining style proof
search to suit applications [23]. Linear logic introduced

6

Finding Unify in Computational Logic

the exponentials in order to account for unbounded
behaviors in logic but those exponentials are not given
a canonical treatment by any standard proof theory
techniques [11]. Thus non-canonicity allows one to
introduce the notion of subexponentials [33] which, in
turn, provides a notion of “locality” to logic.

7. FOCUSED PROOF SYSTEMS

One of the most exciting developments in recent years
within proof theory involves focused proof system. While
“focusing-like” phenomena have been observed in proof
systems back in the mid-1980s [28], it was Andreoli’s
focused proof system [3] for linear logic [18] that really
transformed the topic. The earlier results were rather
limited, both in their “focusing behavior” and in the
subsets of logic to which it could be applied. Andreoli’s
result, however, applied to a full and rich logic.

For the sake of concreteness, we present an example of
a focused proof system. In particular, the LJF focused
proof system for intuitionistic logic is given in Figure 1.
To understand this proof system, we need to define what
is meant by polarity in intuitionistic logic. Atoms in LJF
are arbitrarily divided between those that are positive
and those that are negative. Positive formulas are of
the following forms: positive atoms, true, false, A ∧+ B,
A ∨ B and ∃xA. Negative formulas are among negative
atoms, A∧−B, A ⊃ B and ∀xA. Sequents in LJF can be
interpreted as follows:

1. The sequent [Γ],Θ −→ R is an unfocused sequent.
Here, Γ and Θ are both multisets and Γ contains
only negative formulas and positive atoms. The
symbol R denotes either the formula R or the
“bracketed” formula [R]. End sequents of LJF
proofs usually have the form [],Θ −→ R.

2. The sequent [Γ] −→ [R] is a special case of the
previous sequent in which Θ is empty (and, hence,
not written) andR is of the form [R]. Such sequents
denote the end of the asynchronous phase: proof
search continues with the selection of a focus.

3. The sequent [Γ] A−→ [R] represents left-focusing
on the formula A. Provability of this sequent is
related to the provability of Γ, A Ì R.

4. The sequent [Γ] −A→ represents right-focusing on
the formula A. Provability of this sequent is related
to provability of the sequent Γ Ì A.

There are several things to observe about this proof
system.

1. Proof search (reading the inference rules from
conclusion to premise) groups all invertible
inference rules into one “phase”, that is, a grouping
of inference rules all without a focus (either left or
right).

2. When no invertible rules remain then a formula
from either the left or right-hand-side is picked
as the focus: a focused phase is the result
of performing introduction rules on the focused
formula.

3. The initial rules are only available with focused
sequents.

4. Asynchronous formulas on the left are treated
linearly (they are deleted once used) whereas the
only formulas that are contracted are negative
formulas on the left.

5. Completeness for LJF is stated as follows: If Ì B
then for every possible assignment of polarity to
atoms, the sequent [·] −→ B has a proof in LJF.

Polarity assignment to atoms does not affect provability
but it can have an important consequence on the size
and shape of proofs. For example, consider the Horn
clause specification of the Fibonacci series:

{fib(0, 0), fib(1, 1),

∀n∀f∀f ′[fib(n, f) ⊃ fib(n+ 1, f ′) ⊃ fib(n+ 2, f + f ′)}.

If all atomic formulas are given a negative bias, then
there exists only one focused proof of fib(n, fn): this one
can be classified as a “backward chaining” proof and its
size is exponential in n. On the other hand, if all atomic
formulas are given a positive bias, then there is an infinite
number of focused proofs all of which are classified as
“forward chaining” proofs: the smallest such proof is of
size linear in n.

This one focused proof system is rather general: it
subsumes all other known focused proofs systems for
intuitionistic logic in the literature. To illustrate how this
proof system can account for other proof systems,
consider only the implicational fragment of intuitionistic
logic. Figure 2 derives the rules for this fragment under
the assumption that all atomic formulas are negative
while Figure 3 derives the rules for this fragment under
the assumption that all atomic formulas are positive. The
proof system with negative atoms not only describes
“goal-directed”, “top-down” proofs, it can also be used to
describe simply typed λ-terms that are in head-normal
form. On the other hand, the proof system with positive
atoms not only describes “program-directed”, “bottom-
up” proofs, it can also be used to describe simply typed
λ-terms that are in administrative normal form [16].

When important new insights into the foundations of
a topic (here, computational logic) are discovered, one
expects to see many new results ripple out from that
insight. A few of these new developments based on
focused proofs are outlined below. In general, we work
on focused proofs system as a cornerstone in our
approach to describing a unity to computational logic.
We outline our major rationale for this perspective.

7

Miller

Decision and Reaction Rules

[N,Γ] N−→ [R]
[N,Γ] −→ [R]

Lf
[Γ] −P→

[Γ] −→ [P]
Rf

[Γ], P −→ [R]

[Γ] P−→ [R]
Rl

[Γ] −→ N

[Γ] −N→
Rr

[C,Γ],Θ −→ R
[Γ],Θ, C −→ R

[]l
[Γ],Θ −→ [D]
[Γ],Θ −→ D

[]r

Initial Rules

[P,Γ] −P→
Ir, atomic P

[Γ] N−→ [N]
Il, atomic N

Introduction Rules

[Γ],Θ, false −→ R
falseL

[Γ],Θ −→ R
[Γ],Θ, true −→ R trueL [Γ] −true→

trueR

[Γ] Ai−→ [R]

[Γ] A1∧−A2−→ [R]
∧−L [Γ],Θ −→ A [Γ],Θ −→ B

[Γ],Θ −→ A ∧− B ∧−R

[Γ],Θ, A,B −→ R
[Γ],Θ, A ∧+ B −→ R ∧

+L
[Γ] −A→ [Γ] −B→

[Γ] −A ∧+B→
∧+R

[Γ],Θ, A −→ R [Γ],Θ, B −→ R
[Γ],Θ, A ∨B −→ R ∨L

[Γ] −Ai→
[Γ] −A1∨A2→

∨R

[Γ] −A→ [Γ] B−→ [R]

[Γ] A⊃B−→ [R]
⊃ L [Γ],Θ, A −→ B

[Γ],Θ −→ A ⊃ B ⊃ R

[Γ],Θ, A −→ R
[Γ],Θ,∃yA −→ R ∃L

[Γ] −A[t/x]→
[Γ] −∃xA→

∃R
[Γ]

A[t/x]−→ [R]

[Γ] ∀xA−→ [R]
∀L [Γ],Θ −→ A

[Γ],Θ −→ ∀yA ∀R

Figure 1: The Intuitionistic Sequent Calculus LJF. Here, P is positive, N is negative, C is a negative formula or positive atom, and D
a positive formula or negative atom. Other formulas are arbitrary. Also, y is not free in Γ, Θ, or R.

[Γ] −→ [A]
[Γ] −→ A

[]r
[B,Γ] B−→ [A]
[B,Γ] −→ [A]

Lf
[Γ] A−→ [A]

Il, atomic A

[Γ] −→ B [Γ] C−→ [R]

[Γ] B⊃C−→ [R]
⊃ L,Rr

[Γ, B] −→ C

[Γ] −→ B ⊃ C
⊃ R,Rl

Figure 2: The implicational fragment of LJF with negative atoms. Here, A is atomic.

[Γ] −→ [A]
[Γ] −→ A

[]r
[Γ, B ⊃ C] B⊃C−→ [A]
[Γ, B ⊃ C] −→ [A]

Lf
[Γ, A] −→ [A]

Rf, Ir

[Γ] −→ B [Γ] C−→ [A]

[Γ] B⊃C−→ [A]
⊃ L,Rl

[Γ, A] −→ B

[Γ] −→ A ⊃ B
⊃ R, []l

Figure 3: The implicational fragment of LJF with positive atoms. Here, A is atomic.

8

Finding Unify in Computational Logic

Engineering synthetic connectives and macro-rules
Focused proof systems provide a way to “polarize”
logical connectives into invertible and non-invertible
phases. The key observation here is that these phases
can be seen not as a sequence of “micro” rules but as
a single, indivisible new “macro” inference rule. These
macro rules then introduce “synthetic connectives”. As a
result, focused proof systems allow one to redesign logic
into new sets of connectives and inference rules. The
striking thing about this possibility is that, if one follows
the rather flexible rules for polarization, the resulting
set of macro rules remains sound and complete with
respect to the original set of micro rules: at the same
time, important proof theoretic properties such as cut-
elimination are also maintained [24]. Thus, one can
“re-engineer” a logic in a number of different ways in
order to satisfy a range of different needs. For example,
the differences between bottom-up reasoning (as in
deductive databases) and top-down reasoning (as in
logic programming) can be seen as simply differences
of polarization. In the richest setting of focusing for, say,
intuitionistic or classical logic [23], it is possible to also
mix these two extremes in search in rich ways.

Algorithm specifications Many high-level specifica-
tions of algorithms rely on non-deterministic operations:
e.g., pick any member of a multiset, select any reachable
state, etc. If one wants to encode such specifications
into logic, one finds that there is much too much non-
determinism within conventional proof systems for this
to be possible. If, instead, one uses a focused proof
system, one can often pick inference rules that exactly
match the non-determinism in the algorithmic specifi-
cation. In this way, it should be possible to bring a
much more tight connection between logic and algorithm
specification than has been possible before.

Game semantics The duality in focused proof
system between invertible (negative) and non-invertible
(positive) phases, is similar to the duality in two-player,
dialog games [25] used in proof theory in order to provide
a semantics for proofs. When considering the moves
of your opponent, you have no choice (corresponds to
invertibility) since you must consider all possible moves:
when considering your own move, you have a choice and
you might get it wrong (corresponds to non-invertibility).
Connecting focusing in multiplicative and additive linear
logic with dialog games has also made it possible to
show that proof and refutation can be seen as perfectly
dual [14, 30]. Girard has taken this basic duality of
focused proof construction and used it to provide an
entirely new formulation of inference rules and of logic,
giving rise recently to his program on Ludics [20]. It
should be possible to extend these notions of games
and the duality of proof and refutation (or proof and
counterexample) to the many different situations where
focusing proof systems are employed.

8. THE UNITY OF PROOF SYSTEMS

A great deal of recent work in applying proof theory to the
foundations of computational logic systems reveals that
there are significant and serious chances for providing
unity to a range of proof system for, at least, classical,
intuitionistic, and linear logics.

Alternative approaches to unbounded behavior
While Girard’s original proposal to extend the core of
linear logic (MALL) with the exponentials (?, !) in order
to achieve unbounded behaviors is elegant, especially
in its simplicity, this approach has some deficiencies. In
particular, the use of exponentials breaks up focused
proofs into smaller and smaller phases, thus negating
the applicability of focusing in the first place. There have
been at least a couple of recent alternative proposals
considered to the use of exponentials. For example,
Baelde and Miller [7, 5] proposed adding least and
greatest fixed points to MALL directly. The resulting logic
is surprisingly elegant and expressive. MALL plus fixed
points has been used to describe the logical foundations
of a model checker and is being used to design a new
theorem proving architecture for the search for proofs
involving induction. Liang and Miller [24] have blended
together classical logic (which has natural notions of
unbounded behavior) and MALL. The resulting logic is
an exciting new approach to the Unity of Logic [19],
one where we can retain focusing behavior for classical,
intuitionistic, and linear logics.

Logic programming vs model checking vs theorem
proving The differences between these three activ-
ities can be characterized by their different uses of
fixed points. Logic programming involves may behavior
only: is it possible to unfold a fixed point and non-
deterministically pick a path to a success. On the other
hand, both model checking and theorem proving deal
with must as well as may behavior. These two differ in
that model checkers generally assume finite fixed points
while (inductive) theorem provers allow fixed points to
have infinite unfoldings. Given these rough descriptions,
it is possible to see rich ways that these activities can fit
together into one system (and one logic!) and enhance
each other: for example, a theorem prover might prove
certain symmetry lemmas (via induction) and these
could be used in the model checker to greatly reduce
search space. Similarly, tabling within model checkers
can be seen as lemma generation in theorem provers
[29].

Many proof systems just differ in polarization Miller
and Nigam [32] have recently shown that a range
of commonly used proof systems (sequent calculus,
natural deduction, tableaux, Hilbert-style, etc) are, in
fact, just different polarization of a common specification
for inference rules. Thus it should be possible to

9

Miller

create a single, formal framework for specifying and
implementing many proof systems.

Accounting for rewriting proofs Can we view
rewriting and reasoning with functions as naturally
fitting within a relational setting. Functions can, of
course, encode relations using set-valued functions and
different kinds of order relations (Plotkin/Hoare/Smyth).
Conversely, relations can directly encode functions: the
graphs of functions are, simply, graphs of relations. It is
also interesting to note that the restriction on relations
that make them into functions (for all input values there
is a unique output value) has a precise connections
to focusing: in particular, if the binary predicate P
represents a function (first argument denoting the input
and the second argument, the output), then the formulas

∀x.P (t, x) ⊃ Q(x) and ∃x.P (t, x) ∧Q(x)

are logically equivalent: the underlying P -typed quanti-
fier is, in fact, self dual. This observation immediately
relates to how one can structure focused proofs.

Model-checking-as-deduction, deduction-as-model-
checking As we have mentioned, many (high-level
aspects of) model checking can be seen as focused
deduction with fixed points [6, 7, 5]. Other recent
work [14] has shown that (in certain weak logics),
deduction can be achieved by looking for winning
strategies in suitable games. Of course, the search for
winning strategies is a typical and important example
of something model checkers can do well. These two
lines of research make it possible to hope that model
checkers and theorem provers might ultimately be seen
as sharing many common features that might allow their
implementations to be tightly integrated.

9. SYNTHESIS

While it is tempting to declare that logic-in-computer-
science is an applied science, it is embarrassing to look
at the many splinters that form the core of that would-be
science. We have proposed proof theory as a framework
for integrating a great deal of the work on computational
aspects of classical, intuitionistic, and linear logics.

So far we have not mentioned model theoretic
semantics, a common topic used to justify the design and
applications of logic. Any serious and deep formalism,
such as logic, should have multiple explanations.
Classical and intuitionistic first-order logics have been
given appealing and natural model theories using
models due to Gödel, Tarski, and Kripke. Linear
logic has provided fresh new aspects of logic for
which numerous researchers are currently developing
semantics along numerous lines: stable models, phase
semantics, categorical semantics, game semantics, etc.
Attempting to develop such model theoretic notions

is certainly an important activity to do along side of
developing a more unified approach to proof.

10. SOME SPECIFIC CHALLENGES

Specialization and compartmentalization will continue
to be important activities from both an industrial and
academic point-of-view. But we must ask for more: we
should insist also on the unity of logic from which one
would expect deep new insights into the foundations of
computer science and greatly improved and integrated
tools for dealing with the correctness of software and
hardware systems. We conclude by listing some specific
challenges.

Challenge 1: Unify a wide range of logical features into a
single framework. How best can we explain the many
enhancements that have been designed for logic: for
example, classical / intuitionistic / linear, fixed points,
first-order / higher-order quantification, modalities, and
temporal operators? Can we explain these as involving
orthogonal compositions as is the case for quantification
and classical propositional connectives?

Challenge 2: Unify a wide spectrum of proof systems.
Computer logic systems often build, explicitly or
implicitly, some kinds of proof systems, based on, for
example, sequent calculus, natural deduction, tableaux,
Hilbert-style proof, resolution refutations, DPLL-trees,
tabled deduction, matrix-based proofs, rewriting, etc.
There is strong, recent evidence that several of these
style of proof systems can be accounted for uniformly
within a single (focused) proof system [24, 29, 32, 34].
Can a single, declarative proof checker be built that can
check all of these forms of proofs?

Challenge 3: Unify the disciplines of theorem proving,
model checking, and computation. Although these
disciplines can all be viewed as certain kinds of
deduction in a logic with fixed points, the literature and
systems behind these disciplines are wildly different.
Integrating these systems is known to be of great
importance but most research focuses on ad hoc
engineering solutions. Can we develop a deeper and
more principled integration?

Challenge 4: Design new architectures for supporting
a wide range of deduction techniques within a single,
integrated framework. A great number of algorithms
and data structures have been developed to build
working model checkers and theorem provers. These
different domains share little in common. If we can
establish common proof theoretic explanations of these
different activities, can we also develop common,
universally agreed upon implementation architectures
and techniques than can be shared across these
activities?

10

Finding Unify in Computational Logic

Acknowledgments I wish to thank the following
people for valuable discussions related to the topic of this
paper: David Baelde, Olivier Delande, Chuck Liang, Lutz
Straßburger, Gopalan Nadathur, Vivek Nigam, Alexis
Saurin, Alexandre Viel, as well as my colleagues on
the REDO project, namely, Alessio Guglielmi, François
Lamarche, and Michel Parigot.

REFERENCES

[1] S. Abramsky. Sequentiality vs. concurrency in
games and logic. Mathematical Structures in Computer
Science, 13(4):531–565, Aug. 2003.

[2] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-
H. L. Ong. Applying game semantics to compositional
software modeling and verification. In K. Jensen
and A. Podelski, editors, Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS 2004), volume 2988 of LNCS, pages 421–435.
Springer, 2004.

[3] J.-M. Andreoli. Logic programming with focusing
proofs in linear logic. J. of Logic and Computation,
2(3):297–347, 1992.

[4] A. Asperti, W. Ricciotti, C. S. Coen, and
E. Tassi. A compact kernel for the calculus of inductive
constructions. Sādhanā, 34:71–144, 2009.

[5] D. Baelde. A linear approach to the proof-theory
of least and greatest fixed points. PhD thesis, Ecole
Polytechnique, Dec. 2008.

[6] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and
A. Tiu. The Bedwyr system for model checking over
syntactic expressions. In F. Pfenning, editor, 21th
Conference on Automated Deduction (CADE), number
4603 in LNAI, pages 391–397. Springer, 2007.

[7] D. Baelde and D. Miller. Least and greatest
fixed points in linear logic. In N. Dershowitz and
A. Voronkov, editors, International Conference on Logic
for Programming and Automated Reasoning (LPAR),
volume 4790 of LNCS, pages 92–106, 2007.

[8] R. S. Boyer and J. S. Moore. A Computational Logic.
Academic Press, 1979.

[9] R. L. Constable et al. Implementing Mathematics
with the Nuprl Proof Development System. Prentice-Hall,
1986.

[10] T. Coquand and G. Huet. Constructions: A Higher
Order Proof System for Mechanizing Mathematics,
volume 203 of EUROCAL85, Springer-Verlag LNCS,
pages 151–184. Springer-Verlag, Linz, 1985.

[11] V. Danos, J.-B. Joinet, and H. Schellinx. The
structure of exponentials: Uncovering the dynamics of
linear logic proofs. In G. Gottlob, A. Leitsch, and
D. Mundici, editors, Kurt Gödel Colloquium, volume 713
of LNCS, pages 159–171. Springer, 1993.

[12] M. Davis. Influences of mathematical logic on
computer science. In R. Herkin, editor, The Universal
Turing Machine: A Half-Century Survey, pages 315–
326. Oxford University Press, Oxford, 1988.

[13] N. G. de Bruijn. The mathematical language
AUTOMATH, its usage, and some of its extensions. In
Symposium on Automatic Demonstration, pages 29–
61. Lecture Notes in Mathematics, 125, Springer-Verlag,
1970.

[14] O. Delande and D. Miller. A neutral approach to
proof and refutation in MALL. In F. Pfenning, editor, 23th
Symp. on Logic in Computer Science, pages 498–508.
IEEE Computer Society Press, 2008.

[15] E. A. Emerson and E. M. Clarke. Characterizing
correctness properties of parallel programs using
fixpoints. In J. W. de Bakker and J. van Leeuwen,
editors, Proceedings of the 7th International Colloquium
on Automata, Languages and Programming, ICALP’80
(Noordwijkerhout, NL, July 14-18, 1980), volume 85 of
LNCS, pages 169–181. Springer, 1980.

[16] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen.
The essence of compiling with continuations. ACM
SIGPLAN Notices, 28(6):237–247, 1993.

[17] H. Geuvers. Proof assistants: History, ideas and
future. Sādhanā, 34:3–25, 2009.

[18] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[19] J.-Y. Girard. On the unity of logic. Annals of Pure
and Applied Logic, 59:201–217, 1993.

[20] J.-Y. Girard. Locus solum: From the rules of logic to
the logic of rules. Mathematical Structures in Computer
Science, 11(3):301–506, June 2001.

[21] J. Y. Halpern, R. Harper, N. Immerman, P. G.
Kolaitis, M. Y. Vardi, and V. Vianu. On the unusual
effectiveness of logic in computer science. Bulletin of
Symbolic Logic, 7(1):213–236, Mar. 2001.

[22] R. Kahle and P. Schroeder-Heister. Introduction to
proof theoretic semantics. Special issue of Synthese,
148, 2006.

[23] C. Liang and D. Miller. Focusing and polarization
in intuitionistic logic. In J. Duparc and T. A. Henzinger,
editors, CSL 2007: Computer Science Logic, volume
4646 of LNCS, pages 451–465. Springer, 2007.

11

Miller

[24] C. Liang and D. Miller. A unified sequent calculus
for focused proofs. In LICS: 24th Symp. on Logic in
Computer Science, pages 355–364, 2009.

[25] P. Lorenzen. Ein dialogisches konstruk-
tivitätskriterium. In Infinitistic Methods: Proceed. Symp.
Foundations of Math., pages 193–200. PWN, 1961.

[26] D. Miller. Proof theory as an alternative to
model theory. Newsletter of the Association for Logic
Programming, Aug. 1991. Guest editorial.

[27] D. Miller. A proof-theoretic approach to the static
analysis of logic programs. In Reasoning in Simple Type
Theory: Festschrift in Honor of Peter B. Andrews on His
70th Birthday, number 17 in Studies in Logic, pages
423–442. College Publications, 2008.

[28] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov.
Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51:125–157, 1991.

[29] D. Miller and V. Nigam. Incorporating tables into
proofs. In J. Duparc and T. A. Henzinger, editors, CSL
2007: Computer Science Logic, volume 4646 of LNCS,
pages 466–480. Springer, 2007.

[30] D. Miller and A. Saurin. A game semantics
for proof search: Preliminary results. In Proceedings
of the Mathematical Foundations of Programming
Semantics (MFPS05), number 155 in Electronic Notes in
Theoretical Computer Science, pages 543–563, 2006.

[31] R. A. D. Millo, R. J. Lipton, and A. J. Perlis.
Social processes and proofs of theorems and programs.
Communications of the Association of Computing
Machinery, 22(5):271–280, May 1979.

[32] V. Nigam and D. Miller. Focusing in linear meta-
logic. In Proceedings of IJCAR: International Joint
Conference on Automated Reasoning, volume 5195 of
LNAI, pages 507–522. Springer, 2008.

[33] V. Nigam and D. Miller. Algorithmic specifications
in linear logic with subexponentials. In ACM SIGPLAN
Conference on Principles and Practice of Declarative
Programming (PPDP), pages 129–140, 2009.

[34] V. Nigam and D. Miller. A framework for
proof systems. Extended version of IJCAR08 paper.
Submitted, Mar. 2009.

[35] S. Owre, J. M. Rushby, , and N. Shankar. PVS:
A prototype verification system. In D. Kapur, editor,
11th International Conference on Automated Deduction
(CADE), volume 607 of LNAI, pages 748–752, Saratoga,
NY, June 1992. Springer-Verlag.

[36] L. C. Paulson. Isabelle: The next 700 theorem
provers. In P. Odifreddi, editor, Logic and Computer
Science, pages 361–386. Academic Press, 1990.

[37] J.-P. Queille and J. Sifakis. Specification and veri-
fication of concurrent systems in CESAR. In M. Dezani-
Ciancaglini and U. Montanari, editors, International Sym-
posium on Programming, 5th Colloquium, Torino, Italy,
April 6-8, 1982, Proceedings, volume 137 of LNCS,
pages 337–351. Springer, 1982.

[38] J. A. Robinson. A machine-oriented logic based on
the resolution principle. JACM, 12:23–41, Jan. 1965.

[39] A. Trybulec and H. A. Blair. Computer aided
reasoning. In R. Parikh, editor, Proceedings of the
Conference on Logic of Programs, volume 193 of LNCS,
pages 406–412, Brooklyn, NY, June 1985. Springer.

12

