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Games and proof

Two style of games used in computer science.

Function-argument interaction: function against environment.
Models proof normalization. Gets interesting with higher-order
computations. c.f. Hyland-Ong, Abramsky, full abstraction for
PCF.

Dialogue games: Style used in this talk.

“If I have a proof, I can win the argument.”

A tradition starting with Lorenzen [1960/61], Hintikka [1968], . . ..



An small story

In 1986, my first PhD student, Gopalan Nadathur, defended his
PhD to his jury, which included Rick Statman.

GN: Here is my main definition and main theorem.

RS: I don’t believe your theorem.
[Moves to blackboard to compose counterexample.]

...

Student and adviser remained calm since GN had a careful proof.
RS’s attack was defeated.

Why use games in logic? So one can relax at PhD defenses!
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Prolog and noetherian Horn clauses

Assume that the noetherian Horn clause program1 P is loaded into
Prolog and we ask the query ?- G.

Prolog will respond by either reporting yes or no.

If yes then Prolog has a proof of G . Such a proof can be
represented in the sequent calculus of Gentzen.

If no then there is a proof of ¬G . Requires the closed world
assumption or “Clark’s completion”. Captured in proof theory
using fixed points (Schroeder-Heister & Hallnäs, Girard, and
Baelde & McDowell & Miller & Tiu).

1“noetherian” and “Horn” essentially means that G is one big, purely
synchronous formula.



Proof and refutation in one computation

Prolog did one, neutral computation which yielded a proof of G or
a refutation of G (i.e., a proof of ¬G ).

But the “proof search” explanation of logic programming requires
that one

start with either −→ G or with −→ ¬G .

A failed attempt to find a proof does not give, in general, enough
information to build a proof of the negation.

Two motivating questions.
(1) Can we formalize this in a neutral style? [Use games.]
(2) Can the neutral style be extended to richer logics? [Prolog
turns out to be a one-move game.]



Contribution: General

We define a game semantics for the multiplicative additive
fragment of linear logic (MALL).

I Our approach is distinct from other, well-known game
semantics: Hyland & Ong, Blass, Abramsky. We do not
model cut-elimination.

I Our game is positional.

I Winning strategies correspond to cut-free proofs.

I Games can have three outcomes: winning strategy for player
(proof), winning strategy for opponent (proof of the
negation), no winning strategy for either player (unprovability
of both).



Contribution: Focused proofs

Our games can also help to illuminate focused proofs.
I Why are invertible and non-invertable rules duals of each

other?
I When considering the opponent’s move, I have no choice and

must consider all of them (the proof step is invertible).
I When considering my move, I usually have a choice (the proof

step is non-invertible).

I In MALL, the treatment of introduction rules is immediate.
The treatment of “structural rules” is less clear.

I Single-focus or multiple-focus? remove all or only some
asynchrony?

I Our games provide a natural choice among such alternatives.



The additive fragment of MALL

Syntax

F := F ⊕ F | 0 | F N F | >

Inference rules

` F
` F ⊕ G

⊕1
` G

` F ⊕ G
⊕2

` F ` G
` F N G

N ` > >

The purely additive fragment of MALL has no room for atoms:
since there are no commas, there are no initial rules.



Neutral expressions

Let us define a two-player game for this logic.
A neutral expression E represents a pair of dual formulas.

G := E + E | 00

E := G | lG

A neutral expression E has a positive and a negative translation.

E E1 + E2 00 lG

[E ]+ [E1]
+ ⊕ [E2]

+ 0 [G ]−

[E ]− [E1]
− N [E2]

− > [G ]+



A simple additive game

Positions are neutral expressions.

Consider the rewrite relation defined by

E1 + E2 7→ E1 E1 + E2 7→ E2

When playing at position E , a player may move to F iff E 7→∗lF .
A player loses at position E if there is no move from E .

Theorem
The player (resp. the opponent) has a winning strategy in E iff
[E ]+ (resp. [E ]−) is provable.

This game is also called a Hintikka game.



Interpretation of moves

A rewrite step (aka “micro-move”) E1 + E2 7→ Ei is seen as

` [Ei ]
+

` [E1]
+ ⊕ [E2]

+
⊕i

by the player
(choses which disjunct to

prove)

` [E1]
− ` [E2]

−

` [E1]
− N [E2]

− N

by the opponent
(is prepared to prove either

conjunct)

A move (aka “macro-move”) E 7→∗lF is seen as a full layer of
introductions of ⊕ by the player and as a full layer of introductions
of N by the opponent (in focused proof systems, those layers are
called phases).



Interpretation of moves

A rewrite step (aka “micro-move”) E1 + E2 7→ Ei is seen as

` [Ei ]
+

` [E1]
+ ⊕ [E2]

+
⊕i

by the player
(choses which disjunct to

prove)

` [E1]
− ` [E2]

−

` [E1]
− N [E2]

− N

by the opponent
(is prepared to prove either

conjunct)

A move (aka “macro-move”) E 7→∗lF is seen as a full layer of
introductions of ⊕ by the player and as a full layer of introductions
of N by the opponent (in focused proof systems, those layers are
called phases).



Features of the additive game

I The game is determinate,

I it is symmetric,

I the players view the game as dual derivations,

I a micro-move corresponds to the application of an inference
rule, and

I a macro-move corresponds to a full phase.

Objective

Define a similar game for the more expressive logic MALL without
atoms.
Note: MALL with or without atoms is PSPACE-complete.
Note: Delande’s PhD & TCS paper presents MALL with atoms.
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MALL without atoms

F := F ⊕ F | 0 | F N F | > | F O F | ⊥ | F ⊗ F | 1

Additives

` Fi ,∆

` F1 ⊕ F2,∆
⊕i

` F ,∆ ` G ,∆

` F N G ,∆
N ` >,∆

>

Multiplicatives

` F ,G ,∆

` F O G ,∆
O ` ∆

` ⊥,∆
⊥
` F ,∆1 ` G ,∆2

` F ⊗ G ,∆1,∆2
⊗ ` 1

1

Note: initial and cut are admissible.



Neutral expressions

We add a multiplicative neutral connective and its unit.

G ::= E + E | 00 | E × E | 11

E ::= G | lG

E E1 + E2 00 E1 × E2 11 lG

[E ]+ [E1]
+ ⊕ [E2]

+ 0 [E1]
+ ⊗ [E2]

+ 1 [G ]−

[E ]− [E1]
− N [E2]

− > [E1]
− O [E2]

− ⊥ [G ]+



Parallelism vs permutability

Consider the two following dual derivations:

` F
` F ⊕ G

⊕1
1

1

` (F ⊕ G ) ⊗ 1
⊗

` F⊥

` F⊥,⊥
⊥ ` G⊥

` G⊥,⊥
⊥

` F⊥ N G⊥,⊥
N

` (F⊥ N G⊥) O ⊥
O

On the left, the player may apply ⊕1 and 1 in any order. On the
right, applying ⊥ before N would change the derivation.

` F
` (F ⊕ G ) ⊗ 1

` F⊥ ` G⊥

` (F⊥ N G⊥) O ⊥
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Abstracting away from micro-moves

The internal structure of a macro-move vis-à-vis micro-moves is
abstracted from the game.

Focusing allows a similar abstraction in proofs. In particular,
permutation of inference rules within a phase are identified in
focused proofs.



Focalization

The connectives and units can be classify into the two groups

Synchronous ⊕ 0 ⊗ 1

Asynchronous N > O ⊥

Andreoli’s focused proof system [1992] constrained proofs as
follows:

1. apply, in any order, asynchronous rules until none are
applicable (they all permute over each other);

2. then choose to focus on a (synchronous) formula and apply
synchronous rules to it and its descendants until they become
asynchronous.

This strategy lacks symmetry: in a synchronous phase we select
one formula, while in an asynchronous phase we select all of them.



Multi-focalization for MALL without atoms

Additives and multiplicatives

` Γ ⇓ Fi ,∆

` Γ ⇓ F1 ⊕ F2,∆
[⊕i ]

` Γ ⇑ F ,∆ ` Γ ⇑ G ,∆

` Γ ⇑ F N G ,∆
[N]

` Γ ⇑ >,∆
[>]

` Γ ⇑ F ,G ,∆

` Γ ⇑ F O G ,∆
[O]

` Γ ⇑ ∆

` Γ ⇑ ⊥,∆
[⊥]

` Γ1 ⇓ F ,∆1 ` Γ2 ⇓ G ,∆2

` Γ1, Γ2 ⇓ F ⊗ G ,∆1,∆2
[⊗] `⇓ 1

[1]

Phase changes

` Γ,F ⇑ ∆

` Γ ⇑ F ,∆
[R ⇑]

` Γ ⇑ ∆

` Γ ⇓ ∆
[R ⇓]

` Γ ⇓ ∆

` Γ,∆ ⇑ [D]

(F sync.) (∆ async.) (∆ 6= ∅)



What’s difficult with multiplicatives?

The logic is not complete! The neutral expression l11× l11
translates to two unprovable formulas:

⊥ ⊗ ⊥ and 1 O 1

` A, δ1, . . . , δk ` B, δk+1, . . . , δn

` A ⊗ B, δ1, . . . , δn

` (A ⊗ B) O δ1 O . . . O δn

` A⊥,B⊥

` A⊥ O B⊥ ` δ⊥1 . . . ` δ⊥n

` (A⊥ O B⊥) ⊗ δ⊥1 ⊗ . . . ⊗ δ⊥n

On the left, the player chooses a partition δ1, . . . , δn. This
information does not appear on the right.
On the right, you can tell A and B from the δi . This information is
lost on the left.
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Treating the multiplicatives

A game can no longer be determinate. If neither [E ]+ nor [E ]− are
provable, then no one has a winning strategy starting with E .

Derivations are now explicitly focused. [In the additive-only case,
unfocused proofs are actually focused.]

The state of the game cannot be a plain neutral expression any
more. We use neutral graphs to record multiplicative structure.

An important invariant is maintained:

I The [·]+ and [·]− translations yield the frontiers of slices of
two dual derivations, and

I applying only cut rules to these two translations yields the
empty sequent.



Vertices as sequents, arcs as formulas

A neutral graph

I is a bipartite graph,

I whose arcs are labeled with neutral expressions,

I with no undirected cycles.

An arc

u v
E

means that

I the formula [E ]+ occurs in the sequent associated with u,

I the formula [E ]− occurs in the sequent associated with v .



A basic example

The frontiers
` [E ]+ ⇑ `⇑ [E ]−

are represented by the neutral graph

E



A more complex example

The frontiers

` [E ]+, [F ]+ ⇑ `⇑ [G ]− ` [G ]+ ⇑ [E ]− `⇑ [F ]−

are represented by the neutral graph

E

F

G



The full game

The players rewrite a neutral graph.

I A micro-move is seen as the application of a synchronous
(resp. asynchronous) rule by the player (resp. the opponent);

I a macro-move is seen as a phase;

I some moves may make one (or both) of the proofs fail;

I a play goes on until both players fail (tie) or the graph
becomes empty (win for the player who has not failed).

Theorem
Player (resp. opponent) has a winning strategy from a neutral
graph G iff the positive (resp. negative) translation of G is
provable.



A dynamic example

δ1, . . . , δk ⇓ A δk+1, . . . , δn ⇓ B

δ1, . . . , δn ⇓ A ⊗ B

A ⊗ B, δ1, . . . , δn ⇑
⇑ A ⊗ B, δ1, . . . , δn

⇑ (A ⊗ B) O δ1 O . . . O δn

⇑ A⊥,B⊥

⇑ A⊥ O B⊥

⇓ A⊥ O B⊥
⇑ δ⊥1

⇓ δ⊥1 . . .

⇑ δ⊥n

⇓ δ⊥n

⇓ (A⊥ O B⊥) ⊗ δ⊥1 ⊗ . . . ⊗ δ⊥n

l(a× b)× ld1 × . . .× ldn
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A typical macro-move

In a macro-move
G

f0,f1 G ′

the neutral graph G is rewritten to G ′, and f0 (resp. f1) is a
boolean value which is true iff player 0 (resp. 1) fails during the
move.
A macro-move can be decomposed in micro-moves: an initial step
selecting the neutral expressions to decompose, then small steps
corresponding to single rule applications.

G
D→ G0

f
(1)
0 ,f

(1)
1−→ G1

f
(2)
0 ,f

(2)
1−→ · · ·

f
(n)
0 ,f

(n)
1−→ Gn = G ′

and fσ =
∨n

i=1 f
(i)
σ (σ ∈ {0, 1}).



Micro-moves

Micro-move Sync reading Async reading

G
D→ G ′ [D] none

G
R→ G ′ [R ⇓] [R ⇑]

G
+→ G ′ [⊕] [N]

G
×→ G ′ [⊗] [O]

G
00,f0,f1→ G ′ none [>]

G
11,f0,f1−→ G ′ [1] [⊥]

Remark
The micro-moves responsible for failure are those associated with
units.



Failure

v w
11 11,f0,f1−→

v w

is seen as the simultaneous application of

Player (black)

`⇓ 1,∆0
[1]

(requires ∆0 = ∅)

Opponent (white)

` Γ1 ⇑ ∆1

` Γ1 ⇑ ⊥,∆1
[⊥]

(unprovable if Γ1,∆1 = ∅)

Player fails if v does not become isolated, opponent fails if w
becomes isolated.



What would Lakatos say?

Imre Lakatos, ”Proofs and Refutations” (1976).

Similarity: Proving and refuting are done as an integrated activity.

Differences: This integrated activity is highly formalistic.

Lakatos would not be happy with this particular project.



Conclusion

I The neutral approach can have three outcomes: winning
strategy for a player (proof), winning strategy for her
opponent (refutation) or no winning strategy for either (no
proof or refutation).

I This game with neutral graphs reveals the complexity of the
multiplicatives.

I Every step in the game contributes simultaneously to building
a proof and a refutation.

I This positional game yields relative completeness.

Future work

I Extend the games to atoms, fixed points, quantification (See
Delande’s PhD).

I Capture full completeness (See Delande’s PhD).

I Develop connections with ludics.
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