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Model checkers use automated state exploration in order to prove various properties such as reach-
ability, non-reachability, and bisimulation over state transition systems. While model checkers have
proved valuable for locating errors in computer models and specifications, they can also be used
to prove properties that might be consumed by other computational logic systems, such as theorem
provers. In such a situation, a prover must be able to trust that the model checker is correct. In-
stead of attempting to prove the correctness of a model checker, we ask that it outputs its “proof
evidence” as a formally defined document—a proof certificate—and that this document is checked
by a trusted proof checker. We describe a framework for defining and checking proof certificates for
a range of model checking problems. The core of this framework is a (focused) proof system that is
augmented with premises that involve “clerk and expert” predicates. This framework is designed so
that soundness can be guaranteed independently of any concerns for the correctness of the clerk and
expert specifications. To illustrate the flexibility of this framework, we define and formally check
proof certificates for reachability and non-reachability in graphs, as well as bisimulation and non-
bisimulation for labeled transition systems. Finally, we describe briefly a reference checker that we
have implemented for this framework.

1 Introduction

Model checkers are one way in which logic is implemented. While one of the strengths of model checkers
is to aid in the discovery of counterexamples and errors in specifications [6], they can also be used to
prove theorems. Furthermore, such theorems might be of interest to other computational logic systems
such as more general theorem provers. One then encounters the problem of whether or not such a theorem
prover is willing to trust that model checker or at least a particular theorem it proves. Formally verifying
a model checker might be both extremely hard to do and undesirable especially if that checker is being
revised and improved. A more plausible option might be to have a model checker output its “proof
evidence” as a document (a certificate). If that proof certificate can be formally checked by a trusted
checker, one might then be willing to use the theorem in a theorem prover.

Of course, model checkers are asked to solve many kinds of problems so their proof evidence might
take many different forms, ranging from decision procedures to paths in graphs, bisimulations, traces,
and winning strategies. If we need to have trusted checkers for all these different kinds of proof evidence,
then maybe we have not really improved the situation of trust. Here, we contribute to the foundational
proof certificate (FPC) effort [13] by providing a framework for defining the semantics of a range of
proof evidence that naturally arises in model checking. Such a formal semantic model for proof evidence
allows anyone to build a proof checker of any formally defined evidence. Furthermore, it is possible to
have an implementation of the entire framework of FPC so that this one system could check a wide range
of proof evidence.

While this paper has a number of parallels with FPCs for first-order logic in [5], that work was limited
to first-order logic without fixed points and, as a result, that work was not directly applicable to topics of
model checking and inductive and co-inductive theorem proving.
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2 Proof theory for fixed points and certificates

Having proof certificates that are foundational here means that we need to find proof theoretic descrip-
tions of model checking. We shall now describe a few recent developments in proof theory that we bring
together in this paper. Of course, the topic of model checking is mature and varied. In order to lay
down a convincing and direct proof theory for model checking, we eschew many of its more advanced
topics—e.g., predicate abstraction and partial order reduction—for later consideration.

2.1 Fixed points as defined predicates

One of the earliest applications of sequent calculus to computational logic was to provide an execution
model for logic programming [15]. That analysis, however, supported only the “open world assumption”
of logic programming: negation-as-finite-failure was not touched by that work. Schroeder-Heister [19]
and Girard [10] showed how sequent calculus could be extended with inference rules for fixed points (or
defined predicates), thereby embracing important aspects of the closed world assumption and negation-
as-finite-failure. The key additions to sequent calculus were rules for unfolding fixed point expressions as
well as dealing with equality over the Herbrand universe. A series of papers [8, 12, 16] added induction
and co-induction to the sequent calculi for intuitionistic and classical logics. Those papers have been
used to design the Bedwyr model checker [4, 20] and the Abella interactive theorem prover [3].

Fixed point expressions will be written as µBt̄ or νBt̄, where B is an expression representing a
higher-order abstraction, and t̄ is a list of terms. The unfolding of the fixed point expression µBt̄ is
written as B(µB) t̄. It is important to understand that we shall treat both µ (least fixed point operator)
and ν (greatest fixed point operator) as logical connectives since they will have introduction rules: they
are also de Morgan duals of each other.

2.2 Fixed points in linear logic

Surprisingly, it is linear logic and not intuitionistic or classical logics per se that is most relevant to our
exposition on model checking. The logic MALL (multiplicative additive linear logic) is an elegant, small
logic that is, in and of itself, not appropriate for formalizing mathematics and computer science since it
is not capable of modeling unbounded behaviors (for example, it is decidable). While Girard extended
MALL with the “exponentials” (! and ?) [9], Baelde [2] extended it by adding the least (µ) and greatest
(ν) fixed points operators as logical connectives. The resulting logic, called µMALL, forms the proof
theoretic foundation of this paper.

To make the use of linear logic easier to swallow for those more familiar with model checking,
we adopt the following shallow changes to its presentation. First, we use a two-sided sequent calculus
instead of the one-sided calculus used for µMALL. While this change will double the size of our proof
system, it will make inference rules look more familiar. Second, we replace the linear logic connectives
with familiar connectives (although with annotations). In particular, we replace ⊗, &, ⊕ and their units
1, > and 0 with ∧+, ∧−, ∨, t+, t− and f+, respectively. (Truth functionally, the two versions of these
operators are equivalent: their differences only influence the structure of focused proofs.) We also replace
the negatively biased false ⊥ with f−, and instead of the multiplicative disjunction A℘B, we use the
implication A⊥⊃B: the de Morgan dual of A⊃B is A∧+ B⊥. Negation is written as ·⊃ f−.

In addition, we consider µ as positive and ν as negative; this arbitrary choice has been shown to give
a convenient natural interpretation to the structure of focused proofs [2]. We therefore have the negative
connectives f−, ⊃, t−, ∧−, ∀, 6= and ν , and the positive connectives t+, ∧+, f+, ∨, ∃, = and µ .
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2.3 Focused proof systems

In order to have the kind of control we need to support a definable notion of proof certificate, we make
use of a focused proof system. Such sequent calculus proof systems are built from alternating phases
which allow us to define flexible proof building protocols that can be used to drive proof search. During
the asynchronous phase of proof building, simple (invertible) computations build a proof and during
the synchronous phase, information needed for the construction of a proof (such as which branch of a
disjunction to prove) must be found.

Focusing requires polarizing all formulas as being either negative or positive. A formula is negative
or positive according to its top-level connective, and it is purely negative (resp. purely positive) when
its connectives are positive if, and only if, they occur under an odd (resp. even) number of implica-
tions. Notice that the de Morgan dual of a positive (resp. purely positive) formula is a negative (resp.
purely negative) formula. We call a formula bipolar when it is made of purely negative (resp. positive)
subformulas occurring under an even (resp. odd) number of implications in a purely negative context.

Focusing also relies on the sequents having additional storage zones on each side of the turnstile,
where formulas can be stored and left untouched by logical inference rules. For instance, the usual one-
sided focused presentation of µMALL [2] has one of these zones, similarly to the focused proof system
for linear logic given by Andreoli [1]. A two-sided subsystem of µMALLF, called µF , makes use of
two storage zones, noted N and P , which are lists of, respectively, negative and positive formulas.
(Appendix B contains an example of a µF proof.) Between the arrows and the turnstile, are the contexts
Γ and ∆: these are lists of formulas in (unfocused) ⇑-sequents, and sets of up to one formula in (focused)
⇓-sequents. The sequents of the µF system are therefore:

N ⇑ Γ ` ∆ ⇑P unfocused, similar to the µMALLF sequent `N ⊥,P ⇑ Γ
⊥,∆

⇓ A ` left-focused, similar to `⇓ A⊥

` A ⇓ right-focused, similar to `⇓ A

2.4 Foundational proof certificates

If we think of the implementers of computational logic systems (e.g., model checking systems) as our
clients, our job in this project is to formally check our client’s proof evidence for formal correctness.
Our approach is to have this evidence translated into a sequent calculus proof. Of course, we would not
dream of asking our clients to supply a sequent calculus proof in the first place: such proofs are often
huge, too messy, and too esoteric. Instead, we want to take from our clients objects with which they
are familiar (e.g., paths, simulations, etc.) and find flexible and high-level means to have our framework
extract information from those objects in order to trace out a complete formal sequent calculus proof.

To this intent, Figures 1 and 2 present µFa, which is a version of µF augmented with a term Ξ

(encoding an actual certificate) as well as with clerk and expert predicates (examples of which we provide
soon). This augmentation has two components. First, every sequent (either ⇑ or ⇓) is given an extra
argument we write as Ξ. Thus, sequents now display as

Ξ :N ⇑ Γ ` ∆ ⇑P, Ξ : ⇓ A ` , and Ξ : ` A ⇓ .

Second, every inference rule is given an additional premise. In all cases, this premise is an atomic
formula with either a clerk or expert predicate as its head symbol: if the conclusion of the inference rule
is a ⇓-sequent, then the premise atom uses an expert predicate (noted ?e(. . .) for the rule ?); otherwise,
the conclusion is an ⇑-sequent and the atom uses a clerk predicate (noted ?c(. . .)).
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In the case of the clerk rules, the premise atom relates the Ξ value of the concluding sequent with the
corresponding value of Ξ for all premises: e.g.,

Ξ1 :N ⇑ A1,Γ ` ∆ ⇑ Ξ2 :N ⇑ A2,Γ ` ∆ ⇑ ∨c(Ξ0,Ξ1,Ξ2)

Ξ0 :N ⇑ A1∨A2,Γ ` ∆ ⇑ ∨L

In this way, the certificate Ξ, intended to aid in the proof of the concluding sequent, can be transformed
into two certificates that are used to prove the two premise sequents. We refer to the predicates used in
the asynchronous phase as clerks since these predicates do not need, in general, to examine the actual
information in the proof certificate (except for the induction and co-induction rules, there is no consump-
tion of information during the asynchronous phase). Instead, the clerks are responsible for keeping track
of how a proof is unfolding: for example, Ξ1 might be a copy of Ξ0 but with the fact that checking has
moved to the left premise instead of the right premise.

Experts are responsible for extracting information from a certificate. For example, µFa contains the
inference rule

Ξ1 : `Ct ⇓ ∃e(Ξ0,Ξ1, t)
Ξ0 : ` ∃x.C x ⇓ ∃R

Notice here that the exists-expert ∃e(·, ·, ·) not only computes the continuation certificate Ξ1 but also a
term t to be used to witness the existential variable.

The exact nature of both certificate terms Ξ and of the clerk and expert predicates is not important to
guarantee soundness of this system. That is, no matter how certificates, clerks, and experts are specified,
if there is a proof in µFa then there is a proof in µF of the same sequent, which can be obtained by
deleting from the proof in µFa all references to Ξ, including the additional premises. Notice also that
experts are not required to act particularly expertly: it is entirely possible for the ∃e(Ξ0,Ξ1, t) premise to
functionally determine one t from Ξ0, or to relate all terms t to Ξ. In the latter case, the actual value of t
used in a successful µFa proof is determined from other aspects of the proof checking process (typically
implemented using unification).

3 A proof system underlying model checking

FPCs were first proposed in [5, 13] in the context of first-order logic and were used successfully to define
and check proof evidence in the form of resolution refutations, Herbrand instances (expansion trees),
natural deduction (λ -terms), Frege proofs, etc. We shall now adapt this approach to formally define the
semantics of a range of proof evidence that can arise in simple but real model checking problems.

We shall later illustrate just how such a formal semantics can be provided for the following four
kinds of proof evidence. These particular examples have been selected for their universality: numerous
problems in model checking are related to them.

1. The fact that two nodes are related by the transitive closure of a graph’s adjacency relation can be
witnessed by an explicit path through the graph.

2. The fact that two nodes are not related by transitivity can be witnessed by pointing out that the
reachable set of one does not contain the other.

3. Given an LTS (labeled transition system), the fact that two nodes are similar/bisimilar can be
witnessed by a set of pairs called simulation/bisimulation.

4. If two nodes in an LTS are not bisimilar, then there is a Hennessy-Milner logic (HML) formula that
is satisfied by one but not by the other.
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ASYNCHRONOUS CONNECTIVE INTRODUCTIONS

Ξ1θ :N θ ⇑ Γθ ` ∆θ ⇑ =s
c(Ξ0,Ξ1)

Ξ0 :N ⇑ s = t,Γ ` ∆ ⇑ =s
L†

Ξ1θ :N θ ⇑ ` ⇑ 6= f
c (Ξ0,Ξ1)

Ξ0 :N ⇑ ` s 6= t ⇑ 6= f
R†

Ξ1 :N ⇑ Γ ` ∆ ⇑ t+c (Ξ0,Ξ1)

Ξ0 :N ⇑ t+,Γ ` ∆ ⇑
t+L

Ξ1 :N ⇑ ` ⇑ f−c (Ξ0,Ξ1)

Ξ0 :N ⇑ ` f− ⇑
f−R

Ξ1 :N ⇑ A1,A2,Γ ` ∆ ⇑ ∧+c(Ξ0,Ξ1)

Ξ0 :N ⇑ A1∧+ A2,Γ ` ∆ ⇑ ∧+L
Ξ1 :N ⇑ A1 ` A2 ⇑ ⊃c(Ξ0,Ξ1)

Ξ0 :N ⇑ ` A1⊃A2 ⇑
⊃R

= f
c (Ξ0)

Ξ0 :N ⇑ s = t,Γ ` ∆ ⇑ = f
L‡

6=s
c(Ξ0)

Ξ0 :N ⇑ ` s 6= t ⇑ 6=
s
R‡

f+c (Ξ0)

Ξ0 :N ⇑ f+,Γ ` ∆ ⇑
f+L

t−c (Ξ0)

Ξ0 :N ⇑ ` t− ⇑
t−R

Ξ1 :N ⇑ A1,Γ ` ∆ ⇑ Ξ2 :N ⇑ A2,Γ ` ∆ ⇑ ∨c(Ξ0,Ξ1,Ξ2)

Ξ0 :N ⇑ A1∨A2,Γ ` ∆ ⇑ ∨L

Ξ1 :N ⇑ ` A1 ⇑ Ξ2 :N ⇑ ` A2 ⇑ ∧−c(Ξ0,Ξ1,Ξ2)

Ξ0 :N ⇑ ` A1∧− A2 ⇑
∧−R

Ξ1 y :N ⇑C y,Γ ` ∆ ⇑ ∃c(Ξ0,Ξ1)

Ξ0 :N ⇑ ∃x.C x,Γ ` ∆ ⇑ ∃L
Ξ1 y :N ⇑ `C y ⇑ ∀c(Ξ0,Ξ1)

Ξ0 :N ⇑ ` ∀x.C x ⇑ ∀R

SYNCHRONOUS CONNECTIVE INTRODUCTIONS

6= f
e (Ξ0)

Ξ0 : ⇓ t 6= t ` 6=
f
L

=s
e(Ξ0)

Ξ0 : ` t = t ⇓ =s
R

f−e (Ξ0)

Ξ0 : ⇓ f− `
f−L

t+e (Ξ0)

Ξ0 : ` t+ ⇓
t+R

Ξ1 : ` A1 ⇓ Ξ2 : ⇓ A2 ` ⊃e(Ξ0,Ξ1,Ξ2)

Ξ0 : ⇓ A1⊃A2 `
⊃L

Ξ1 : ` A1 ⇓ Ξ2 : ` A2 ⇓ ∧+e(Ξ0,Ξ1,Ξ2)

Ξ0 : ` A1∧+ A2 ⇓
∧+R

Ξ1 : ⇓ Ai ` ∧−e(Ξ0,Ξ1, i)
Ξ0 : ⇓ A1∧− A2 `

∧−L
Ξ1 : ` Ai ⇓ ∨e(Ξ0,Ξ1, i)

Ξ0 : ` A1∨A2 ⇓
∨R

Ξ1 : ⇓Ct ` ∀e(Ξ0,Ξ1, t)
Ξ0 : ⇓ ∀x.C x ` ∀L

Ξ1 : `Ct ⇓ ∃e(Ξ0,Ξ1, t)
Ξ0 : ` ∃x.C x ⇓ ∃R

STRUCTURAL RULES

Ξ1 :N ⇑ Γ ` ∆ ⇑ storeL(Ξ0,Ξ1)

Ξ0 : ⇑ N,Γ ` ∆ ⇑ SL
Ξ1 : ⇑ ` ⇑ P storeR(Ξ0,Ξ1)

Ξ0 : ⇑ ` P ⇑ SR

Ξ1 : ⇓ N ` decideL(Ξ0,Ξ1)

Ξ0 :N ⇑ ` ⇑ DL
Ξ1 : ` P ⇓ decideR(Ξ0,Ξ1)

Ξ0 : ⇑ ` ⇑ P
DR

Ξ1 : ⇑ P ` ⇑ releaseL(Ξ0,Ξ1)

Ξ0 : ⇓ P ` RL
Ξ1 : ⇑ ` N ⇑ releaseR(Ξ0,Ξ1)

Ξ0 : ` N ⇓ RR

Figure 1: The µFa
0 proof system. (This proof system is best viewed using color).

y stands for a fresh eigenvariable, s and t for terms, N for a negative formula, P for a positive formula,
and C for the abstraction of a formula over a variable.
The † proviso requires that θ is the mgu of s and t, and the ‡ proviso requires that s and t are not unifiable.
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FIXED-POINT RULES

Ξ1 ȳ : ⇑ BS ȳ ` S ȳ ⇑ Ξ2 :N ⇑ St̄,Γ ` ∆ ⇑ ind(Ξ0,Ξ1,Ξ2,S)
Ξ0 :N ⇑ µBt̄,Γ ` ∆ ⇑

µ

Ξ1 :N ⇑ ` St̄ ⇑ Ξ2 ȳ : ⇑ S ȳ ` BS ȳ ⇑ co-ind(Ξ0,Ξ1,Ξ2,S)
Ξ0 :N ⇑ ` νBt̄ ⇑ ν

Ξ1 :N ⇑ B(µB)t̄,Γ ` ∆ ⇑ µ-unfoldL(Ξ0,Ξ1)

Ξ0 :N ⇑ µBt̄,Γ ` ∆ ⇑
µL

Ξ1 :N ⇑ ` B(νB)t̄ ⇑ ν-unfoldR(Ξ0,Ξ1)

Ξ0 :N ⇑ ` νBt̄ ⇑
νR

Ξ1 : ⇓ B(νB)t̄ ` ν-unfoldL(Ξ0,Ξ1)

Ξ0 : ⇓ νBt̄ `
νL

Ξ1 : ` B(µB)t̄ ⇓ µ-unfoldR(Ξ0,Ξ1)

Ξ0 : ` µBt̄ ⇓
µR

Figure 2: The µFa proof system results from adding these rules to µFa
0 .

ȳ stands for an list of fresh eigenvariables, t̄ for an list of terms, and B for the abstraction of a formula
over a predicate and a variable list.

3.1 Core proof system

Figures 1 and 2 contain the rules for the augmented focused proof systems µFa
0 and µFa. One could

obtain the non-augmented systems µF0 and µF by ignoring the certificates (annotated Ξ variables) and
the clerk and expert premises; the resulting rules would be no more than (slightly restricted) two-sided
versions of the µMALLF rules. The various clerk and expert predicates are named and displayed in their
corresponding inference rules. Notice that those inference rules that involve the use of eigenvariables
(∃L, ∀R, µ and ν) require the associated clerk predicates to return abstractions over certificates: in this
way, premise certificates can be applied to the eigenvariables.

A key element of our proof theoretic treatment of model checking via µFa is the fact that focused
sequents contain only one formula. This fact entails that µFa can only be complete with respect to
µMALLF on a fragment where derivations satisfy this constraint. In particular, the N and P zones
must never contain more than one formula, and never both at the same time. This can be ensured at least
for the µFa

0 subsystem by the following restriction on formulas.

Definition 1 (switchable formula, switchable occurrence). A µFa formula is switchable if

• whenever a subformula C∧+ D occurs negatively (under an odd number of implications), either C
or D is purely positive;

• whenever a subformula C⊃D occurs positively (under an even number of implications), either C
is purely positive or D is purely negative.

An occurrence of a formula B is switchable if it appears on the right-hand side (resp. left-hand side) and
B (resp. B⊃ f−) is switchable.

Notice that both a purely positive formula and its de Morgan dual are switchable. The follow theorem
is proved by a simple induction on the structure of µFa

0 proofs.

Theorem 1 (switchability). Let Π be a µFa
0 derivation of either ⇑ A ` ⇑ or ⇑ ` A ⇑ , where the oc-

currence of A is switchable. Every sequent in Π that is the conclusion of a rule that switches phases
(either a decide or a release rule) contains exactly one occurrence of a formula and that occurrence is
switchable.
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Theorem 1 states that an invariant of the µFa
0 proof system (for switchable theorems) is that the

number of non-purely asynchronous formulas (i.e. non-purely positive from N and Γ, and non-purely
negative from P and ∆) is one or less. Keeping sequents mostly asynchronous allows the asynchronous
phase to deal with most of the context: that way the synchronous phase is left with a single, meaningful
formula. (The structure of focused proofs based on switchable formulas is similar to the structure of
simple games in the game-theoretic analysis of focused proofs in [7, Section 4].) While the restriction to
switchable formulas provides a match to the model checking problems we develop here, that restriction
is not needed for using clerks and experts (the examples in [5] involve non-switchable formulas).

3.2 Encoding of recursively defined predicates

In order to exploit the properties of µFa
0 in model checking problems, we need them to extend to µFa

by adding fixed-point rules. As those rules make use of the higher-order variables S (an invariant which
is either a pre-fixed point or a post-fixed point) and B (the body of a predicate definition), they cannot
be used freely without violating Theorem 1. We propose the following constraints on µFa proofs of
switchable formulas so as to have exactly one formula per sequent when phases are switched:
• “arithmetic” restriction: S and B are purely positive (resp. negative);

• “model checking” restriction: S is purely negative (resp. positive), and the context does not trigger
synchronous rules (N is empty, Γ is purely positive and ∆ is purely negative).

The former restriction would allow to extend the scope of the framework by handling simple theorems
involving inductive definitions (e.g. about natural numbers), but is not treated here. The latter restriction
better suits our needs (since an asynchronous context fits the spirit of model checking) and is respected
by all our examples.
Example 2. Horn clauses (in the sense of Prolog) can be encoded as purely positive fixed point expres-
sions. For example, here is the Horn clause logic program (using the λProlog syntax, the sigma Y\

construction encodes the quantifier ∃Y ) for specifying the graph in Figure 3 and its transitive closure:
step a b. step b c. step c b.

path X Y :- step X Y. path X Z :- sigma Y\ step X Y, path Y Z.

We can translate the step relation into the binary predicate · −→ · defined by

µ
(
λAλxλy.((x = a)∧+ (y = b))∨ ((x = b)∧+ (y = c))∨ ((x = c)∧+ (y = b))

)
which only uses positive connectives. Likewise, path can be encoded as path:

µ
(
λAλxλ z.x−→ z∨ (∃y.x−→ y∧+ Ayz)

)
In general, it is sensible to view any purely positive least fixed point expression as a predicate speci-

fied by Horn clauses. (For example, SOS rules for CCS are easily seen as Horn clauses.)
Example 3. Let the ternary predicate · ·−→ · describe a labeled transition system. It can be defined as a
purely positive fixed point expression of the form

µ

(
λAλ pλaλq.

∨
i((p = ui)∧+ (a = vi)∧+ (q = wi))

)
and the simulation and bisimulation relations can be defined as the following greatest fixed point expres-
sions (note: the second contains both ∧− and ∧+). Both of these formulas are switchable.

ν
(
λSλ pλq.∀a∀p′. p a−→ p′⊃∃q′.q a−→ q′∧+ S p′ q′

)
(sim)

ν
(
λBλ pλq.(∀a∀p′. p a−→ p′⊃∃q′.q a−→ q′∧+ B p′ q′)

∧−(∀a∀q′.q a−→ q′⊃∃p′. p a−→ p′∧+ Bq′ p′)
) (bisim)
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a

b

c

d

Figure 3: (Un)reachability problem

3.3 Common proof certificates

The presentation of an FPC now involves the following three steps.

1. Describe how unpolarized formulas should be polarized.

2. Describe the structure of certificates Ξ. This can be done, for example, by describing the signature
of constructors for certificates.

3. Define the clerk and expert predicates.

To ease steps 2 and 3, we define the following certificate constructors (shown together with their types),
which describe generic focused proof behaviors. The associated clauses can be included into any subse-
quent clerks and experts definitions.

The stop:cert certificate authorizes no search; it is to be used as a continuation certificate for other
certificate constructors.

The sync:cert->cert certificate constructor authorizes µFa to conduct an unbounded synchronous
search for a proof before handing the search over to a continuation certificate. It has no clerks and its
experts run an exhaustive non-deterministic search for ∨ and ∃. The experts for the right rules are:

=s
e(sync(Ξ)). ∨e(sync(Ξ),sync(Ξ),1).

∧+e(sync(Ξ),sync(Ξ),sync(Ξ)). ∨e(sync(Ξ),sync(Ξ),2).

∀T.∃e(sync(Ξ),sync(Ξ),T ). µ-unfoldR(sync(Ξ),sync(Ξ)).

releaseR(sync(Ξ),Ξ).

The async:cert->cert certificate constructor is the dual of sync; it handles an asynchronous phase
and has no experts apart from the decide rules. The clerks for the left rules are:

=s
c(async(Ξ),async(Ξ)). ∨c(async(Ξ),async(Ξ),async(Ξ)).

∧+c(async(Ξ),async(Ξ)).

∃c(async(Ξ),λx.async(Ξ)). µ-unfoldL(async(Ξ),async(Ξ)).

storeL(async(Ξ),async(Ξ)). decideL(async(Ξ),Ξ).

bipolen:cert is actually short-hand for a chain of n async(sync(·)) before a final stop. It is used
for bounded-depth search when simple search strategies would otherwise not terminate. We also write
bipole:cert for bipole1 = async(sync(stop)).

The decproc:cert constructor is short-hand for bipole∞, the unbounded version of bipolen. It is a
general purpose decision procedure used for automated and unguided proving. Its rules are similar to
those from sync and async, and can be obtained via the equivalence decproc= async(sync(decproc)).
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The two constructors inv and co-inv:(i->i->bool)->cert->cert each take an explicit predicate
S as parameter. It is expected to be proved to be an invariant with the help of bipole.

∀S. ind(inv(S,Ξ),λ x̄.bipole,Ξ,S) ∀S.co-ind(co-inv(S,Ξ),Ξ,λ x̄.bipole,S)

We now turn our attention to describing how to formally define the four kinds of proof evidence
mentioned earlier in Section 3. Some of the constructors defined above will be used in those definitions.

4 Examples: certificates for graphs

We use the notations from Example 2 to define · −→ · and path.

4.1 Lists as reachability certificates

The natural choice for a certificate of the proof of ` path(x,y) is an explicit path, i.e. a list of nodes
starting right after x and ending right before y. In fact, this list L can be used directly as the proof
certificate. Aside from the initial storeR, no clerks are invoked in the process of checking this particular
FPC. The following clauses defining the experts only use the provided information to instantiate the
logical variables of the proof.

∀X∀L.∃e(X :: L,L,X). ∀L.∧+e(L,sync(stop),L). ∀L.decideR(L,L).

∀X∀L.∨e(X :: L,X :: L,2). ∀L.∨e(nil,sync(stop),1). ∀L.µ-unfoldR(L,L).

In this setting, the sync(stop) certificate will terminate quickly since it is only searching through the term
that defines · −→ ·.
Example 4. In Figure 3, (c) is reachable from (a), as witnessed by certificates like [b], [b;c;b], etc.

4.2 Invariants as non-reachability certificates

The non-reachability problem comes in two forms: if there are no loops in the graph, then a simple check
of the set of nodes reachable from the first node provides a simple decision procedure; if there are loops,
then induction is needed.

In the first case, the decision procedure can directly be translated as an FPC for proving `¬path(x,y).

Example 5. In Figure 3, (a) is not reachable from (d), as witnessed by async(stop).

On the other hand, if the underlying graph has loops, then the rules of Figure 1 only do not allow
proof search to terminate. As the body B of the path expression (i.e., the displayed formula without
µ) is purely positive, a bipole can prove that a chosen purely negative predicate S containing no fixed
point expressions is an induction invariant (bipole : ⇑ BSxy ` Sxy ⇑ ), which means that we can use the
certificate constructor inv(S, ·). Then we use another bipole as continuation certificate for this constructor
to check that the invariant is adequate for the refutation of path(t,u) (bipole : ⇑ St u ` · ⇑ ).

Here, the invariant can be chosen so as to represent the fact of not belonging to the set T ×{u},
where T is the reachable set of {t}.
Example 6. In Figure 3, (d) is not reachable from (b), as witnessed by inv(S,bipole), where the invariant
S (built from the set {b,c}×{d}) is

λxλy.((x = b∧+ y = d)∨ (x = c∧+ y = d))⊃ f−
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Figure 4: Non-(bi)similar noetherian labeled transition systems

5 Examples: certificates for labeled transition systems

Bisimilarity and similarity are important relationships in the domain of process calculus and model
checking. To illustrate how these can be captured as FPCs, we first restrict our attention to the existence
of a simulation between finite labeled transition systems; bisimilarity is then addressed by expanding on
this presentation. We define · ·−→ · (for the LTS), sim (for simulated-by) and bisim (for bisimulated-by)
as seen in Example 3.

5.1 Invariants as simulation certificates

We shall consider two cases: one where the underlying transition system is noetherian and one where it
is not. An LTS is said to be noetherian if there is no infinite sequence of transitions p1

a1−→ p2
a2−→ ·· ·

(in the setting of finite LTSs, this is equivalent to the absence of loops).
In the noetherian case, there is a decision procedure to determine whether or not one process is simu-

lated by another: one simply attempts to incrementally check simulation at every point. This systematic
search can be described using the clerks and experts of the decproc certificate, which allows a proof to
be built from any number of bipoles (one for each unfolding of the simulation predicate, which formula
is itself bipolar).

Example 7. In Figure 4, the process (1) is simulated by the process (6), as witnessed by the certificate
decproc.

In the more general (possibly non-noetherian) setting, we need to recall the formal definition of the
simulation relation as a set. A binary relation S is a simulation if whenever 〈p,q〉 ∈ S and whenever
p a−→ p′ holds, then there exists a q′ such that q a−→ q′ holds and 〈p′,q′〉 ∈ S. We say that process p is
simulated by process q if there is a simulation S such that 〈p,q〉 ∈ S.

Let S be a finite set of pairs and let Ŝ be the purely positive expression λxλy.
∨
〈p,q〉∈S(x= p∧+ y= q).

As the body B of the sim expression is a bipolar formula, a bipole can prove the closure condition
for (finite) simulations (bipole : ⇑ Ŝ xy ` BŜxy ⇑ ), so we can use the certificate constructor co-inv(Ŝ, ·).
Once again, we use another bipole as continuation certificate to complete the proof that p is simulated
by q (bipole : ⇑ · ` Ŝ pq ⇑ ).

Example 8. According to Figure 5, the set {(21,23),(22,24)} is a simulation and, therefore, the process
(21) is simulated by the process (23). This corresponds to the following certificate

co-inv
(
λxλy.(x = 21∧+ y = 23)∨ (x = 22∧+ y = 24),bipole

)
.
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Figure 5: Non-noetherian labeled transition systems

Providing an entire invariant as part of a proof certificate or restricting to the case when an invariant
is finite certainly limits what kinds of simulation relationships can be proved. In general, invariants will
not be finite and, even when they are, they are large. It is for reasons such as this that there has been a
great deal of work on bisimulation-up-to [17, 18]: generally, it is possible to discover and check a closure
property of a much smaller relationship and then via various meta-theoretic properties, ensure that such
closure properties entail the existence of a proper (bi)simulation.

5.2 Assertions as non-simulation certificates

Hennessy and Milner [11] provided a characterization of bisimulation in terms of an assertion language
over modal operators [a] and 〈a〉. The characterization states that two processes are bisimilar if and only
if they satisfy the same assertion formulas. Thus, if p and q are not bisimilar, there is some assertion
formula A which is true for p and not for q. Formally, we write p |= A and q 6|= A.

It is possible to use such assertion formulas directly as proof certificates in the simpler and related
problem of the absence of simulation, i.e. for theorems of the form ` ¬sim(p,q). In that case, the
assertion language needs only the diamond modality 〈·〉 as well as the conjunction. More formally, let
Act be a set of actions. The restricted set of assertions over Act is given by the recurrence A :=

∧
i∈I〈ai〉Ai,

where I is a finite set and ai ∈ Act; that is, we have a strict alternation of (indexed) conjunctions and the
diamond modality. The statement p |=

∧
i∈I〈ai〉Ai means that, for every i ∈ I, there exists a qi such that

p ai−→ qi and qi |= Ai. We shall choose to write true for empty conjunctions and we can drop
∧

i∈I when
I is a singleton. Thus, 〈a〉true stands for

∧
i∈{•}〈a〉

∧
j∈{}〈bi, j〉Ai, j.

Some of the clerks and experts needed for this interpretation of an assertion as a certificate are listed
below; the rest of the definition can be taken from the async constructor.

∀(ai)i∀(Ai)i∀ j.decideL(
∧

i〈ai〉Ai,〈a j〉A j). ∀a∀A.∀e(〈a〉A,A,a).
∀A.⊃e(A,sync(stop),A). ∀T∀A.∀e(A,A,T ).

∀a∀A.ν-unfoldL(〈a〉A,〈a〉A). ∀A. releaseL(A,A).

Example 9. In Figure 4, the process (6) is not simulated by the process (1): if Ξ is the assertion formula
〈a〉(〈b〉true∧〈c〉true), then 6 |= Ξ but 1 6|= Ξ.

5.3 Assertions as non-bisimilarity certificates

It is possible to extend the FPC described in Section 5.2 to account for the absence of bisimulation in
addition to the absence of simulation. As bisimilarity is finer than similarity, this will require a richer
class of assertion formulas. The fact that it is a symmetric relation suggests that assertions should contain
negations.
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We could use full Hennessy-Milner logic (i.e. any arbitrary mix of 〈·〉, [·], ∨ and ∧ or, equivalently,
〈·〉, ∧ and ¬), but instead we choose the smaller but equivalent set of assertions defined by the following
recurrence.

A :=
∧
i∈I

Bi

B := 〈ai〉Ai | ¬(〈ai〉Ai)

It can be shown that this set characterizes the same relation as full Hennessy-Milner logic. The statement
p |=

∧
i∈I Bi means that, for every i ∈ I, p |= Bi; the statement p |= 〈a〉A means that there exists a q such

that p a−→ q and q |= A; and the statement p |= ¬(〈a〉A) means that p 6|= 〈a〉A.
Very little more is needed to extend the FPC to handle this certificate. We need to make sure that,

in addition to certificates with a top-level 〈·〉, decideL and ν-unfoldL allow (and propagate) certificates
with a top-level ¬〈·〉. We also need an expert to consume ¬, and an expert to handle the additional ∧−
connective (see the definition of bisimilarity from Example 3). If we give these two roles to the same
new expert, namely ∧−e, the link between reflexivity and negations in the assertions appears clearly.

The resulting set of clerks and experts for theorems of the form ` ¬bisim(p,q) is the following.

∀A.storeL(A,A). ∀(Bi)i∀ j.decideL(
∧

iBi,B j).

∀B.ν-unfoldL(B,B). ∀a∀A.∧−e( 〈a〉A,〈a〉A,1).
∀a∀A.∀e(〈a〉A,A,a). ∀a∀A.∧−e(¬〈a〉A,〈a〉A,2).
∀T∀A.∀e(A,A,T ). ∀A.⊃e(A,sync(stop),A).

∀A. releaseL(A,A).

∀A.∃c(A,λx.A). ∀A.∧+c(A,A).

∀A.µ-unfoldL(A,A). ∀A.∨c(A,A,A).

∀A.=s
c(A,A).

This FPC extension is conservative, in that it can still check a certificate for non-simulation.

Example 10. In Figure 4, the processes (6) and (10) are similar but not bisimilar: if Ξ is the generalized
assertion formula 〈a〉¬〈b〉true, then 10 |= Ξ but 6 6|= Ξ.

6 A reference proof checker

The framework for foundational proof certificates described in [13, 5] was based on proof theory without
fixed point definitions. In that setting, a standard logic programming language (in that case, λProlog
[14]) was an ideal prototyping language for implementing and testing FPCs. The FPCs described in this
paper are not so easily implemented in standard logic programming languages since the unification of
eigenvariables must be done alongside the usual unification of “logic variables” that makes proof recon-
struction possible. The implementation of λProlog, for example, considers eigenvariables as constants
during unification.

We have built a prototype proof checker for testing the FPCs described in this paper using the Bedwyr
extension to logic programming [21, 4]. That system, originally designed to tackle various kinds of
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model checking problems, provides the necessary unification for logic and eigenvariables along with
backtracking search and support for λ -terms, λ -conversion and higher-order pattern unification.

One could have imagined implementing the non-augmented proof system µF0 directly and in a sense,
this is already done by Bedwyr itself. For example, if (µBt̄) is a purely positive fixed point encoding a
Prolog predicate, when the system is given the sequent ` (µBt̄) ⇓ , it would emulate the Prolog search.
Similarly, if it is given the sequent ⇑ (µBt̄) ` ⇑ , it would emulate a finite failing proof search. But, as
anyone familiar with Prolog-style depth-first search knows, such proof search is limited in its effective-
ness. For example, if one is attempting to prove that there is or is not a path between two points, a cycle
in the underlying graph can make the search non-terminating. Bedwyr handles this with a loop-detection
mechanism that can be embedded in the rules from Figure 2, making it a partial implementation of µF .

However, our goal with the µF proof system is not to use it by itself, but together with clerks and
experts, as the engine (as a “kernel”) for checking already existing proof evidence. Since the logic of
the existing Bedwyr system has no native support for proof objects, we implemented µFa as an “object
logic”, without using some native features such as loop-detection. The Bedwyr specification files that we
use (available directly at http://slimmer.gforge.inria.fr/bedwyr/pcmc/, or from the authors’
homepages) are rather direct translations of the inference rules in Figures 1 and 2 as well as of the various
FPCs listed in the previous few sections. It has thus been easy for us to experiment and test FPCs.

While we have found the Bedwyr system to be useful for prototyping a proof checker, our proposal
for FPC is not tied to any one particular implementation. Instead, the framework is defined using in-
ference rules (such as found in Figures 1 and 2). Any system that can implement the logical principles
required by such inference rules can be used as a proof checking FPC kernel.

7 Conclusion

We have taken the basic structure of foundational proof certificates that had been developed elsewhere for
first-order logic and described how it could be imposed on a logic based on fixed points. The resulting
logic is much richer (think of the difference between first-order logic and first-order arithmetic) and
additional logic principles need to be accounted for in the description of proof certificates.

In the areas of model checking that we have discussed, proof evidence is often taken to be, say, a path
through a graph, a set of pairs of nodes (satisfying certain closure conditions), or a Hennessy-Milner logic
assertion formula. We have illustrated how each of these familiar objects can be easily transformed into
hints to guide a proof checker though the construction of a detailed and complete sequent calculus proof.
The architecture of focused proof systems and the clerk and expert predicates allow this conceptual gap
(between familiar proof evidence and sequent calculus proofs) to be bridged in a flexible and natural
fashion.

We have also provided a novel look at the proof theory foundations of model checking systems by
basing our entire project on the µMALL variant of linear logic and on the notion of switchable formulas.
This latter notion seems to provide an interesting demarcation between the logically simpler notion of
model checking and the more general notion of (inductive and co-inductive) deduction.

Acknowledgment. We thank the reviewers for their detailed and useful comments on an earlier draft of
this paper. This work has been funded by the ERC Advanced Grant ProofCert.
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A On the augmented focusing proof system µFa

It should be noted that, although the system presents two left rules for the connective =, one with the
clerk =s

c for success and one with the clerk = f
c for failure, the implementation is usually expected to

have one single unification facility that, given an equation, will or will not succeed, and which is tied
to one single clerk. If the unification fails, the rule succeeds immediately without generating a premise
certificate Ξ1, and the constraint on the conclusion certificate Ξ0 is actually the same as for success.
Hence the clerk = f

c can be defined as an existential closure of =s
c. Likewise, 6=s

c can be defined in terms
of 6= f

c .

= f
c (·)≡ (∃Ξ1.=

s
c(·,Ξ1)) 6=s

c(·)≡ (∃Ξ1. 6= f
c (·,Ξ1))

It is also possible to remove the truth and falsity connectives, as we expect to have the equivalences

t+ ≡ (a = a) f+ ≡ (a = b)

f− ≡ (a 6= a) t− ≡ (a 6= b)

if a and b are distinct constants, hence the following:

t+e ≡=s
e t+c ≡=s

c f+c ≡= f
c

f−e ≡ 6= f
e f−c ≡ 6= f

c t−c ≡ 6=s
c

Last, it is customary to leave clerks and experts out of rules with no premises (i.e. t+e , =s
e, f−e , 6= f

e ,
f+c , = f

c , t−c and 6= f
c ). This has the same effect as setting them to be always true.

The system presented in Figures 1 and 2 does not have these simplifications, but the Bedwyr-based
implementation does.

B A simple example of a µF proof

The following proof can be seen as the justification that {1,3} ⊆ {1,2,3}. In particular, encode these
two sets as the predicates (i.e., abstractions over formula):

λx[x = 1∨ x = 3] and λx[x = 1∨ x = 2∨ x = 3].

The sequent calculus proof of inclusion can then be written as the following focused proof.

` 1 = 1 ⇓
` 1 = 1∨1 = 2∨1 = 3 ⇓
⇑ ` ⇑ 1 = 1∨1 = 2∨1 = 3
⇑ ` 1 = 1∨1 = 2∨1 = 3 ⇑

⇑ x = 1 ` x = 1∨ x = 2∨ x = 3 ⇑

` 3 = 3 ⇓
` 3 = 1∨3 = 2∨3 = 3 ⇓
⇑ ` ⇑ 3 = 1∨3 = 2∨3 = 3
⇑ ` 3 = 1∨3 = 2∨3 = 3 ⇑

⇑ x = 3 ` x = 1∨ x = 2∨ x = 3 ⇑
⇑ x = 1∨ x = 3 ` x = 1∨ x = 2∨ x = 3 ⇑

⇑ ` [x = 1∨ x = 3]⊃ [x = 1∨ x = 2∨ x = 3] ⇑
⇑ ` ∀x.[x = 1∨ x = 3]⊃ [x = 1∨ x = 2∨ x = 3] ⇑
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