
From Operational Semantics to Abstract Machines

John Hannan
Department of Computer Science, University of Copenhagen,

Universitetsparken 1, DK-2100 Copenhagen East, Denmark.

hannan@diku.dk

Dale Miller
Computer and Information Science, University of Pennsylvania,

Philadelphia, PA 19104-6389, USA.

dale@cis.upenn.edu

Received 16 October 1992

We consider the problem of mechanically constructing abstract machines from

operational semantics, producing intermediate-level specifications of evaluators

guaranteed to be correct with respect to the operational semantics. We construct these

machines by repeatedly applying correctness-preserving transformations to operational

semantics until the resulting specifications have the form of abstract machines. Though

not automatable in general, this approach to constructing machine implementations can

be mechanized, providing machine-verified correctness proofs. As examples we present

the transformation of specifications for both call-by-name and call-by-value evaluation of

the untyped λ-calculus into abstract machines that implement such evaluation strategies.

We also present extensions to the call-by-value machine for a language containing

constructs for recursion, conditionals, concrete data types, and built-in functions. In all

cases, the correctness of the derived abstract machines follows from the (generally

transparent) correctness of the initial operational semantic specification and the

correctness of the transformations applied.

1. Introduction

The correctness of programming language implementations is an important issue con-
fronting language designers and implementors. Traditionally, such implementations are
first built “by hand” and only then proved correct. Unfortunately, the resulting imple-
mentations may have little relationship to the language’s semantic specifications and so
correctness may be difficult to show. For realistic languages, such correctness proofs
become unwieldy because of the overwhelming amount of implementation-level informa-
tion that must be correlated. In an alternative approach, a language implementation
is constructed from the semantic specification in such a way that the resulting imple-
mentation is guaranteed to satisfy correctness requirements: no independent proof being
necessary. This approach may provide a mechanical, if not automatic, process allowing
the correctness to be machine checked. This latter point is important when considering

J. Hannan and D. Miller 2

the sizes of correctness proofs for realistic languages. Of course the choice of semantic
specification and target language greatly influences the practicality of this approach.

We use operational semantics to specify the meaning of programs and abstract ma-
chines to provide an intermediate representation of the language’s implementation. Op-
erational semantics can be presented as inference rules or, equivalently, as formulas in
a weak meta-logic permitting quantification at first-order and second-order types. Such
semantic specifications provide high-level and clear descriptions of programming lan-
guages, often handling numerous syntactic details in a declarative and simple fashion.
Abstract machines can be presented as rewrite rules describing single-step operations on
the state of a computation. Such specifications provide an intermediate level of represen-
tation for many practical implementations of programming languages. The construction
of abstract machines has traditionally been performed by hand, with correctness proofs
following later. We demonstrate how to take a specification for an evaluator in the high-
level, flexible style of operational semantics and derive, through formally justifiable steps,
an abstract machine that implements that evaluator. While providing a direct proof of
the correctness of derived abstract machines, these derivations also provide guidance for
extending such machines and illustrate relationships among various abstract machines.

Because operational semantics specifications can have rich structure, completely au-
tomatic methods for constructing abstract machines from them seem feasible only for
restricted classes of operational semantics. While identifying these classes and the corre-
sponding procedures for constructing machines is of interest, we focus only on a general
strategy for constructing machines and provide two examples of this task. Applying our
approach to wider classes of languages and machines than considered here (for example,
imperative languages and machines using a continuation-passing style) requires finding
new transformations that will most certainly be dependent upon the particular struc-
ture of the semantic specification and machine for each case. The examples presented,
however, demonstrate the kind of reasoning required for simple functional languages and
environment-based abstract machines, and suggest the feasibility of similar transforma-
tions for other languages and architectures.

The basic goal of the derivations described in this paper differs slightly from the prin-
cipal goal of most program translations. Typical translations involve rewriting programs
in a source language into a different, target language. Compilation is such a process.
Our specifications of both operational semantics and abstract machines sit inside a sin-
gle meta-logic. Most of our effort in transforming specifications attempts to make various
aspects of computation that are implicit in the way one specification relies on this meta-
logic explicit within another specification. In this way, transformed specifications rely less
on the meta-logic. For example, one set of transformations changes a specification that
uses second-order quantification to a specification that only uses first-order quantifica-
tion. By continuing this kind of transformation, it is possible to reduce the specification’s
reliance on the meta-logic to a point where theorem proving using that specification can
be done by a simple rewriting of computation states that is modeled well using abstract
machines.

This paper is organized as follows. In Section 2 we give a general description of the
classes of operational semantics and abstract machines that we consider in later sections.

From Operational Semantics to Abstract Machines 3

In Section 3 we present the meta-logic in which we specify operational semantics. This
meta-logic provides various high-level features for simple manipulation of bound vari-
ables and contexts. In Section 4 we present two high-level and declarative specifications
of evaluators which use second-order quantification, and then we transform them into
specifications using only first-order quantification. Included in this section is a treatment
of the translation from terms represented in a simply typed λ-calculus (with second-order
constants) to terms in a language using only first-order constants. In Section 5 we take
the first-order specifications developed in Section 4 and apply appropriate transforma-
tions to them until we produce systems describing abstract machines. The resulting
proof systems are equivalent to the Krivine machine [Cur90] (for the call-by-name case)
and a variant of the SECD machine [Lan64] (for the call-by-value case). In Section 6 we
describe how the derivations of Sections 4 and 5 can be modified or extended to yield
machines for richer languages that include recursion, a conditional and other new lan-
guage features. Finally, in Section 7 we discuss relations to other work, and in Section 8
we summarize our results.

2. Operational Semantics and Abstract Machines

A recent trend in programming language design has been the use of operational se-
mantics to define the semantics of a programming language. The particular style of
operational semantics we consider here was inspired by Martin-Löf [Mar84] and uses
sets of inference rules as specifications. Various instances of this approach have been
called Proof-Theoretic Semantics, Natural Semantics and Relational Semantics [Han90,
Kah87, MTH90]. This style of semantics has proved well suited to specifying evaluation
strategies for realistic programming languages. Direct implementations of operational se-
mantics require several general, symbolic techniques that are generally found in theorem
provers or logic programming languages.

Abstract machines have been effectively used as intermediate and low-level architec-
tures suitable for supporting serious implementations of a wide variety of programming
languages, including imperative, functional, and logic programming languages. Abstract
machines are distinguished from operational semantics by having simple and direct algo-
rithmic implementations that can employ efficient data structures. On the other hand,
abstract machines are distinguished from lower-level, machine-code implementations be-
cause typically the former uses pattern matching for destructing data while the latter
explicitly addresses the notions of structure sharing, storage allocation, and register al-
location.

One goal of this paper is to connect these two methods of specifying the evaluation
of programming languages and, in doing so, to provide means of producing abstract
machines from operational semantics. Below we provide an overview of each of these
paradigms.

J. Hannan and D. Miller 4

2.1. Operational Semantics

The phrase “structural operational semantics” is attributed to Plotkin, based on his
seminal paper “A Structural Approach to Operational Semantics” [Plo81]. Although
that term has come to describe a few different styles of specifications, in that paper it
is used to describe evaluation in terms of a one-step reduction relation and his inference
rules axiomatize this relation. Martin-Löf uses an operational semantics for describing
type theory [Mar85]. While he does not present the definition as a set of inference rules,
his notion of evaluation is both compositional and syntax directed. Milner is perhaps the
first to use inference rules to axiomatize evaluation to canonical form in his descriptions
of the dynamic semantics of Standard ML, including the latest specification of the full
language [MTH90].

The work presented here was initially inspired by the work in Natural Semantics,
as described in [Kah87]. That work uses a first-order meta-logic with inference rules
presented using sequents. We extend this work by using a higher-order (and higher-level)
meta-logic employing less explicit, natural deduction-style inference rules. As a reference
point we present a simple example of natural semantics, namely type inference for a
simple functional language containing function abstraction and application. We begin
by defining a first-order abstract syntax for the language. We introduce three constants
var: string → term, lam: (string × term)→ term, and com: (term × term)→ term for
constructing variables, λ-abstractions, and applications (combinations), respectively. For
example, we represent the familiar combinators I, K and S as follows:

Concrete Syntax Abstract Syntax

λx.x lam(“x”, var(“x”))

λxλy.x lam(“x”, lam(“y”, var(“x”)))

λxλyλz.xz(yz) lam(“x”, lam(“y”, lam(“z”,

com(com(var(“x”),var(“z”)),

com(var(“y”),var(“z”))))))

To specify type inference we must also represent types as objects and we can do this by
introducing a new type ty and the constants tvar: string→ ty and arrow: (ty × ty)→ ty.
The relationship between a program and its type is denoted by the predicate of the meta-
logic hastype of meta-logic type (((string× ty) list)× term× ty)→o. (Following Church
[Chu40], we use o to denote the type of meta-logic propositions). The first argument of
hastype is a context binding variable names to types. For example, the proposition

hastype(nil, lam(“i”, var(“i”)), arrow(tvar(“a”), tvar(“a”)))

relates the combinator I to its type. (List constructors are nil and the infix symbol
::.) We axiomatize such propositions via the set of inference rules in Figure 1. The
member predicate is assumed to be defined such that if member((X, T), Γ) is provable
then (X, T) is the leftmost pair in Γ in which the left component is X. If the proposition

From Operational Semantics to Abstract Machines 5

member((X, T), Γ)

hastype(Γ, var(X), T)

hastype((X, S) :: Γ, M, T)

hastype(Γ, lam(X, M), arrow(S, T))

hastype(Γ, M, arrow(S, T)) hastype(Γ, N, S)

hastype(Γ, com(M, N), T)

Fig. 1. Axiomization of type inference

hastype(γ, t, τ) is provable using this set of rules then the term (encoded by) t has type
(encoded by) τ , given the assumptions in γ for the types of free object-variables of t.

In this setting and in others, the phrase “operational semantics” can be a misnomer,
because such semantic specifications may lack a clear operational or algorithmic imple-
mentation. The term deductive semantics is more accurate, as the meanings of semantic
judgments are given by deductions; the task of theorem proving or proof construction is
left unspecified. One focus of our paper is the systematic restructuring of specifications
so that rather simple algorithms can provide complete theorem provers. Because proofs
in the meta-logic of semantic judgments describe the course of a computation, they will
play a central role in justifying each restructuring of operational semantics.

2.2. Abstract Machines

Many abstract machines have much in common, and we define here the formal notion of
Abstract Evaluation System (AES) that captures and abstracts some of this commonal-
ity. We assume some familiarity with term rewriting, its terminology and the notion of
computation in a rewriting system [HO80]. Recall that a term rewriting system is a pair
(Σ, R) such that Σ is a signature and R is a set of directed equations {li ⇒ ri}i∈I with
li, ri ∈ TΣ(X) and V(ri) ⊆ V(li). Here, TΣ(X) denotes the set of first-order terms with
constants from the signature Σ and free variables from X, and V(t) denotes the set of
free variables occurring in t. We restrict our attention to first-order systems, i.e., Σ is a
first-order signature, though this is not essential.

Definition 1. An Abstract Evaluation System is a quadruple (Σ, R, ρ, S) such that the
pair (Σ, R ∪ {ρ}) is a term rewriting system, ρ is not a member of R, and S ⊆ R.

Evaluation in an AES is a sequence of rewriting steps with the following restricted struc-
ture. The first rewrite rule must be an instance of the ρ rule. This rule can be understood
as “loading” the machine to an initial state given an input expression. The last rewrite
step must be an instance of a rule in S: these rules denote the successful termination
of the machine and can be understood as “unloading” the machine and producing the
answer or final value. All other rules are from R. We also make the following significant
restriction to the general notion of term rewriting: all rewriting rules must be applied to
a term at its root. This restriction significantly simplifies the computational complexity
of applying rewrite rules during evaluation in an AES. A term t ∈ TΣ(∅) evaluates to
the term s (with respect to the AES (Σ, R, ρ, S)) if there is a series of rewriting rules
satisfying the restrictions above that rewrites t into s.

J. Hannan and D. Miller 6

M ⇒ 〈 nil, M, nil〉

〈 E, λM, X :: S〉 ⇒ 〈X :: E, M, S〉
〈 E, M ˆN, S〉 ⇒ 〈 E, M, {E, N} :: S〉
〈{E′, M} :: E, 0, S〉 ⇒ 〈 E′, M, S〉
〈 X :: E, n + 1, S〉 ⇒ 〈 E, n, S〉

〈 E, λM, nil〉 ⇒ {E, λM}

M ⇒ 〈nil, nil, M :: nil, nil〉

〈S, E, λM :: C, D〉 ⇒ 〈{E, λM} :: S, E, C, D〉
〈S, E, (M ˆN) :: C, D〉 ⇒ 〈S, E, M :: N :: ap :: C, D〉
〈S, E, n :: C, D〉 ⇒ 〈nth(n, E) :: S, E, C, D〉
〈X :: {E′, λM} :: S, E, ap :: C, D〉 ⇒ 〈nil, X :: E′, M :: nil, (S, E, C) :: D〉
〈X :: S, E, nil, (S′, E′, C′) :: D〉 ⇒ 〈X :: S′, E′, C′, D〉

〈X :: S, E, nil, nil〉 ⇒ X

Fig. 2. The Krivine machine (top) and SECD machine (bottom)

In certain situations, it might be sensible to have a more restricted definition of AES. In
particular, allowing only linear rewrite rules (rules whose left-hand sides have no repeated
variables) simplifies an implementation of an AES by eliminating the need for a costly
runtime equality check (to be certain that the duplicated variables are instantiated to
the same term). Similarly, requiring an AES to be deterministic (that is, no two rewrite
rules can be used on the same term) is also sensible, especially in the context of modeling
evaluation of functional programs. We note that all the examples presented in this paper
do, in fact, satisfy both of these additional restrictions.

The SECD machine [Lan64] and Krivine machine [Cur90] are both AESs and variants
of these are given in Figure 2. The syntax for λ-terms uses de Bruijn notation with
ˆ (infix) and λ as the constructors for application and abstraction, respectively, and
{E,M} denotes the closure of term M with environment E. The first rule given for each
machine is the “load” rule or ρ of their AES description. The last rule given for each is
the “unload” rule. (In each of these cases, the set S is a singleton.) The remaining rules
are state transformation rules, each one moving the machine through a computation step.

A state in the Krivine machine is a triple 〈E, M,S〉 in which E is an environment, M

is a single term to be evaluated and S is a stack of arguments. A state in the SECD
machine is a quadruple 〈S, E,C, D〉 in which S is a stack of computed values, E is an
environment (here just a list of terms), C is a list of commands (terms to be evaluated)
and D is a dump or saved state. The expression nth(n,E), used to access variables in
an environment, is treated as a function that returns the n + 1st element of the list E.

From Operational Semantics to Abstract Machines 7

Although Landin’s original description of the SECD machine used variables names, our
use of de Bruijn numerals does not change the essential mechanism of that machine.

3. The Meta-Language

All specifications of evaluation given in this paper, whether high-level or low-level, can
be given as formulas or as inference rules within a simple meta-logic.

3.1. Types, Terms, and Formulas

Let S be a finite, non-empty set of non-logical primitive types (sorts) and let o be the
one logical primitive type, the type of formulas. (o is not a member of S.) A type is
either o, a member of S, or a functional type τ→σ in which both τ and σ are types. The
function type constructor associates to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3).
The order of a type is the measure of how deeply function types are nested to the left:
primitive types are of order 0 and the type τ1 → · · · → τn → τ0, in which τ0 is primitive
and n > 0, is one greater than the maximum order of the types τ1, . . . , τn.

The logical constants ∧ (conjunction) and ⊃ (implication) have type o→ o→ o and
the logical constant ∀τ (universal quantification of type τ) has type (τ → o) → o, for
every type τ that does not contain o. A signature Σ is a finite set of typed, non-logical
constants. We often enumerate signatures by listing their members as pairs, written a: τ ,
in which a is a constant of type τ . Although attaching a type in this way is redundant,
it makes reading signatures easier. Occurrences of o are restricted in the types of non-
logical constants: if a constant c in Σ has type τ1→· · ·→ τn→ τ0, in which n ≥ 0 and τ0

is a primitive type, then the types τ1, . . . , τn may not contain o. If τ0 is o then c is called
a predicate symbol. A signature is nth-order if all its constants are of order n or less and
at least one constant in it is of order n. Only first-order and second-order signatures are
used in this paper.

A constant or variable of type τ is a term of type τ . If t is a term of type τ → σ and s

is a term of type τ , then the application (t s) is a term of type σ. Application associates
to the left: read the expression (t1 t2 t3) as ((t1 t2) t3). Finally, if x is a variable of type
τ and t is a term of type σ, then the abstraction λx t is a term of type τ →σ. The usual
definition of free and bound variable occurrences are assumed as well as the notion of
α-conversion. The logical constants ∧ and ⊃ are written in the familiar infix form. The
expression ∀τ (λz t) is written simply as ∀τz t. A term of type o is a formula. When t

and s are λ-terms, the expression t = s denotes the mathematical proposition that t and
s are α-convertible.

For variable x and term s of the same type, t[s/x] denotes the operation of substituting
s for all free occurrences of x in t, systematically changing bound variable names in t to
avoid free variable capture. Besides the relation of α-conversion, terms are also related
to other terms by the following rules of β- and η-conversions.

• The term s β-converts to the term s′ if s contains a subformula occurrence of the
form (λx t)t′ and s′ arises from replacing that subformula occurrence with t[t′/x].

J. Hannan and D. Miller 8

• The term s η-converts to the term s′ if s contains a subformula occurrence of the
form λx (t x), in which x is not free in t, and s′ arises from replacing that subformula
occurrence with t.

The binary relation conv, denoting λ-conversion, is defined so that t conv s if there is a
list of terms t1, . . . , tn, with n ≥ 1, t equal to t1, s equal to tn, and for i = 1, . . . , n− 1,
either ti converts to ti+1 or ti+1 converts to ti by α, β, or η conversion. Expressions of
the form λx (t x) are called η-redexes (provided x is not free in t) while expressions of
the form (λx t)s are called β-redexes. A term is in λ-normal form if it contains no β or
η-redexes. Every term can be converted to a λ-normal term, and that normal term is
unique up to the name of bound variables. See [HS86] for a more complete discussion of
these basic properties of the simply typed λ-calculus.

3.2. Specifications as Formulas

Our specification of evaluators uses a weak extension to Horn clause logic. In particular,
let syntactic variables A range over atomic formulas and B range over possibly universally
quantified atomic formulas. Formulas used for specifications are closed formulas of the
form

∀z1 . . . ∀zm[(B1 ∧ . . . ∧Bn) ⊃ A] (m,n ≥ 0).

(If n = 0 the implication is not written.) These formulas differ from Horn clauses
only in that the Bi’s are not necessarily atomic: they may be universally quantified
atomic formulas. Occurrences of such universal quantifiers are called embedded universal
quantifier occurrences. The quantifier occurrences ∀zi are called outermost universal
quantifier occurrences.

A specification is a pair 〈Σ,P〉 in which Σ is a signature and P is a finite, non-empty
set of these extended Horn clauses with the following restrictions.

1 The signature Σ is exactly the set of non-logical constants with occurrences in for-
mulas in P. Thus, Σ does not need to be listed separately.

2 If a formula in P contains an embedded universal quantifier occurrence, then that
quantifier occurrence binds a variable of primitive type and Σ is a second-order sig-
nature.

3 If Σ is first-order then all of the outermost quantifier occurrences in formulas in P
bind variables of (non-logical) primitive type. In this case, the set P must contain
just first-order Horn clauses; that is, they contain no embedded quantifiers.

Such pairs 〈Σ,P〉 are used to specify the extension to predicates that are members of
Σ. In particular, if p : τ1→· · ·→ τn→o is a member of Σ, then the tuple 〈t1, . . . , tn〉 (for
closed terms ti) is in the extension of p if and only if the closed formula (p t1 · · · tn) is
provable from P and all the constants in the terms t1, . . . , tn are in Σ. Since the formulas
permitted in specifications are so weak, classical logic provability here coincides with
intuitionistic and minimal logic provability. In each of these cases, equality of terms and
formulas is λ-convertibility.

For example, let S be the set {i} containing only one primitive type, let Σ0 be the

From Operational Semantics to Abstract Machines 9

second-order signature

{abs : (i→ i)→ i, app : i→ i→ i, eval : i→ i→ o},
and let P0 be the set containing the two formulas

∀i→im (eval (abs m) (abs m))

∀ip∀iq∀iv∀i→im (eval p (abs m) ∧ eval (m q) v ⊃ eval (app p q) v).

Untyped λ-terms are represented using the constants abs (denoting abstraction) and app

(denoting application). We discuss this syntax further in Section 4.1. This example has
no embedded universal quantifier occurrences but it does have one outermost quantified
variable whose type is of order 1. The specification 〈Σ0,P0〉 is used in Section 4 to give
a high-level specification of call-by-name evaluation.

For another example, let S = {i, nat, list}, and consider the second-order signature

Σ1 = {abs : (i→ i)→ i, app : i→ i→ i, 0 : nat, 1 : nat,+ : nat→ nat→ nat,

nil : list, :: : i→ list→ list, count : list→ i→ nat→ o}
and the set P1 containing the four formulas

∀listl∀ip∀iq∀natc∀natd(count l p c ∧ count l q d ⊃ count l (app p q) (1 + (c + d)))

∀listl∀i→im∀ix∀natc(∀ix(count (x :: l) (m x) c) ⊃ count l (abs m) c)

∀listl∀ix(count (x :: l) x 0)

∀listl∀ix∀iy∀natc(count l x c ⊃ count (y :: l) x c).

(Here the list constructor :: is written in infix notation.) The pair 〈Σ1,P1〉 can be used to
count the number of occurrences of the constant app in a term. In particular, if the atomic
formula (count nil t n) is provable from P1 then n is an arithmetic expression equal to
the number of occurrences of app in t. The functional interpretation of operations such
as + are not part of the logic we have described here. For example, if there is a proof of
the formula

count nil (absλx(absλy(app (app x y) (app y x)))) n

from Σ1 and P1 then that proof contains a subproof of the formula

count (d :: c :: nil) (app (app c d) (app d c)) n,

where c and d are eigenvariables of the proof. Thus, eigenvariables can be used to name
bound variables when it is important to “descend” through an abstraction. This latter
formula is provable if and only if n is the expression 1 + (1 + (0 + 0) + (1 + (0 + 0))).
Beyond this example, the most sophisticated integer computations we need are those for
incrementing positive integers, and for that, special treatment of integers is not necessary.
At first glance, it may appear that the first argument of count that lists free variables is
not needed for this specification. It is only used to determine whether or not the term
in the second argument of count is a variable. Given the specification of terms that we
have picked, it is clear that a term is a variable if and only if it is not an app or an
abs. Specifying such a negative condition, however, is not possible in this meta-logic,

J. Hannan and D. Miller 10

and, hence, we are required to replace it with the positive condition of finding the second
argument in the first argument.

3.3. Specifications as Proof Systems

Because of the simple structure of formulas in specifications we can describe specifications
instead as proof systems by replacing formulas with inference rules. We view a clause of
the form

∀z1 . . . ∀zm[B1 ∧ . . . ∧Bn ⊃ A]

as an inference rule of the form
B1 · · · Bn

A

in which the universal quantifiers ∀z1 . . . ∀zm are implicitly assumed. We use the con-
vention that all capitalized letters occurring in formulas of inference rules are variables
implicitly quantified by outermost universal quantifiers. The clauses specifying count

above can be specified as the following set of inference rules.

count L P C count L Q D

count L (app P Q) (1 + (C + D))
∀ix(count (x :: L) (M x) C)

count L (abs M) C

count (X :: L) X 0
count L X C

count (Y :: L) X C

Inference rules of this kind only explicitly mention one logical connective, universal
quantification, and occurrences of it are permitted only in the premises of rules. Thus, to
complete a proof system we must specify the introduction rule for the universal quantifier.
This and the rule for λ-conversion are

B[y/x]
∀x B

∀-I and
B

B′ λ.

These rules have the following provisos: for ∀-I, the eigenvariable y must not be in Σ or
free in ∀x B; and for λ, we must have B conv B′. Usual notions of natural deduction
[Gen69, Pra65] are assumed. Since there are no implications to introduce, proofs here do
not involve the discharging of assumptions. (Adding such occurrences of implication is
natural and useful for a wide range of specifications [Han90]; such implications, however,
play only a small role in the specification of evaluators and so are not considered here.) A
proof system is first-order or second-order if its equivalent presentation as a specification
〈Σ,P〉 is such that Σ is first-order or second-order, respectively.

In the rest of this paper, we present specifications as inference rules. It is impor-
tant to note, however, that proofs in classical (or intuitionistic or minimal) logic using

From Operational Semantics to Abstract Machines 11

specifications-as-formulas are isomorphic to proofs using specifications-as-proof-systems.
The choice of which presentation to use is only one of notational convenience.

3.4. Abstract Evaluation Systems as Proof Systems

While specifications form weak logical systems, they provide high-level mechanisms for
the specification of evaluation in object-language functional programs. Many of these
mechanisms, such as universal quantification, higher-order types, and λ-conversion, do
not correspond to anything that appears in abstract evaluation systems. The following
restricted proof systems, however, do correspond to AESs.

Definition 2. A set of first-order inference rules is AES-defining if there are two binary
predicate symbols p and q (not necessarily distinct) such that

•every axiom is of the form
p s t

in which s and t are terms and V(t) ⊆ V(s);

•there is a distinguished inference rule of the form
p t z

q s z
in which s and t are terms,

V(t) ⊆ V(s), and z is a variable not free in either s or t; and
•inference rules that are neither axioms nor the distinguished rule are of the form

p t z

p s z
in which s and t are terms, V(t) ⊆ V(s), and z is a variable that is not free

in either s or t.

For every AES-defining proof system I we can define an AES (Σ, R, ρ, S) (modulo the
renaming of free variables) such that the following condition holds: for all terms s and
t, I ` q s t if and only if there exists some AES-rewriting sequence s

ρ
=⇒ s′ ∗=⇒ s′′ r=⇒ t

for some r ∈ S and some terms s′ and s′′ (∗=⇒ denotes zero or more rewritings using
R-rules). The correspondence between some given I and (Σ, R, ρ, S) can be described
as follows:

• I contains the axiom
p s t

if and only if S contains the rewrite rule s ⇒ t;

• I contains the distinguished rule
p t z

q s z
if and only if ρ is s ⇒ t; and

• I contains the rule
p t z

p s z
if and only if R contains s ⇒ t.

One important characteristic of AES-defining proof systems is the use of an “output”
variable in the inference rules. Every inference rule (other than the axioms) is either of

the form
p t z

p s z
or

p t z

q s z
in which z is a variable (implicitly universally quantified).

Thus, for every proof in such a proof system there is a single term which is the second
argument for every formula occurrence in the proof. Obviously, most specifications of
evaluators are not AES-defining proof systems. First-order specifications can fail to
satisfy the requirements of AES-defining proof systems in a number of ways. Particular
violations that concern us later are proof systems that contain inference rules with

1 multiple formulas in their premises;

J. Hannan and D. Miller 12

2 variables in their premises that do not also occur in their consequents; or

3 the form
p t y

p s z
in which y and z are not the same variable or they occur in s or t.

We can systematically convert a proof system containing inference rules with multiple
premises to an equivalent (modulo a simple relation between provable formulas) system
containing only rules with at most one premise. The latter two cases, however, are more
problematic and no single method appears universally applicable.

3.5. Implementations of the Meta-Logic

Meta-logical specifications can be interpreted as logic programs and the literature on
implementing logic programs can be directly applied to provide implementations of spec-
ifications. If a specification is first-order, then Prolog or the TYPOL language of the
CENTAUR system [Kah87] can provide a depth-first interpreters of it. Since the higher-
order logic programming language λProlog [NM88] supports higher-order quantification,
λ-conversion, and embedded universal quantification, it can be used to give a depth-first
implementation of the full meta-logic. Although depth-first interpretation is not gener-
ally complete, it is complete for those AES-defining proof systems that are deterministic
(at most one rule can be applied at a given point in building a proof in a bottom-up fash-
ion). Because almost all the AES-defining proof systems presented here are deterministic,
λProlog can be used to provide correct implementations of them. Since such implemen-
tations are also tail-recursive, the result of compiling them should be efficient, iterative
programs. By translating the specifications in this paper into λProlog code, we have
been able to experiment with them. We found such prototyping and experimentation
valuable in understanding the dynamics of various specifications.

4. From Explicit to Implicit Abstractions in Terms

This section begins with the specification of call-by-name and call-by-value as proof
systems using the approach described in Section 3.3. Our first specifications represent
object-level, untyped λ-terms using a meta-level syntax that employs simply typed λ-
terms over a second-order signature. This approach makes it possible to map object-
level abstractions directly to meta-level abstractions. Since the elegant and declarative
meta-level operations for handling explicit abstractions are available, specifications can
be clear, concise, and suitably abstracted from numerous implementation details. As we
plan to construct abstract machines that use only first-order terms to encode object-level
programs, we must translate terms using a second-order signature in which λ-abstractions
are available explicitly to terms over a first-order signature in which abstractions are avail-
able only implicitly. The task of changing the specification of evaluation to accommodate
this change in term-level syntax is not trivial. This section shows how this change can
be effected for call-by-name and call-by-value evaluation.

From Operational Semantics to Abstract Machines 13

4.1. Specifying Two Evaluators

In this section and the next, we only consider the untyped λ-calculus since it is rich
enough to illustrate several problems in the evaluation of functional program. In Section 6
we consider several of those language extensions needed for more realistic functional
programming languages, and demonstrate how our methods can be applied to those
extensions.

The untyped λ-terms can be encoded into simply typed λ-terms of base type tm using
two constants abs : (tm→ tm)→ tm and app : tm→ tm→ tm, for encoding object-level
abstraction and application, respectively. (A formal definition of the encoding and its
various properties can be found in [Han90].) Some example terms in this syntax are
listed below.

Untyped λ-terms Simply typed λ-terms

λx.x (abs λu.u)
λy.y (λz.z)(abs λu.u)
(λx.x)(λy.y) (app (abs λu.u) (abs λv.v))

All three untyped λ-terms are β-convertible, but only the first two are α-convertible.
Only the first two simply typed λ-terms are β-convertible. By convention, we typically
select the unique (up to α-conversion) simply typed λ-term in βη-long normal form to
represent the corresponding untyped λ-term term. That is, although (abs λu.u) and
(λz.z)(abs λv.v) are equal meta-level terms and both encode λx.x, we only refer to the
βη-long normal term (the first one here) as the encoding of the given untyped λ-term.

We observe that α-equivalent terms in the untyped λ-calculus map to λ-convertible
terms in the simply typed λ-calculus of the meta-logic and a β-redex in the untyped λ-
calculus maps to a meta-level term of the form (app (abs s) t), which is not a meta-level
β-redex.

To demonstrate some simple computations using this encoding, consider the follow-
ing two examples. First, to determine if two terms p, q : tm are representations of
α-convertible untyped (object-level) λ-terms, we only need to check if the equality p = q

is provable in the meta-logic (such equality contains the meta-level conversion rules for
α, β, and η).

For the second example, consider specifying object-level substitution. This can be
done with using the 3-place predicate subst: tm→ tm→ tm→ o, which is axiomatized
using the simple axiom

∀tm→tmA ∀tmB (subst (abs A) B (AB)).

Thus if s, t, u : tm are encodings of untyped terms λx.p, q, r, respectively, and meta-level
proposition (subst s t u) is an instance of the above axiom, then, at the object-level, r

is α-convertible to the term p[q/x]. (See [Han90] for a proof of this correspondence).
The two inference rules in Figure 3 specify call-by-name evaluation and the two in-

ference rules in Figure 4 specify call-by-value evaluation. In both of these cases, values
are λ-terms in weak-head normal form. Rather than explicitly use the axiom for subst

J. Hannan and D. Miller 14

eval (abs M) (abs M)

eval P (abs M) eval (M Q) V

eval (app P Q) V

Fig. 3. High-level specification of call-by-name evaluation

eval (abs M) (abs M)

eval P (abs M) eval Q R eval (M R) V

eval (app P Q) V

Fig. 4. High-level specification of call-by-value evaluation

described above, these evaluators use the meta-level expressions (M Q) and (M R), re-
spectively, to specify substitution via meta-level β-conversion. Alternatively, we could
use the axiom for subst by expressing the rule for application (in the call-by-name case)
as

eval P (abs M) subst (abs M) Q R eval R V

eval (app P Q) V
.

Notice that these inference rules contain variables of the functional type tm→ tm and
no rule contains explicit mention of bound variables. If we name the rules in Figure 3 by
E , then E ` eval s t if and only if t encodes the weak-head normal form (whnf) obtained
by a normal-order reduction of the untyped λ-term encoded by s. A similar statement
can be made for the call-by-value inference rules.

These inference rules provide a high-level specification of evaluation in several senses.
Below we focus on two of these senses, namely, the use of meta-level β-conversion to
automatically perform object-level substitution of terms for bound variables and the use
of λ-terms instead of simpler first-order terms in the meta-language.

4.2. Introducing Closures into the Call-by-Name Evaluator

To prepare for a change in the meta-level representation of untyped λ-terms, we introduce
three predicates isabs, isapp and apply into the call-by-name evaluator in order to move
the actual representation of terms away from the clauses that directly describe evaluation.
The resulting inference system is given in Figure 5. Notice that the constants abs and app

do not occur in those inference rules that mention the eval predicate. Using elementary
facts about unfolding of inferences rules, it is immediate that the eval-facts provable
from Figure 3 and from Figure 5 are identical. (A brief discussion of unfolding can be
found in Appendix A.)

We now introduce the new constant clo : tm→ (tm→ tm)→ tm to “name” object-level
β-redexes. All meta-level terms containing clo are λ-convertible to terms of the form

(clo t1 λx1(. . . (clo tn λxn s) . . .)) (n ≥ 0) (∗)
in which s is either (app s1 s2) for some s1 and s2, (abs s′) for some s′, or one of the
bound variables x1, . . . , xn. Depending on these three cases, we say that (∗) is the closure
of an application, the closure of an abstraction, or the closure of a variable, respectively.

From Operational Semantics to Abstract Machines 15

isapp A P Q eval P R apply Q R S eval S V

eval A V

isabs P

eval P P

isabs (abs M) isapp (app P Q) P Q apply Q (abs M) (M Q)

Fig. 5. Addition of some meta-level predicates.

Furthermore, all terms that appear in evaluators we consider have the additional property
that the terms t1, . . . , tn are all closed terms and hence contain no occurrences of the
bound variables x1, . . . , xn. If n = 0 then (∗) simply denotes s. Terms of the form (∗)
are abbreviated using the syntax (clo t̄ λx̄ s).

Let t be a term built from abs, app, and clo as described above. The term t0 denotes
the λ-normal form of the result of replacing every occurrence of clo in t with the term
λuλv (v u). This mapping replaces all named β-redexes with meta-level β-redexes, which
are then removed in the process of forming the λ-normal form.

Since the rules for isabs, isapp, and apply in Figure 5 are sensitive to the particular
structure of terms, these rules must be modified to handle terms containing clo. For
example, rules for isabs and isapp must now determine whether terms are closures of
abstractions and applications. Since terms can also be closures of variables, we intro-
duce the isvar predicate to test for such terms and to return the term in the closure
that corresponds to that variable. The rules listed in Figure 6 address this additional
structure.

As with the count example in Section 3.2, when reading the inference rules in Figure 6
from the bottom to top, the eigenvariables introduced by universally quantified premises
can be seen as naming the bound variables of the λ-abstraction that they instantiate.
Consider, for example, proving the formula

isvar nil (clo t1 λx1(. . . (clo tn λxn s) . . .)) t.

If this atomic formula has a proof, that proof must also contain a subproof of the formula

isvar ((cn, tn) :: · · · :: (c1, t1) :: nil) s′ t

where s′ is the result of replacing the bound variables x1, . . . , xn in s with the (distinct)
eigenvariables c1, . . . , cn, respectively. The proof of this latter formula is essentially the
computation that determines which of these eigenvariables is equal to s′ and that t is the
term associated with that eigenvariable.

Let `5 denote provability from the inference rules in Figure 5 and let `6 denote prov-
ability from the inference rules in Figure 6. The proof of the following lemma follows
from inspection of the inference rules for the meta-level predicates isabs, isapp, isvar

and apply given in Figure 6.

Lemma 3. Let r be a term of type tm over the constants abs, app and clo.

J. Hannan and D. Miller 16

isapp A P Q eval P R apply Q R S eval S V

eval A V

isabs P

eval P P

isvar nil P T eval T V

eval P V

isabs (abs M)

∀x (isabs (M x))

isabs (clo T M)

isapp (app P Q) P Q

∀x (isapp (A x) (M x) (N x))

isapp (clo T A) (clo T M) (clo T N)

∀x (isvar ((x, T) :: E) (M x) V)

isvar E (clo T M) V isvar ((X, T) :: E) X T

isvar E X T

isvar ((Y, S) :: E) X T

apply Q (abs M) (clo Q M)

∀x (apply Q (M x) (N x))

apply Q (clo T M) (clo T N)

Fig. 6. Evaluation with closures represented using clo : tm→ (tm→ tm)→ tm.

1̀ 6 isabs r if and only if r is the closure of an abstraction.
2̀ 6 isapp r r1 r2 for r1 and r2 terms of type tm if and only if r is of the closure of
an application, that is, it is of the form (clo t̄ λx̄ (app z1 z2)) for some terms z1 and
z2 of type tm, in which case r1 is (clo t̄ λx̄ z1) and r2 is (clo t̄ λx̄ z2). When this
relationship holds, (app r0

1 r0
2) = r0.

3̀ 6 isvar nil r s if and only if r is the closure of a variable, that is, it has the form

(clo t1 λx1(. . . (clo tn λxn xi) . . .)) (n ≥ 1)

for some i such that 1 ≤ i ≤ n. In this case, s is the term ti. When this relation
holds, s0 = r0.
4̀ 6 apply t r s if and only if r is the closure of an abstraction, that is, it is of the
form (clo ū λx̄ (abs z)) for some term z of type tm → tm and s is of the form
(clo ū λx̄ (clo t z)). When this relationship holds, there is a term w of type tm→ tm

such that r0 = (abs w) and (w t0) conv s0. In particular, `5 apply t0 r0 s0.

The following two propositions establish the correspondence between the proof systems
in Figures 5 and 6.

Proposition 4. Let t and r be two terms of type tm such that r0 = t. If there is a
term v such that `5 eval t v, then there exists a term u such that u is the closure of an
abstraction, `6 eval r u, and u0 = v.

Proof. Let t and r be two terms of type tm such that r0 = t, and assume that there
is a term v such that `5 eval t v. First, consider the case where r is the closure of a
variable. By Lemma 3, `6 isvar nil r s where s is a proper subterm of r and s0 = r0.
Thus, if we can show that there exists a term u such that `6 eval s u and u0 = v, then
we have `6 eval r u via the proof rule for eval which has (isvar nil r s) as a premise.
If s is still the closure of a variable, repeat this step again. This repetition terminates in

From Operational Semantics to Abstract Machines 17

reducing `6-provability of (eval r v) to `6-provability of (eval r′ v) where r′ is a proper
subterm of r, (r′)0 = r0, and r′ is the closure of an application or abstraction.

Assuming that r is the closure of an application or abstraction, we can proceed by
induction on the structure of proofs in Figure 5 of (eval t v).

For the base case, assume that (eval t v) follows from the fact that t = v and `5 isabs t.
Thus r is the closure of a abstraction and by Lemma 3, `6 isabs r, so `6 eval r r. Thus,
r is the promised value for u.

For the inductive case, assume that (eval t v) follows from

`5 isapp t t1 t2, `5 eval t1 (abs w), `5 apply t2 (abs w) s and `5 eval s v.

Since t is the term (app t1 t2), it must be the case that r is the closure of an application.
By Lemma 3, `6 isapp r r1 r2 for some r1 and r2 such that r0

1 = t1 and r0
2 = t2. By

the inductive hypothesis, there is a u1 such that u0
1 = (abs w), u1 is the closure of an

abstraction, and `6 eval r1 u1. By Lemma 3 there is a term z such that `6 apply r2 u1 z

and z0 conv (w r0
2). Since s conv (w t2), we have s conv z0. Using the inductive

hypothesis again, we conclude that there is a u2 such that `6 eval z u2, u2 is the closure
of an abstraction, and u0

2 = v. Thus, from

`6 isapp r r1 r2, `6 eval r1 u1, `6 apply r2 u1 z, and `6 eval z u2,

we can conclude that `6 eval r u2, which completes this proof. 2

The following proposition establishes a converse to the preceding proposition.

Proposition 5. Let r and u be two closed, λ-terms such that `6 eval r u. Then `5

eval r0 u0.

Proof. A proof of (eval r u) using Figure 6 can be converted directly to a proof of
(eval r0 u0) using Figure 5 by the following three steps. First, remove all proof rules
above any formula occurrence whose head symbol is either the predicate isabs, isapp, or
apply. Second, repeatedly remove instances of the inference rule for eval that has isvar

in its premise by discarding the proof of its left premise and making the proof of the right
premise the proof of the conclusion of that inference rule occurrence. Finally, replace
every occurrence of a term t that is the argument of some predicate of some formula
occurrence in the proof with the term t0. It is now an easy exercise to verify that the
resulting proof is indeed a `5-proof of (eval r0 u0). 2

The inference rules in Figure 6 successfully avoid performing substitution of terms
for bound variables by making use of a closure-like structure. These rules still depend
on using λ-abstraction and universal quantification at the meta-level. We are now in a
position to remove this dependency.

A de Bruijn-style representation of terms containing clo can be built by introducing
the first-order constant clo′. We treat indices in terms containing clo′ in such a way that
the second argument of clo′ behaves as an abstraction. Consider the first-order signature

{̂ : fotm→ fotm→ fotm, λ : fotm→ fotm, clo′ : fotm→ fotm→ fotm, var : nat→ fotm},
where ˆ denotes application, λ denotes abstraction (this is an overloading of the λ sym-
bol), clo′ denotes the closure construction, and var maps natural numbers into terms

J. Hannan and D. Miller 18

encoding bound variables by their offsets. For the sake of brevity, we often abbreviate
the term (var n) by n. Here, clo′ treats its second argument as an abstraction by mod-
ifying offsets of variables in that argument. Following [Bru72], closed terms of type tm

can be placed in one-to-one correspondence with those terms of type fotm for which all
indices denoting bound variables have an offset to an actual occurrence of a λ or a clo′.
Using this first-order signature, the λ-term (clo t1 λx1(. . . (clo tn λxn s) . . .)) translates
to the first-order term (clo′ t′1 (. . . (clo′ t′n s′) . . .)) of type fotm, where t′1, . . . , t

′
n, s′ are

the translations of t1, . . . , tn, s, respectively. An index i at the position of s denotes a
variable to be replaced by the term tn−i.

Since clo′ is being used now to attach a list of terms t1, . . . , tn to the term s, clo′

can be replaced with explicit lists; that is, the above term can be represented simply as
{t′n :: · · · ::t′1 ::nil, s′}. Of course, now an index of i at the position of s must be interpreted
as referring to the i + 1th member of the associated list of terms and the construction
{ , } has type fotm list× fotm→ fotm. For example, the term

(clo (abs λx.x) λu(clo (abs λx(absλy y)) λv(app v u)))

would be translated to the term of type fotm {λλ0 :: λ0 :: nil, 0ˆ1}.
This final representation of syntax has several advantages over the one using clo or

clo′. First, it involves first-order constants only. Second, simple pattern matching can
determine if a term embedded in a closure is an abstraction, application, or variable
index; recursing down a series of clo’s is no longer needed. Third, the reversing of
closures involved in proving isvar is not needed and the auxiliary list argument to isvar
can be dropped. Finally, this syntax also makes it natural to identify a term s that is
not a top-level { , } with {nil, s} and to identify the doubly nested closure expression
{`, {t :: nil, s}} with simply {t :: `, s}. Given this change in the representation of terms,
we can easily rewrite our inference rules to those presented in Figure 7. As in the
transformation of the rules in Figure 5 and Figure 6, the only rules that change are those
involved with the definition of the predicates isabs, isapp, isvar, and apply.

If t is a term of type tm built from the constants abs, app, and clo, let t∗ be the
corresponding de Bruijn-style representation of t of type fotm over the constants ,̂ λ,
{ , }, and var. The proof of the following proposition follows immediately from the
motivation of the inference rules in Figure 7 given above.

Proposition 6. Let t and v be two terms of type tm built from the constants abs, app,
and clo. Then `6 eval t v if and only if `7 eval t∗ v∗.

Assuming that we are only interested in proving eval-atoms, the inference rules in
Figure 7 can be simplified, using unfolding transformations, to the inference rules N 0,
which are displayed in Figure 8. These are further transformed in Section 5.

4.3. Introducing Closures for Call-by-Value

We can follow the approach above to construct a first-order specification of the call-
by-value evaluator in Figure 4. Because the essential steps are the same as for the
call-by-name case, with most of the rules in each system being the same, we present here
only the different inference rules required for call-by-value evaluation.

From Operational Semantics to Abstract Machines 19

isapp A P Q eval P R apply Q R S eval S V

eval A V

isabs P

eval P P

isvar P T eval T V

eval P V

isabs {E, λM} isapp {E, P ˆQ} {E, P} {E, Q}

isvar {T :: E, 0} T

isvar {E, n} T

isvar {X :: E, n + 1} T

apply Q {E, λM} {Q :: E, M}

Fig. 7. Evaluation using list structures for closures.

eval {E, λM} {E, λM} (N 0.1)

eval {E, M} {E′, λM ′} eval {{E, N} :: E′, M ′} V

eval {E, M ˆN} V
(N 0.2)

eval X V

eval {X :: E, 0} V
(N 0.3)

eval {E, n} V

eval {X :: E, n + 1} V
(N 0.4)

Fig. 8. The N 0 proof system

The first step in the section above introduces the new predicates isabs, isapp, and
apply. The exact same modifications of proof systems can be done for the call-by-value
case with the only difference being the rule for application:

isapp A P Q eval P R eval Q S apply S R T eval T V

eval A V
.

The next step, which introduces the constant clo, follows as before, although the inference
rule for evaluating closures of variables is now just

isvar nil P V

eval P V
,

as no further evaluation is required. So the call-by-value version at this stage is just the
set of rules in Figure 6, except for this rule and the rule for application, which is as above.
The transition to a proof system that employs the first-order signature over type fotm
follows as before, and all the rules are the same except the ones corresponding to the

J. Hannan and D. Miller 20

eval {E, λM} {E, λM} (V0.1)

eval {E, M} {E′, λM ′} eval {E, N} R eval {R :: E′, M ′} V

eval {E, (M ˆN)} V
(V0.2)

eval {X :: E, 0} X
(V0.3)

eval {E, n} V

eval {X :: E, n + 1} V
(V0.4)

Fig. 9. The V0 proof system

two rules noted above. Finally, when we unfold these rules to simplify their structure,
we obtain the proof system V0, displayed in Figure 9.

5. Constructing Two Abstract Machines

In this section we transform the two first-order evaluators listed at the end of Section 4
into abstract machines. The transformation steps used in this section vary in generality:
some apply to a wide range of inference rules specifying evaluation strategies while some
are particular to a given evaluator. In all cases, however, transformations are motivated
by two goals. The first goal is to continue making a specification less dependent on the
meta-logic in which it is situated. For example, in the previous section, we replaced ex-
plicit abstractions using simply typed λ-terms with implicit abstractions using de Bruijn
indices and first-order terms. Here we go further by eliminating, for example, any need
for general (first-order) unification during proof construction. Our second goal is to
commit to certain decisions left implicit or undetermined in a specification so that the
resulting specification immediately yields an explicit algorithm.

5.1. Constructing a Call-by-Name Machine

We wish to convert the inference rules of system N 0 (presented at the end of Section 4.2)
to an AES-defining set of inference rules to obtain an abstract machine that implements
(weak head) normal-order reduction for untyped λ-terms. The proof rules in N 0 fail
to be AES-defining for two reasons. First, proofs in N 0 branch when an application is
evaluated. Second, the rule for application has two variables, E′ and M ′, in the premise
that are not in the conclusion. The first problem is solved by a general technique; the
second problem, however, seems to have no general solution. The bulk of this section
describes a series of transformations to address this second problem.

We first address the branching structure of proofs in N 0. Rule N 0.2 has two premises.
During bottom-up proof construction, proofs for these two premises can be constructed
in either order, or even in parallel. The choice is left to the particular implementation of
the meta-logic. We can choose a sequential strategy and enforce its use by applying the
following transformation. We introduce the new predicate symbol prove : (o list) → o

From Operational Semantics to Abstract Machines 21

prove nil
(N 1.1)

prove G

prove (eval {E, λM} {E, λM}) :: G
(N 1.2)

prove (eval {E, M} {E′, λM ′}) :: (eval {{E, N} :: E′, M ′} V) :: G

prove (eval {E, M ˆN} V) :: G
(N 1.3)

prove (eval X V) :: G

prove (eval {X :: E, 0} V) :: G
(N 1.4)

prove (eval {E, n} V) :: G

prove (eval {X :: E, n + 1} V) :: G
(N 1.5)

Fig. 10. The N 1 proof system

and the atomic axiom (prove nil). Each inference rule

A1 · · ·An

A0
of N 0 is rewritten as

prove A1 :: · · · :: An :: G

prove A0 :: G

for variable G (of type (o list)) that is not free in any Ai. This kind of transformation is
applicable to any proof system in which all inference rules contain only atomic formulas
as premises. In the case of N 0 this transformation produces the new system N 1 given in
Figure 10. The argument to prove represents the collection of formulas that remain to
be proved. This list behaves like a stack during bottom-up proof construction, with the
first formula in this list always chosen as the next one to prove. Constants such as prove

of type (o list)→ o are not formally allowed in our meta-logic (argument types are not
permitted occurrences of the type o). To be formally correct here is simple: introduce a
new primitive type, say b, let prove be of type (b list)→o instead and replace occurrences
of eval in N 1 with a new constant, say evl, of type tm → tm → b. For simplicity we
continue to use just the type o.

Lemma 7. For all closed atomic formula (eval {`, s} v),

N 0 ` (eval {`, s} v) if and only if N 1 ` prove (eval {`, s} v) :: nil.

The proof uses a straightforward induction on the structure of proofs in the two systems.
With N 1 we have solved the problem of having inference rules with multiple premises.

We are left to consider the problem of variables occurring in the premise but not in the
conclusion of a rule. For the case of N 1 this concerns rule N 1.3. We can characterize
this problem more generally, however, in the context of operational semantics. These dis-
tinguished variables typically serve as placeholders or temporary names for intermediate
results used in computing the final result of the computation specified by the inference
rule. This idea is discussed in [How91] where a class of rules called evaluation rules is
defined. Our concern here is in providing a technique for eliminating explicit reference
to these variables.

For the case of N 1 we exploit properties particular to proofs in this system (and

J. Hannan and D. Miller 22

subsequent ones as we introduce new proof systems). Unfortunately, these techniques
do not extend to general, widely applicable strategies, but they do serve to illustrate the
kind of reasoning possible for manipulating proof systems. In devising the steps involved
in the following construction we were assisted by knowing the approximate structure of
the resulting abstract machine.

A useful manipulation of proof systems involves introducing partial instantiations of an
inference rule. Partial instances of a rule are constructed by substituting (possibly open)
terms for some of the schema variables of the rule, with the free variables of these terms
becoming schema variables of the new rule. (A schema variable is one that is implicitly
universally quantified.) Clearly we can always add (to a proof system) instances of a
rule already in the system. Furthermore, we can replace a rule by a set of its partial
instances if every instance of the original rule is also an instance of one of the partial
instances. We apply this idea to rule N 1.2. The variable G in this rule is of type (o list)
and because there are only two list constructors (nil and ::), all possible instances of G

are also instances of either nil or A :: G′ for some instances of A and G′. Thus, we can
replace rule N 1.2 by the two inference rules:

prove nil

prove (eval {L, λM} {L, λM}) :: nil
(N 1.2a)

prove A :: G′

prove (eval {L, λM} {L, λM}) :: A :: G′
. (N 1.2b)

Notice that the premise of N 1.2a is always trivially provable. In fact, we can unfold the
rules N 1.1 and N 1.2a to produce the axiom

prove (eval {L, λM} {L, λM}) :: nil
. (N 1.2a′)

Further, notice that rules N 1.2b, 3, 4, 5 all have premises whose list arguments are non-nil

and hence instances of N 1.1 cannot occur immediately above instances of these rules.
If we use rule N 1.2a′ then we no longer need rule N 1.1 for non-trivial proofs. Taking
rules N 1.2a′, 2b, 3, 4, 5 (relabeling them as shown) yields the N 2 proof system displayed
in Figure 11.

Lemma 8. For all s, t, N 1 ` (prove (eval s t)::nil) if and only if N 2 ` (prove (eval s t)::
nil).

The proof of this Lemma is a straightforward induction on the size of N 1 and N 2 proofs
and uses the reasoning outlined above.

Note that N 1 and N 2 are not precisely equivalent since N 1 ` (prove nil) but N 2 6`
(prove nil). Since we are only interested in atomic prove statements that contain a
non-empty list of formulas, this discrepancy is irrelevant.

The premise of rule N 2.3 contains two occurrences of each of the two variables L′

and M ′ which do not occur in the conclusion. The following proposition describes a
redundancy within these proof rules that allows us to remove one occurrence of each of
L′ and M ′.

From Operational Semantics to Abstract Machines 23

prove (eval {L, λM} {L, λM}) :: nil
(N 2.1)

prove A :: G

prove (eval {L, λM} {L, λM}) :: A :: G
(N 2.2)

prove (eval {L, M} {L′, λM ′}) :: (eval {{L, N} :: L′, M ′} V) :: G

prove (eval {L, M ˆN} V) :: G
(N 2.3)

prove (eval X V) :: G

prove (eval {X :: L, 0} V) :: G
(N 2.4)

prove (eval {L, n} V) :: G

prove (eval {X :: L, n + 1} V) :: G
(N 2.5)

Fig. 11. The N 2 proof system

Proposition 9. Let a be a formula, let Π be an N 2 proof of (prove a :: nil) and let
(prove a1 :: · · · :: an :: nil), for n ≥ 2, be a formula occurring in Π. Then for all i =
1, . . . , n− 1, ai has the form (eval s {`, λt}) and ai+1 has the form (eval {s′ :: `, t} v) for
some terms s, s′, `, t and v.

Proof. Assume that the proposition does not hold for some formula a and proof Π.
Let prove a1 :: · · · :: an :: nil be the formula in Π closest to the root that does not have
the desired form. Since n 6= 1, this atom is the premise of some inference rule. That
inference rule must be N 2.3 since the conclusion of any other inference rule applied to
that formula would not have the desired form. If the inference rule was N 2.3, then the
first two atoms, a1 and a2, do have the required form. Hence, some pair in a2 ::· · ·::an ::nil

must not have the required form, and again the conclusion of this inference rule does not
have the require form, contradicting the assumption. 2

Thus, every instance of the inference rule N 2.2 in an N 2 proof of (prove a :: nil) is
also an instance of

prove (eval {{L′,M ′} :: L,M} V) :: G

prove (eval {L, λM} {L, λM}) :: (eval {{L′,M ′} :: L, M} V) :: G
.

This inference rule could therefore replace N 2.2. The structural information of Propo-
sition 9 can be used in a more interesting fashion: we can introduce a new predicate
symbol eval′ : fotm → fotm → o and modify N 2 to get the proof system N 3 so that
atomic formulas of the form

prove (eval c1 {`1, λt1}) :: (eval {c2 :: `1, t1} {`2, λt2})::
· · · :: (eval {cn :: `n−1, tn−1} {`n, λtn}) :: nil

in N 2 are replaced by formulas of the form

prove (eval c1 {`1, λt1}) :: (eval′ c2 {`2, λt2}) :: · · · :: (eval′ cn {`n, λtn}) :: nil

in N 3 proofs. Here, a new predicate eval′ is used to show that a variant of eval is
intended: while the proposition (eval s t) states that s evaluates to t, the proposition

J. Hannan and D. Miller 24

prove (eval {L, λM} {L, λM}) :: nil
(N 3.1)

prove (eval {{L1, M1} :: L, M} V) :: G

prove (eval {L, λM} {L, λM}) :: (eval′ {L1, M1} V) :: G
(N 3.2)

prove (eval {L, M} {L′, λM ′}) :: (eval′ {L, N} V) :: G

prove (eval {L, M ˆN} V) :: G
(N 3.3)

prove (eval X V) :: G

prove (eval {X :: L, 0} V) :: G
(N 3.4)

prove (eval {L, n} V) :: G

prove (eval {X :: L, n + 1} V) :: G
(N 3.5)

Fig. 12. The N 3 proof system

(eval′ s t) occurring in the context

(eval s′ {`, λt′}) :: (eval′ s t) :: · · · :: nil

states that {s :: `, t′} evaluates to t. The proof system N 3 is displayed in Figure 12.

Lemma 10. For all s, t, N 2 ` (prove (eval s t)::nil) if and only ifN 3 ` (prove (eval s t)::
nil).

The proof follows from Proposition 9 and the discussion above. Note that the distinc-
tion between the predicate symbols eval and eval′ is semantic. Syntactically, however,
we can use just one symbol instead of the two if we restrict our attention to formulas of
the form

prove (eval c1 {`1, λt1}) :: (eval′ c2 {`2, λt2}) :: · · · :: (eval′ cn {`n, λtn}) :: nil

(for n ≥ 1) because only the rules N 3.2 and N 3.3 manipulate eval′ predicates and always
as the second element in a list of formulas.

The next transformation is a simple reorganization of data structures that exploits
the isomorphism between a list-of-pairs and a pair-of-lists. The constants eval and eval′

can be viewed as pairing constructor (pairing a term with a value). The predicate
prove takes a list of such pairs. An equivalent formulation uses the binary predicate
prove1 : (fotm list) → (fotm list) → o that takes a pair of lists. The explicit pairing
constructors can be eliminated in this way. This is done in the proof system N 4 displayed
in Figure 13.

Note that for any formula occurring in an N 4 proof we can easily construct the corre-
sponding formula occurrence in an N 3 proof: use eval to pair together the first elements
in the lists, and use eval′ to pair together all the remaining elements. Given the motiva-
tion for N 4 above and the fact that the syntactic distinction between the constructors
eval and eval′ is not relevant, the following is immediate.

Lemma 11. For all s, t, N 3 ` (prove (eval s t) :: nil) if and only if N 4 ` (prove1 s ::
nil t :: nil).

Recall that an AES-defining system must have an output variable as part of the atomic

From Operational Semantics to Abstract Machines 25

prove1 {L, λM} :: nil {L, λM} :: nil
(N 4.1)

prove1 {{L1, M1} :: L, M} :: S V :: T

prove1 {L, λM}::{L1, M1}:: S {L, λM}:: V :: T
(N 4.2)

prove1 {L, M}::{L, N}:: S {L′, λM ′}:: V :: T

prove1 {L, M ˆN} :: S V :: T
(N 4.3)

prove1 X :: S V :: T

prove1 {X :: L, 0} :: S V :: T
(N 4.4)

prove1 {L, n} :: S V :: T

prove1 {X :: L, n + 1} :: S V :: T
(N 4.5)

Fig. 13. The N 4 proof system

prove2 {L, λM} :: nil {L, λM} :: nil {L, λM} (N 5.1)

prove2 {{L1, M1} :: L, M} :: S V :: T Z

prove2 {L, λM}::{L1, M1}:: S {L, λM}:: V :: T Z
(N 5.2)

prove2 {L, M}::{L, N}:: S {L′, λM ′}:: V :: T Z

prove2 {L, M ˆN} :: S V :: T Z
(N 5.3)

prove2 X :: S V :: T Z

prove2 {X :: L, 0} :: S V :: T Z
(N 5.4)

prove2 {L, n} :: S V :: T Z

prove2 {X :: L, n + 1} :: S V :: T Z
(N 5.5)

Fig. 14. The N 5 proof system

formula being proved. This variable is set by the axioms and is preserved by all the other
inference rules. Towards such a structure for our rules, we state the following trivial
proposition.

Proposition 12. For any terms s, t, the leaf of an N 4 proof of (prove1 s :: nil t :: nil)
must be an occurrence of the formula (prove1 t :: nil t :: nil).

We exploit this property of proofs by introducing a third argument to the prove1

predicate, modifying the one N 4 axiom to identify this new argument with the final
value t from the second argument t :: nil and modifying the remaining inference rules to
preserve the value of this argument. The resulting proof system, called N 5 and displayed
in Figure 14, replaces prove1 with the new predicate prove2 : (fotm list)→(fotm list)→
fotm→ o of three arguments.

Lemma 13. For all s, t, N 4 ` (prove1 s :: nil t :: nil) if and only if N 5 ` (prove2 s ::
nil t :: nil t).

The proof follows from Proposition 12.

J. Hannan and D. Miller 26

prove3 {L, λM} :: nil {L, λM} (N 6.1)

prove3 {{L′, N} :: L, M} :: S Z

prove3 {L, λM} :: {L′, N} :: S Z
(N 6.2)

prove3 {L, M} :: {L, N} :: S Z

prove3 {L, M ˆN} :: S Z
(N 6.3)

prove3 X :: S Z

prove3 {X :: L, 0} :: S Z
(N 6.4)

prove3 {L, n} :: S Z

prove3 {X :: L, n + 1} :: S Z
(N 6.5)

Fig. 15. The N 6 proof system

Now, N 5 is not an AES-defining system only because in rule N 5.3 the variables L′ and
M ′ occur in the premise but not in the conclusion. Consider simplifying the inference
rules of N 5 by replacing each inference rule of the form

(prove2 t′1 t′2 t′3)
(prove2 t1 t2 t3)

with
(prove3 t′1 t′3)
(prove3 t1 t3)

where prove3 : (fotm list)→ fotm→ o is a new binary predicate. This kind of gener-
alization is complementary to the instantiation transformations that we applied earlier.
The resulting system, called N 6, is displayed in Figure 15.

Observe that all schema variables free in the premise of any N 6 rule are also free in
the conclusion of that rule. Furthermore, observe that for every N 5 inference rule, the
schema variables occurring free in the second argument of prove2 occur nowhere else
in the premise. Thus this second argument is, in some sense, independent of the other
arguments in premise formulas. Observe also that in any N 5-provable formula the first
and second arguments are always lists of the same length and the second argument is
always of the form {`1, λs1} :: {`2, λs2} :: · · · :: nil. Thus for any N 5-provable formula, if
the first and third arguments of this formula match the corresponding arguments in the
premise of an inference rule, then the second argument must also match its corresponding
argument in the premise of the rule. That is, the second argument supplies no constraint
on the construction of N 5 proofs and so can be safely discarded. This fact is formalized
in the proof of the following proposition.

Lemma 14. For all s, t, N 5 ` (prove2 s::nil t::nil t) if and only if N 6 ` (prove3 s::nil t).

Proof. The proof in the forward direction is immediate: given a proof in N 5 simply
delete the second argument of all atomic formulas and change prove2 to prove3 through-
out. We prove the reverse direction by proving the slightly more general statement: for
all n ≥ 0, and terms s, s1, . . . , sn, t, if N 6 ` (prove3 sn :: . . . :: s1 :: s :: nil t) then there
exists terms t1, . . . , tn such that N 5 ` (prove2 sn :: . . . ::s1 ::s ::nil tn :: · · · :: t1 :: t ::nil t).
The proof proceeds by induction on the height h of an N 6 proof Π.

From Operational Semantics to Abstract Machines 27

Base: For h = 1, Π must be of the form

(prove3 {`, λs} :: nil {`, λs})
and so n = 0. The corresponding N 5 proof is simply

(prove2 {`, λs} :: nil {`, λs} :: nil {`, λs}) .

Step: Assume the statement holds for proofs of height h ≥ 1 and let Π be an N 6

proof of (prove3 sn :: . . . :: s1 :: s :: nil t) with height h + 1. We show that there exists
an N 5 proof ∆ of (prove2 sn :: . . . :: s1 :: s :: nil ` t) for some ` = tn :: · · · :: t1 :: t :: nil.

Let (prove3 s′m :: . . . :: s′1 :: s′ :: nil t) be the premise of the last inference of Π. By the
inductive hypothesis, there exist terms t1, . . . , tm such that (prove2 s′m :: . . . :: s′1 :: s′ ::
nil tm :: · · · :: t1 :: t :: nil t) has an N 5 proof ∆′. We proceed now by cases according to
the last inference rule of Π.

1If the last rule is N 6.4 (N 6.5) then n = m, and let ` = tm :: · · · :: t1 :: t :: nil. The
required proof ∆ is then built from ∆′ and N 5.4 (N 5.5).
2If the last rule is N 6.2 then n = m + 1 and s′m = {{`1, m1} :: `2,m2} for some
`1,m1, `2,m2. Let ` = {`2, λm2} :: tm :: · · · :: t1 :: t :: nil. Again the required proof ∆
is constructed from ∆′ and N 5.2.
3If the last rule is N 6.3 then m = n + 1 and m > 0. Let ` = tm−1 :: · · · :: t1 :: t :: nil.
The proof ∆ is constructed from ∆′ and N 5.3.

It is trivial to verify that in each case the ` we construct is of the form tn ::· · ·::t1 ::t::nil

for some t1, . . . , tn. Letting n = 0 yields the required proof for the lemma. 2

We now can state the main result of this section.

Theorem 15. For all s, t, N 0 ` (eval s t) if and only if N 6 ` (prove3 s :: nil t).

The proof follows from linking together all the lemmas in this section.
Notice that N 6 is simply an AES-defining proof system for call-by-name evaluation if

we add to it the load rule

prove3 {nil, M} :: nil Z

cbn M Z
.

The abstract machine encoded by this proof system is given in Figure 16. Its state
consists of a list (or stack) of closures {E, M} :: S. Compare this with the description in
Figure 2 in which the state consists of the triple 〈E,M, S〉.

5.2. Constructing a Call-by-Value Machine

In this section we construct a machine for call-by-value evaluation using a strategy similar
to the one applied in the previous section. Starting with the first-order specification V0

derived in Section 4.3, we construct the proof system V1 (displayed in Figure 17) in which
inference rules involving atomic formulas are replaced by inference rules involving stacks
of such formulas.

J. Hannan and D. Miller 28

M ⇒ {nil, M} :: nil

{E, M ˆN} :: S ⇒ {E, M} :: {E, N} :: S

{E, λM} :: {E′, N} :: S ⇒ {{E′, N} :: E, M} :: S

{X :: E, 0} :: S ⇒ X :: S

{X :: E, n + 1} :: S ⇒ {E, n} :: S

{E, λM} :: nil ⇒ {E, λM}

Fig. 16. A call-by-name abstract machine

prove nil
(V1.1)

prove G

prove (eval {E, λM} {E, λM}) :: G
(V1.2)

prove (eval {E, M} {E′, λM ′}) ::(eval {E, N} R)

::(eval {R :: E′, M ′} V) :: G

prove (eval {E, M ˆN} V) :: G

(V1.3)

prove G

prove (eval {X :: E, 0} X) :: G
(V1.4)

prove (eval {E, n} V) :: G

prove (eval {X :: E, n + 1} V) :: G
(V1.5)

Fig. 17. The V1 proof system

Lemma 16. For all terms `, s and v,

V0 ` (eval {`, s} v) if and only if V1 ` (prove (eval {`, s} v) :: nil).

The proof is similar to the proof of Lemma 7.
As with the call-by-name case we are again faced with the task of eliminating variables

that occur only in the premise of a rule. The problematic variable occurrences in this case
are E′ and M ′ in rule V1.3. There seems to be no simple generalization to Proposition 9
that reveals any redundancy in the inference rules of V1. Thus, we appeal to a more
general transformation (described in more detail in [Han90]) for introducing value stacks.
We give here just an outline of this transformation and its applicability to operational
semantics.

The formula (eval p v) represents a relation between an input program p and an output
value v. We can formalize this notion of input and output by considering the following
general form of an inference rule.

prove (eval p1 v1) :: (eval p2 v2) :: · · · :: (eval pn vn) :: G

prove (eval p v) :: G
(∗)

From Operational Semantics to Abstract Machines 29

The use of explicit lists of formulas enforces a left-to-right order in which these formulas
are solved during bottom-up proof construction. Assume that during proof construction
p is a closed term (known) and v is a variable (unknown) yet to be instantiated with a
closed term. To ensure that a program pi depends only on known information we restrict
occurrences of free variables as follows: every free variable of pi must either occur in
p or in some vj for some j < i. Thus an instance of program pi can be determined
from the program p (which we assume is given as input) and the results vj of previous
computations. We also assume that every variable occurring in v occurs in some vi

(1 ≤ i ≤ n). For a similar characterization of input and output within evaluation rules,
see [How91].

If such variable restrictions hold for all inference rules in a proof system then we
can reformulate the inference rules into a more functional, rather than relational, style.
Instead of a binary predicate eval : fotm → fotm → o taking a program and a value
as arguments we use a unary predicate eval1 : fotm → instr taking just a program
as an argument and producing an instruction (using the new type instr). The unary
predicate prove : (o list)→ o is replaced by a ternary predicate prove1 : (instr list)→
(fotm list)→ fotm→ o. The first argument is a list of instructions, replacing the list of
predicates. The second argument is a value stack representing the values produced by
instructions that have already been evaluated. The third argument represents the result
of the original program (occurring at the root of the proof tree). Now the basic idea of
the transformation we employ is that the value or result of a program is pushed onto the
value stack during bottom-up proof construction. So if (prove (eval p v)::nil) is provable
then a proof of (prove1 (eval1 p) :: ` s v0) must have a subproof (prove1 ` v :: s v0).
This transformation directly addresses the elimination of meta-level variables occurring
in the premise, but not conclusion, of inference rules. These variables provide access to
intermediate results, and this is the same service the stack provides. The full details of
this transformation are presented in [Han90].

Using this transformation we can construct the new proof system V2 (given in Fig-
ure 18) from V1. This step introduces a new constant φ : instr.

Lemma 17. For all terms p and v, V1 ` (prove (eval p v) :: nil) if and only if V2 `
(prove1 (eval1 p) :: nil nil v).

The proof follows immediately from Theorem 7.11 of [Han90].
In any V2-provable proposition (prove1 ` s z), the list ` consists only of eval1 or φ

instructions. As eval1 and φ are the only constructors for instr, we can replace the
terms of type instr with ones of type fotm. We first replace prove1 with a new predicate
prove2 : (fotm list) → (fotm list) → fotm → o; then replace terms (eval1 p) with just
p; and replace φ : instr with a new constant ψ : fotm. Performing this transformation
yields V3, displayed in Figure 19.

Lemma 18. For all terms p and v, V2 ` (prove1 (eval1 p) :: nil nil v) if and only if
V3 ` (prove2 p :: nil nil v).

The proof is a trivial induction on the height of proof trees.
For any V3-provable proposition (prove2 ` s v), ` is a list in which each element is

either a closure {e, t} or the term ψ. We can view this as a list of only closures if

J. Hannan and D. Miller 30

prove1 nil V :: nil V
(V2.1)

prove1 C {E, λM} :: S V

prove1 (eval1 {E, λM}) :: C S V
(V2.2)

prove1 (eval1 {E, M}) :: (eval1 {E, N}) :: φ :: C S V

prove1 (eval1 {E, M ˆN}) :: C S V
(V2.3)

prove1 C X :: S V

prove1 (eval1 {X :: E, 0}) :: C S V
(V2.4)

prove1 (eval1 {E, n}) :: C S V

prove1 (eval1 {X :: E, n + 1}) :: C S V
(V2.5)

prove1 (eval1 {R :: E, M}) :: C S V

prove1 φ :: C R :: {E, λM} :: S V
(V2.6)

Fig. 18. The V2 proof system

prove2 nil V :: nil V
(V3.1)

prove2 C {E, λM} :: S V

prove2 {E, λM} :: C S V
(V3.2)

prove2 {E, M} :: {E, N} :: ψ :: C S V

prove2 {E, M ˆN} :: C S V
(V3.3)

prove2 C X :: S V

prove2 {X :: E, 0} :: C S V
(V3.4)

prove2 {E, n} :: C S V

prove2 {X :: E, n + 1} :: C S V
(V3.5)

prove2 {R :: E, M} :: C S V

prove2 ψ :: C R :: {E, λM} :: S V
(V3.6)

Fig. 19. The V3 proof system

we introduce a new symbol ψ′ : fotm and replace ψ with a dummy closure {nil, ψ′}.
We can again replace such a list with a pair of lists by introducing a new predicate
prove3 : ((fotm list) list)→ (fotm list)→ (fotm list)→ fotm→o. Now instead of having a
list of pairs (the first argument of prove2), we have a pair of lists (the first two arguments
of prove3). We are thus led to the proof system V4 displayed in Figure 20.

Lemma 19. V3 ` (prove2 {`,m} ::nil nil v) if and only if V4 ` (prove3 ` ::nil m ::
nil nil v).

The proof is a trivial induction on the height of proof trees.
The dummy environment associated with the constant ψ′ can be eliminated since it

contains no information and it only appears on top of the environment stack E when ψ′

From Operational Semantics to Abstract Machines 31

prove3 nil nil V :: nil V
(V4.1)

prove3 L C {E, λM} :: S V

prove3 E :: L λM :: C S V
(V4.2)

prove3 E :: E :: nil :: L M :: N :: ψ′ :: C S V

prove3 E :: L (M ˆN) :: C S V
(V4.3)

prove3 L C X :: S V

prove3 (X :: E) :: L 0 :: C S V
(V4.4)

prove3 E :: L n :: C S V

prove3 (X :: E) :: L n + 1 :: C S V
(V4.5)

prove3 (R :: E) :: L M :: C S V

prove3 nil :: L ψ′ :: C R :: {E, λM} :: S V
(V4.6)

Fig. 20. The V4 proof system

is on top of the term stack C. Rules V4.3 and V4.6 can be replaced by the following two
rules.

prove3 E :: E :: L M :: N :: ψ′ :: C S V

prove3 E :: L M ˆN :: C S V
(V4.3′)

prove3 (R :: E) :: L M :: C S V

prove3 L ψ′ :: C R :: {E, λM} :: S V
(V4.6′)

If we combine the first three arguments of prove3 into a tuple (making prove3 a binary
predicate) then the resulting proof system is AES-defining. Figure 21 contains the cor-
responding abstract evaluation system: the CLS machine. (We have switched the order
of the first two arguments.) It can be viewed as a dumpless SECD machine. As in the
previous section we can introduce an appropriate rule to load the machine. This can be
derived by considering how the original binary predicate (eval P V) has evolved into the
four-place predicate (prove3 L C S V). The first argument of prove3, a stack of envi-
ronments, corresponds to the environment (E) and dump (D) of the SECD. The second
argument of prove3 corresponds to the code stack (C) of the SECD. The third argument
of prove3 acts as the argument stack (S) of the SECD. The constant ψ′ in our machine
corresponds to the instruction ap (or @) found in the description of the SECD machine
[Lan64]. This simplified machine avoids using an explicit dump in favor of maintaining a
stack of environments such that the ith term on the code stack is evaluated with respect
to the ith environment on the E stack (ignoring the occurrences of ψ′ which are not
evaluated with respect to an environment). While the original SECD machine stores
the entire state on the dump, the only required information is the old environment and
the code associated with it. Comparing this machine with the SECD machine given in
Figure 2, we note a one-to-one correspondence between the rules in the two machines,
except for the two rules that manipulate the dump of the SECD.

J. Hannan and D. Miller 32

M ⇒ 〈M :: nil, nil :: nil, nil〉

〈λM :: C, E :: L, S〉 ⇒ 〈C, L, {E, λM} :: S〉
〈(M ˆN) :: C, E :: L, S〉 ⇒ 〈M :: N :: ψ′ :: C, E :: E :: L, S〉
〈0 :: C, (X :: E) :: L, S〉 ⇒ 〈C, L, X :: S〉
〈n + 1 :: C, (X :: E) :: L, S〉 ⇒ 〈n :: C, E :: L, S〉
〈ψ′ :: C, L, R :: {E, λM} :: S〉 ⇒ 〈M :: C, (R :: E) :: L, S〉

〈nil, nil, V :: S〉 ⇒ V

Fig. 21. The CLS machine

There is a close relationship between our CLS machine and the Categorical Abstract
Machine (CAM) [CCM87]. The latter can be viewed as a compiled version of the former.
Both utilize a stack of environments and a stack of result values, though in the CAM
these two stacks have been merged into one structure. The codes for the two machines
are different. The CLS machine operates on a list of λ-terms (plus the constant ψ′) while
the CAM operates on a list of instructions for manipulating its stack. These instructions
do, however, correspond closely to operations performed on terms in the CLS, and recent
work has shown this correspondence by defining the compilation of λ-terms into CAM
instructions from the definition of the CLS machine [Han91].

6. Language and Machine Extensions

In this section we consider some extensions to our simple, object-level programming
language, making it more realistic. We demonstrate how these new features can be
specified via our high-level inference rules, and we outline how the transformations of
the previous section apply to these new features.

6.1. The Second-Order Lambda Calculus

The object-language we have considered so far is just the untyped λ-calculus. Considering
the simply typed calculus as the object-language adds nothing new to the theory of
evaluation, since evaluation, in this case, can be viewed as an untyped operation. We
can just erase the types of a simply typed term and apply untyped reduction to these
terms.

A more interesting case involves the second-order lambda calculus, or System F [Gir86],
in which types play a more important role during reduction. We begin by defining the
syntax for this calculus.

The types of F are given by the following grammar, where α ranges over type variables.

T ::= α | T → T | ∀α.T.

The terms of F are defined inductively as follows:

From Operational Semantics to Abstract Machines 33

1 for any type σ, we have a denumerable set of variables of type σ, and these are all
terms of type σ;

2 if t is a term of type τ and xσ is a variable of type σ, then λxσ.t is a term of type
σ → τ ;

3 if t and u are terms of types σ→ τ and σ, respectively, then (t u) is a term of type τ ;
4 if t is a term of type σ and α is a type variable, such that for all free variables xτ in

t, α does not occur free in τ , then Λα.t is a term of type ∀α.σ; and
5 if t is a term of type Λα.σ and τ is a type, then t{τ} is a term of type σ[τ/α].

Reduction in System F can be characterized by two rules:

(λxα.t)u =⇒ t[u/xα] and (Λα.t){τ} =⇒ t[τ/α],

with the first just being the typed version of β-reduction for term application. Our goal
is to axiomatize normal-order reduction (to weak head normal form) as we did with the
untyped calculus. We start by defining an abstract syntax for types and terms of System
F . We assume two (meta-level) syntactic sorts, ty and tm, to denote object-level types
and terms, respectively, of System F . The following signature will be used to present the
abstract syntax of such terms and types.

⇒: ty→ ty→ ty app : tm→ tm→ tm

pi : (ty → ty)→ ty abs : ty→ (tm→ tm)→ tm

tapp : tm→ ty→ tm

tabs : (ty→ tm)→ tm.

Types are constructed using the two constants ⇒ (infix) and pi, for example, (pi λα(α ⇒
α)). Terms are constructed using the remaining constants. Term application is denoted
as app; term abstraction is denoted as abs, where its first argument is the type of the
abstracted variable. Type application is denoted by tapp and type abstraction is denoted
by tabs. For example, we can represent the term Λβ((Λα(λxα.x)){β → β}) by the term

(tabs λb(tapp (tabs λa(abs a λx.x)) (b ⇒ b))).

As we did in Section 4, we can axiomatize a reduction relation by introducing a pred-
icate symbol eval : tm→ tm→ o. The four rules in Figure 22 axiomatize normal-order
reduction to weak head normal form. Notice how meta-level β-reduction provides object-
level substitution of both terms and types.

Applying techniques analogous to those of Section 4, we can introduce a first-order
syntax for this calculus, using de Bruijn-style notation. This syntax is given by the
following signature

⇒: foty→ foty→ foty ˆ : (fotm× fotm)→ fotm (infix)
∀ : foty→ foty λ : (foty× fotm)→ fotm
tvar : nat→ foty ˆ̂ : (fotm× foty)→ fotm (infix)

Λ : fotm→ fotm
var : nat→ fotm

(The overloading of the type for ⇒ should not cause any confusion). Type application
is written t ˆ̂ τ for term t and type τ . Type abstraction is written Λt for term t. The

J. Hannan and D. Miller 34

eval (abs T M) (abs T M) eval (tabs H) (tabs H)

eval P (abs T M) eval (M Q) V

eval (app P Q) V

eval P (tabs H) eval (H T) V

eval (tapp P T) V

Fig. 22. Call-by-name evaluation for System F

eval {E, λ(T, M)} {E, λ(T, M)} eval {E, ΛH} {E, ΛH}

eval {E, P} {E′, λ(T, M)} eval {{E, Q} :: E′, M} V

eval {E, P ˆQ} V

eval {E, P} {E′, ΛH} eval {{|E, T |} :: E′, H} V

eval {E, P ˆ̂ T} V

eval X V

eval {X :: E, 0} V

eval {E, n} V

eval {X :: E, n + 1} V

Fig. 23. A first-order specification of call-by-name evaluation for System F

non-negative integers are de Bruijn indices and are coerced into types foty and fotm
by tvar and var, respectively. For brevity, we simply write n for both (tvar n) and
(var n). Here, λ, Λ, and ∀ act as nameless binders and an occurrence of a (type or term)
variable is given by an index that refers to the number of λ’s, Λ’s, and ∀’s to its (the
variable’s) binding occurrence. For example, the term Λα.λxα.x becomes Λλ(1, 0). The
1 refers to the type variable bound by Λ and the 0 refers to the term variable bound
by λ. The abstract syntax of the term Λβ((Λα(λxα.x)){β → β}) over this signature is
Λ((Λ(λ (1, 0)) ˆ̂ (0 ⇒ 0)).

Translating the evaluation specification above into one using this new syntax, following
the approach of Section 4, yields the proof system in Figure 23. We have introduced a
new form of closure, {|E, T |}, denoting the closure of type T with environment E, as
types may now contain variables that are bound in the environment, just as with terms.

Finally, by following the steps of Section 5.1, we can produce an abstract machine
corresponding to these rules and it is given in Figure 24.

Evaluation here is not sufficiently different than in the untyped case, since types are
never evaluated and once they are moved into a closure, they are never retrieved. This ex-
ample is included here largely to show that the transformation techniques of the previous
two sections can be applied equally well in this typed situation.

From Operational Semantics to Abstract Machines 35

M ⇒ {nil, M} :: nil

{E, M ˆN} :: S ⇒ {E, M} :: {E, N} :: S

{E, λM} :: {E′, N} :: S ⇒ {{E′, N} :: E, M} :: S

{X :: E, 0} :: S ⇒ X :: S

{X :: E, n + 1} :: S ⇒ {E, n} :: S

{E, M ˆˆT} :: S ⇒ {E, M} :: {|E, T |} :: S

{E, ΛM} :: {|E′, T |} :: S ⇒ {{|E′, T |} :: E, M} :: S

{E, λM} :: nil ⇒ {E, λM}
{E, ΛM} :: nil ⇒ {E, ΛM}

Fig. 24. A machine for System F

6.2. Recursive Expressions

Recursion can be introduced into our object-language by introducing a constant that
acts like the Y combinator. In particular, let the constant fix : (tm → tm) → tm be
added to the second-order signature used in the beginning of Section 4. Evaluation of
recursive expressions is given simply by the rule

eval (M (fix M)) V

eval (fix M) V
.

Operationally, this rule performs an unwinding of the recursive definition by using meta-
level β-reduction to do substitution. Those transformations used in Section 4 that
replaced a second-order signature with a first-order signature can be applied also to
this rule. The second-order constant fix must be replaced with a first-order constant
µ : fotm→ fotm that acts as a binder just like the constant λ. The corresponding trans-
formation of the above evaluation rule, which can be added to both the call-by-name
proof system N 0 and the call-by-value proof system V0, is the following rule.

eval {{E,µM} :: E,M} V

eval {E,µM} V
.

Notice that this rule does not violate any of the conditions for AES-defining proof sys-
tems. The sequence of transformations applied to proof systems in Section 5 can be
applied to both the proof systems N 0 and V0 extended with this rule for recursion. In
the call-by-name case, we would need to simply add the rewrite rule

〈{E, µM} :: S〉 ⇒ 〈{{E, µM} :: E, M} :: S〉
to the machine in Figure 16.

If we perform the series of transformations used for call-by-value evaluation, we need
to add to proof system V4 the inference rule

prove3 ({E, µM} :: E) :: L M :: C S Z

prove3 E :: L µM :: C S Z
,

J. Hannan and D. Miller 36

which translates to the rewrite rule

〈µM :: C, E :: L, S〉 ⇒ 〈M :: C, ({E, µM} :: E) :: L, S〉.
This rewrite rule can be added to the specification of the CLS machine in Figure 21.

6.3. Conditional Expressions

Introducing a conditional expression to our object-language provides a challenge requiring
a new transformation. Using the constants if : tm → tm → tm → tm, true : tm, and
false : tm we can construct terms representing conditional expressions. Evaluation of
such expressions is specified via the two inference rules

eval P true eval Q V

eval (if P Q R) V
and

eval P false eval R V

eval (if P Q R) V
.

The transformations to abstract syntax that uses a first-order signature are straightfor-
ward and yield the two rules

eval {E,P} true eval {E, Q} V

eval {E, (if P Q R)} V

eval {E, P} false eval {E, R} V

eval {E, (if P Q R)} V
.

(Here, we assume that the types of if , true, and false now involve the primitive type fotm
instead of tm.) Let V ′0 be V0 extended with these two new rules (we only consider the
more difficult call-by-value situation here). Transforming V0 into V1 required introducing
the prove predicate and an explicit list of formulas. Following this transformation here
yields V ′1, which is just V1 extended with the rules

prove (eval {E, P} true) :: (eval {E,Q} V) :: G

prove (eval {E, (if P Q R)} V) :: G

prove (eval {E, P} false) :: (eval {E, R} V) :: G

prove (eval {E, (if P Q R)} V) :: G
.

Paralleling the transformation from V1 to V2 yields V ′2, which is V2 plus the following
four rules:

prove1 (eval1 {E,P}) :: (φ1 E Q) :: C S Z

prove1 (eval1 {E, (if P Q R)}) :: C S Z

prove1 (eval1 {E, P}) :: (φ2 E R) :: C S Z

prove1 (eval1 {E, (if P Q R)}) :: C S Z

prove1 (eval1 {E,Q}) :: C S Z

prove1 (φ1 E Q) :: C true :: S Z

prove1 (eval1 {E,R}) :: C S Z

prove1 (φ2 E R) :: C false :: S Z
.

Notice that the evaluation of a conditional uses the same stack that is used for functional
application. The final two transformations of V2 to V4 were simplifications of data

From Operational Semantics to Abstract Machines 37

structures, and these two transformations apply directly to the rules above, yielding the
following four rules that must be added to V4 to derive V ′4:

prove3 E :: E :: L P :: (ψ1 Q) :: C S Z

prove3 E :: L (if P Q R) :: C S Z

prove3 E :: E :: L P :: (ψ2 R) :: C S Z

prove3 E :: L (if P Q R) :: C S Z

prove3 E :: L Q :: C S Z

prove3 E :: L (ψ1 Q) :: C true :: S Z

prove3 E :: L R :: C S Z

prove3 E :: L (ψ2 R) :: C false :: S Z
.

Notice that (φ1 E Q) and (φ2 E R) have been replaced by just (ψ1 Q) and (ψ2 R) in
this transformation since the environment E appears at the front of the list in the first
argument of prove2 in those inference rules that “introduce” φ1 and φ2.

The proof system V ′4 is an AES-defining proof system, and the abstract machine it
encodes is formed by adding the following rewrite rules to those in Figure 21.

〈E :: L, (if P Q R) :: C, S〉 ⇒ 〈E :: E :: L, P :: (ψ1 Q) :: C, S〉
〈E :: L, (if P Q R) :: C, S〉 ⇒ 〈E :: E :: L, P :: (ψ2 R) :: C, S〉
〈E :: L, (ψ1 Q) :: C, true :: S〉 ⇒ 〈 E :: L, Q :: C, S〉
〈E :: L, (ψ2 R) :: C, false :: S〉 ⇒ 〈 E :: L, R :: C, S〉

This abstract machine is not as simple as we would like it to be because the first two
rewrites share the same left-hand side. This means that rewriting would need to perform
backtracking in order to do evaluation. Appendix B contains a transformation that can be
used to “factor” the common parts of these two evaluation rules. Applying this factoring
transformation to the four inference rules that are added to V4 yields the following three
rules:

prove3 E :: E :: L P :: (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C S Z

prove3 E :: L (if P Q R) :: C S Z

prove3 L C1 @ C S Z

prove3 L (choice C1 C2) :: C S Z

prove3 L C2 @ C S Z

prove3 L (choice C1 C2) :: C S Z
.

Here, the infix symbol @ is used to denote list concatenation.
Because the only rule that mentions choice in the premise is the first rule above,

the last two rules can be replaced by the following instantiations (making the obvious
simplification of (α :: nil) @ C to α :: C):

prove3 L (ψ1 Q) :: C S Z

prove3 L (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C S Z

prove3 L (ψ2 R) :: C S Z

prove3 L (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C S Z
.

We can now unfold these two rules with the two containing ψ1 and ψ2 in their conclusions.

J. Hannan and D. Miller 38

This yields the following two rules:

prove3 E :: L Q :: C S Z

prove3 E :: L (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C true :: S Z

prove3 E :: L R :: C S Z

prove3 E :: L (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C false :: S Z
.

These two rules plus the if introduction rule above provide a suitable definition for the
conditional expression. The resulting proof system is AES-defining and rewriting will
not require any backtracking. The corresponding abstract machine is given by adding
the following rewrites:

〈E :: L, (if P Q R) :: C, S〉 ⇒
〈E :: E :: L, P :: (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C, S〉

〈E :: L, (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C, true :: S〉 ⇒ 〈E :: L, Q :: C, S〉
〈E :: L, (choice (ψ1 Q) :: nil (ψ2 R) :: nil) :: C, false :: S〉 ⇒ 〈E :: L, R :: C, S〉

We can simplify these rules by combining some constants: since choice expressions are
always of the form (choice (ψ1 Q) ::nil (ψ2 R) ::nil), we can introduce the “abbreviated”
form (choice′ Q R), modifying the rules appropriately.

6.4. Pairs

We can introduce strict pairs to our object-language by introducing a new signature item
pair : tm→ tm→ tm for constructing pairs of terms. In the highest level evaluator, the
inference rule for evaluating a pair is

eval P1 V1 eval P2 V2

eval (pair P1 P2) (pair V1 V2)
.

In the first-order setting using closures, the rule for evaluating a pair is

eval {E,P1} V1 eval {E,P2} V2

eval {E, (pair P1 P2)} (pair V1 V2)

and this can be added to V0. (Again, we assume that the type of pair is now fotm→
fotm→ fotm.)

Now, following the derivations in Section 5.2, we eliminate branching rules, producing
the rule

prove (eval {E,P1} V1) :: (eval {E, P2} V2) :: G

prove (eval {E, (pair P1 P2)} (pair V1 V2)) :: G
.

To accommodate the next step, that of introducing an value stack, we first split the
above rule into the following two rules:

prove (eval {E,P1} V1) :: (eval {E, P2} V2) :: (mkpair V1 V2 V) :: G

prove (eval {E, (pair P1 P2)} V) :: G

From Operational Semantics to Abstract Machines 39

prove G

prove (mkpair V1 V2 (pair V1 V2)) :: G
.

These two rules essentially split the act of producing the values V1 and V2 from the act
of constructing the pair of these two values. Using these two rules we can introduce a
value stack, producing the following new rules:

prove1 (eval1 {E, P1}) :: (eval1 {E, P2}) :: φ3 :: C S Z

prove1 (eval1 {E, (pair P1 P2)}) :: C S Z

prove1 (mkpair V1 V2) :: C S Z

prove1 φ3 :: C V2 :: V1 :: S Z

prove1 C (pair V1 V1) :: S Z

prove1 (mkpair V1 V2) :: C S Z
.

Folding the latter two rules yields

prove1 C (pair V1 V1) :: S Z

prove1 φ3 :: C V2 :: V1 :: S Z
.

The remaining transformation steps are straightforward, producing the following rules
for the CLS machine:

〈(pair P1 P2) :: C, E :: L, S〉 ⇒ 〈P1 :: P2 :: ψ3 :: C, E :: E :: L, S〉
〈ψ3 :: C, L, V2 :: V1 :: S〉 ⇒ 〈C, L, (pair V1 V2) :: S〉.

(The switch from φ3 : o to ψ3 : fotm reflects the change in type of the instruction list C.)

6.5. Primitive Constants and Constructors

We can introduce constants and data constructors in a variety of ways. We present a
method in which they are treated similarly. All constants are assumed to be in normal
form, and so they evaluate to themselves. Data constructors are assumed strict and their
arguments are encoded as pairs.

For constants, we introduce the new signature item const : string → fotm, and we
represent each constant c of our object-language by the term (const c). Then we specify
evaluation by the single rule

eval (const c) (const c)

and this translates to the machine rule

〈(const c) :: C, E :: L, S〉 ⇒ 〈C, L, (const c) :: S〉.
For data constructors, we introduce the new signature item constr, and we represent

each constructor c(t1,. . . ,tn) of our object-language by the term (constr c args) in which
args is the encoding of the tuple (t1, . . . , tn). Then we specify evaluation by the single
rule

eval A B

eval (constr K A) (constr K B)

J. Hannan and D. Miller 40

and this translates (via a process similar to that for pairs) to the machine rules

〈(constr K A) :: C, E :: L, S〉 ⇒ 〈A :: (mkconstr K) :: C, L, S〉
〈(mkconstr K) :: C, E :: L, B :: S〉 ⇒ 〈C, L, (constr K B) :: S〉.

6.6. Primitive Functions

Primitive functions can also be added in a straightforward way. We first assume that
all primitive functions are strict and unary. In our first-order abstract syntax we encode
primitive operators by introducing the constructor prim : string → fotm in which the
operation is denoted by a string name. The evaluation of primitive functions can be
specified via the rule

eval {L,M} (prim Op) eval {L,N} R oper(Op,Q) = V

eval {L,M ˆN} V
,

where oper(Op, Q) = V denotes the property that applying the primitive function Op to
the argument Q yields result V .

Now, following the derivation of Section 5.2, we can produce the following two rules:

〈(M ˆN) :: C, E :: L, S〉 ⇒ 〈M :: N :: ψ4 :: C, E :: E :: L, S〉
〈ψ4 :: C, L, R :: (prim Op) :: S〉 ⇒ 〈C, L, oper(Op,R) :: S〉.

Adding these two rules to our CLS machine produces a problem similar to the one
encountered with the conditional statement. The machine has two possible reduction
steps for applications: one for the case of primitive function application (introducing the
constant ψ4) and one for application of a lambda abstraction (introducing the constant
ψ′). By factoring these two rules using the transformation described in Appendix B,
performing some unfolding and renaming some collection of constants, we can simplify
the description of application to the rules below (for a new constant ψ5 : fotm).

〈(M ˆN) :: C, E :: L, S〉 ⇒ 〈M :: N :: ψ5 :: C, E :: E :: L, S〉
〈ψ5 :: C, L, R :: {E′,M} :: S〉 ⇒ 〈M :: C, (R :: E′) :: L, S〉
〈ψ5 :: C, L, R :: (prim Op) :: S〉 ⇒ 〈C, L, oper(Op,R) :: S〉.

7. Related Work

Previous work using abstract machines as an intermediate-level representation for a lan-
guage has relied on informal methods for defining the machines or for relating them to
source languages, or both. The principal advantage of this approach is the flexibility af-
forded in designing the structure of machines, as there are no a priori restrictions on the
data structures or control structures that can be used. Considerations of efficiency, not
evident in the semantic specifications, can be accommodated. The principal disadvan-
tage, however, is the potential difficulty of proving that the abstract machines correctly
implement a given language. Another disadvantage is the potential difficulty in extending
the machines to accommodate new language features.

The prototypical abstract machine for a functional programming language is the SECD

From Operational Semantics to Abstract Machines 41

machine, and a proof of its correctness can be found in [Plo76]. While demonstrating the
correctness of this machine with respect to an operational semantics, this proof does not
provide much intuition regarding the overall structure of the machine or how it can be
extended to handle a more substantial language. Our methods, however, provide a basis
for proving such machines correct and, as demonstrated in Section 6, provide support
for extending the machines to accommodate additional language features.

An example of an abstract machine used in an actual implementation of a language is
the Functional Abstract Machine [Car84], a variant of the SECD machine, which has been
optimized to allow fast function application. This machine, designed for implementing the
ML language, addresses issues including efficient local variable storage, efficient closure
construction and function manipulation, and exception handling. The design of this
machine was influenced both by the structure of ML, for which it provides an intermediate
level of representation, and also by concerns for efficient handling of data structures. This
machine would not naturally be constructed by the naive strategy we have presented
without a better understanding of architectural concerns. We believe, however, that the
techniques we have developed could be adapted to prove the correctness of the FAM
relative to an operational semantics for the core subset of ML that it implements.

Our use of operational semantics as the basis for language definitions supports a sim-
ple means for describing both semantics and machines in a single framework, namely
proof systems. This uniformity contributes to the simple construction and verification of
machines from semantics. In addition, operational semantics provides a natural setting
for explicitly separating static and dynamic semantics. An alternative approach to lan-
guage definition and implementation uses denotational semantics to define languages but
also uses abstract machines as an implementation mechanism. One example of this ap-
proach uses a two-level meta-language to distinguish between compile-time and run-time
operations of a denotational semantics and translates the run-time operations into an
intermediate-level machine code [NN88]. The abstract machine and compiler defined in
this way, though strongly influenced by denotational semantics, are given informally, and
a correctness proof is still required to relate the denotational semantics, target language
semantics, and compiler. Unfortunately, this proof requires some complex mathematical
machinery (e.g., Kripke-like relations) to define a relation between the denotations of
programs and the actions performed by abstract machines. This complexity seems in-
herent in this approach to compiler correctness due to fundamental differences between
denotational definitions and abstract machine definitions.

The distinction between compile-time and run-time operations provided by this two-
level meta-language corresponds partly to the separation of operational semantics into
distinct static and dynamic semantics specifications. In our work we have started with a
dynamic semantics and not attempted to make any further distinction in the semantics
regarding stages of operation. Thus our abstract machines operate on the same language,
though perhaps in a different syntax, as the operational semantics. Additional separation
of these abstract machines into compile-time and run-time operations, producing a level
of machine code similar to that produced in the above approach, can be found in [Han91].

An alternative approach to constructing abstract machines from semantics is explored
in [Wan82] where a continuation-style denotational semantics is used instead of opera-

J. Hannan and D. Miller 42

tional semantics. The proposed technique involves choosing special-purpose combinators
to eliminate λ-bound variables in the semantics and discovering standard forms for the re-
sulting terms, to obtain target code that represents the meaning of the source code. The
resulting abstract machine interprets these combinators. This approach relies on heuris-
tics to choose appropriate combinators and discover properties of these combinators.
Verification of the abstract machines constructed using this method is not addressed.

Finally, all the proof systems used in this paper can be naturally represented in the
dependent type system LF [HHP87]. It is then possible to use the Elf implementation
[Pfe91] of LF to implement the various transformations we have presented. Initial work
in this direction is reported in [HP92].

8. Summary

We presented a general method for translating the operational semantics of evaluators
into abstract machines. We believe that the choice of operational semantics as a starting
point for semantics-directed implementations of programming languages is advantageous
as it provides both a high-level and natural specification language and, as argued here,
can be translated into intermediate architectures found in real, hand-crafted compilers.
Though not automatic, our method provides a flexible approach for designing represen-
tations of languages that are suitable to machine implementation.

The translation from operational semantics to abstract machine proceeds via a series
of transformations on the operational semantics. These specifications are given by proof
systems axiomatizing evaluation relations, and the proofs constructible in these systems
provide concrete objects representing the computation steps performed during evaluation.
By examining the structure of these proofs, we can identify properties (of proofs and/or
the proof system) that allow us to transform the proof system and also the proofs.
Because proofs are syntactic objects that can be encoded as terms in a logic, we believe
that most of the manipulations described here can be performed by an automated system,
providing, at least, machine checked proofs of the construction of abstract machines.

Specifications within a second-order meta-logic can leave many aspects of computation
implicit: implementations of the meta-logic must provide for such features as backtrack-
ing, unification, stacking of goals, etc. The central goal of the transformations presented
here has been to make some of these implicit aspects more explicit within the specifica-
tion. Thus, as the transformations continue, fewer features of the meta-logic are required.
In our examples, transformations are continued until the the meta-logic can be modeled
using a simple, iterative rewriting system characterized here as an abstract machine.

Appendix A. Unfolding Rules

One common kind of transformation on inference rules is a simple unfolding of two rules,
producing a single new rule. Let R1 and R2 be two inference rules of the form

A1 A2 · · · An

A

B1 B2 · · · Bm

B

From Operational Semantics to Abstract Machines 43

Ξ1

θ(σ(B1))
· · · Ξ2

θ(σ(Bi−1))
Ξ3

θ(σ(A1))
· · · Ξ4

θ(σ(An))
Ξ5

θ(σ(Bi+1))
· · · Ξ6

θ(σ(Bm))

θ(σ(B))

(∗)

Ξ1

θ(σ(B1))
· · · Ξ2

θ(σ(Bi−1))

Ξ3

θ(σ(A1))
· · · Ξ4

θ(σ(An))

θ(σ(Bi))

Ξ5

θ(σ(Bi+1))
· · · Ξ6

θ(σ(Bm))

θ(σ(B))

(†)

Fig. 25. Eliminating derived rules

for n,m ≥ 1, respectively, such that for some i, 1 ≤ i ≤ m, A and Bi unify with unifier
σ. Then the following rule, denoted as σ(R1/R2)i, is a derived rule from R1 and R2:

σ(B1) · · ·σ(Bi−1) σ(A1) · · ·σ(An) σ(Bi+1) · · ·σ(Bm)
σ(B)

.

We call R1 and R2 the unfolded rules. We assume no clashes of the universally quantified
variables occurring in these terms, as these variables can always be renamed. Note that
for two given inference rules, a number of derived rules can exist based on possible choices
of i and σ.

Theorem 20. Let E be a proof system including two rules R1 and R2 with σ(R1/R2)i

a derived rule for some σ and i. Then for all formulas A, E ` A if and only if E ∪
{σ(R1/R2)i} ` A.

Proof. The proof in the forward direction is trivial as any E proof is also a E ∪
{σ(R1/R2)i} proof. In the reverse direction we show that for any A and any E ∪
{σ(R1/R2)i} proof of A all occurrences of σ(R1/R2)i can be replaced by instances of
R1 and R2. Assume R1, R2, σ, i and σ(R1/R2)i are as described above. Now let Π
be any E ∪ {σ(R1/R2)i} proof containing some instance of σ(R1/R2)i and let Ξ be a
subproof of Π whose last inference rule is an instance of σ(R1/R2)i. This subproof must
be of the form (∗) in Figure 25 for some substitution θ. Since σ(Bi) equals σ(A), we
can construct another proof Ξ′ of θ(σ(B)) that contains one less instance of σ(R1/R2)i

as given by (†) in Figure 25. Repeating this process until there are no more instances of
σ(R1/R2)i yields an E proof. 2

While it is not generally true that the inference rule σ(R1/R2)i can replace R1 and
R2, such replacement is possible at several points in this paper. When this is possible,
we need to show that in any proof using R1 and R2, these two rules occur together (as
illustrated above) and hence can be replaced by instances of the unfolded rule (setting σ

to the most general unifier, in this case).

Appendix B. Factoring Inference Rules

Call a proof system deterministic if for any provable proposition there exists a single
(normal) proof of that proposition. Proof systems specifying the evaluation of functional
programs usually are deterministic. Unfortunately, this property does not necessarily

J. Hannan and D. Miller 44

imply that the naive bottom-up construction of proofs is free from backtracking. For
example, a bottom-up strategy may need to backtrack because for a given proposition,
multiple inference rules may be applicable, even though only one can eventually lead to
a proof.

We consider a class of proof systems for which bottom-up proof search requires back-
tracking, and we describe a transformation that effectively removes the need to backtrack.
Our transformation is closely related to the factorization of context free production rules
with common initial segments, and it has also been examined in [Sil90]. The following
transformation can be used in conjunction with other transformations to remove the
need for backtracking in some proof systems. For notational convenience we abbreviate
α1 :: · · · :: αn :: C as ~α @ C.

Factoring Transformation. Let E be a proof system in which every non-axiom infer-
ence rule is of the form

prove ~α′ @ C δ′

prove α :: C δ

where C is either nil or a meta-variable. Furthermore, assume E has a pair of rules of
the form (

prove ~α′ @ ~β @ C δ′

prove α :: C δ
,

prove ~α′ @ ~γ @ C δ′

prove α :: C δ

)

for some terms α, ~α′, ~β, ~γ, δ and δ′. Let Ech be a proof system that contains the following
three classes of inference rules:

1 For a new, fixed constant choice, the two inference rules

prove C1 @ C Z

prove (choice C1 C2) :: C Z
and

prove C2 @ C Z

prove (choice C1 C2) :: C Z

are members of Ech. Here, Z, C, C1, and C2 are schema variables for both of these
rules.

2 For each pair of rules of the form displayed above, add to Ech the inference rule

prove ~α′ @ (choice ~β ~γ) :: C δ′

prove α :: C δ
.

3 Finally, every inference rule of E not in such a pair is added to Ech.

This transformation provides a means for delaying a choice between two inference rules
(during bottom-up proof construction) until after their common initial segment (~α) has
been “processed.”

Theorem 21. Let Ech be obtained from some system E as given by the Factoring Trans-
formation above and let (prove ~α δ) be a closed proposition containing no occurrences
of choice. Then E ` (prove ~α δ) if and only if Ech ` (prove ~α δ).

The proof is by a straightforward induction on the height of proofs.

Acknowledgements. We are grateful to the reviewers of this paper and to Eva Ma

From Operational Semantics to Abstract Machines 45

for their detailed comments and suggestions for improving this paper. Both authors
have been supported in part by grants ONR N00014-88-K-0633, NSF CCR-87-05596,
and DARPA N00014-85-K-0018 through the University of Pennsylvania. Hannan has
also been supported by the Danish Natural Science Research Council under the DART
project. Miller has also been supported by SERC Grant No. GR/E 78487 “The Logical
Framework” and ESPRIT Basic Research Action No. 3245 “Logical Frameworks: Design
Implementation and Experiment” while he was visiting the University of Edinburgh.

REFERENCES

[Bru72] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic for-

mula manipulation, with application to the Church-Rosser Theorem. Indag. Math., 34(5):381–

392, 1972.

[Car84] Luca Cardelli. Compiling a functional language. In 1984 Symposium on LISP and

Functional Programming, pages 208–217, ACM, 1984.

[CCM87] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract

machine. The Science of Programming, 8(2):173–202, 1987.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56–68, 1940.

[Cur90] Pierre-Louis Curien. The λρ-calculus: An Abstract Framework for Environment Ma-

chines. Technical Report, LIENS–CNRS, 1990.

[Gen69] Gerhard Gentzen. Investigations into logical deduction. In M. Szabo, editor, The Col-

lected Papers of Gerhard Gentzen, pages 68–131, North-Holland Publishing Co., 1969.

[Gir86] Jean-Yves Girard. The system F of variable types: fifteen years later. Theoretical Com-

puter Science, 45:159 – 192, 1986.

[Han90] John Hannan. Investigating a Proof-Theoretic Meta-Language for Functional Programs.

PhD thesis, University of Pennsylvania, 1990.

[Han91] John Hannan. Staging transformations for abstract machines. In P. Hudak and N. Jones,

editors, Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics

Based Program Manipulation, pages 130–141, ACM Press, 1991.

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In

Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, pages 194–

204, IEEE Computer Society Press, 1987.

[HO80] Gérard Huet and D. Oppen. Equations and rewrite rules: a survey. In R. Book, editor,

Formal Language Theory: Perspectives and Open Problems, pages 349–405, Academic Press,

1980.

[How91] Doug Howe. On computational open-endedness in Martin-Löf’s type theory. In Pro-

ceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science, pages 162–172,

IEEE Computer Society Press, 1991.

[HP92] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov, editor,

Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, IEEE

Computer Society Press, 1992.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-calculus.

Cambridge University Press, 1986.

[Kah87] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects

of Computer Science, pages 22–39, Springer-Verlag LNCS, Vol. 247, 1987.

J. Hannan and D. Miller 46

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(5):308–

320, 1964.

[Mar84] Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes,

BIBLIOPOLIS, Napoli, 1984.

[Mar85] Per Martin-Löf. Constructive Mathematics and Computer Programming, pages 167–184.

Prentice-Hall, 1985.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In K. Bowen and R.

Kowalski, editors, Fifth International Conference and Symposium on Logic Programming,

MIT Press, 1988.

[NN88] Flemming Nielson and Hanne Nielson. Two-level semantics and code generation. Theo-

retical Computer Science, 56:59–133, 1988.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and

Gordon D. Plotkin, editors, Logical Frameworks, Cambridge University Press, 1991.

[Plo76] Gordon Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer

Science, 1(1):125–159, 1976.

[Plo81] Gordon Plotkin. A Structural Approach to Operational Semantics. DAIMI FN-19, Aarhus

University, Aarhus, Denmark, September 1981.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

[Sil90] Fabio da Silva. Towards a Formal Framework for Evaluation of Operational Semantics

Specifications. LFCS Report ECS–LFCS–90–126, Edinburgh University, 1990.

[Wan82] Mitchell Wand. Deriving target code as a representation of continuation semantics.

ACM Trans. on Programming Languages and Systems, 4(3):496–517, 1982.

