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Abstract
Proof assistants and the programming languages that implement them need to deal with a range
of linguistic expressions that involve bindings. Since most mature proof assistants do not have
built-in methods to treat this aspect of syntax, many of them have been extended with various
packages and libraries that allow them to encode bindings using, for example, de Bruijn numerals
and nominal logic features. I put forward the argument that bindings are such an intimate aspect
of the structure of expressions that they should be accounted for directly in the underlying pro-
gramming language support for proof assistants and not added later using packages and libraries.
One possible approach to designing programming languages and proof assistants that directly
supports such an approach to bindings in syntax is presented. The roots of such an approach can
be found in the mobility of binders between term-level bindings, formula-level bindings (quanti-
fiers), and proof-level bindings (eigenvariables). In particular, by combining Church’s approach
to terms and formulas (found in his Simple Theory of Types) and Gentzen’s approach to sequent
calculus proofs, we can learn how bindings can declaratively interact with the full range of lo-
gical connectives and quantifiers. I will also illustrate how that framework provides an intimate
and semantically clean treatment of computation and reasoning with syntax containing bindings.
Some implemented systems, which support this intimate and built-in treatment of bindings, will
be briefly described.
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Foreword

This extended abstract is a non-technical look at the mechanization of formalized metathe-
ory. While this paper may be provocative at times, I mainly intend to shine light on a slice of
literature that is developing a coherent and maturing approach to mechanizing metatheory.

1 Mechanization of metatheory

A decade ago, the POPLmark challenge suggested that the theorem proving community had
tools that were close to being usable by programming language researchers to formally prove
properties of their designs and implementations. The authors of the POPLmark challenge
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looked at existing practices and systems and urged the developers of proof assistants to
make improvements to existing systems.

Our conclusion from these experiments is that the relevant technology has developed
almost to the point where it can be widely used by language researchers. We seek
to push it over the threshold, making the use of proof tools common practice in
programming language research—mechanized metatheory for the masses. [5]

In fact, a number of research teams have used proof assistants to formally prove significant
properties of programming language related systems. Such properties include type preser-
vation, determinancy of evaluation, and the correctness of an OS microkernel and of various
compilers: see, for example, [41, 42, 44, 59].

As noted in [5], the poor support for binders in syntax was one problem that held
back proof assistants from achieving even more widespread use by programming language
researchers and practitioners. In recent years, a number of enhancements to programming
languages and to proof assistants have been developed for treating bindings. These go by
names such as locally nameless [12, 76], nominal reasoning [3, 14, 69, 83], and parametric
higher-order abstract syntax [15]. Some of these approaches involve extending underlying
programming language implementations while the others do not extend the proof assistant
or programming language but provide various packages, libraries, and/or abstract datatypes
that attempt to orchestrate various issues surrounding the syntax of bindings. In the end,
nothing canonical seems to have arisen: see [4, 68] for detailed comparisons.

2 An analogy: concurrency theory

While extending mature proof assistants (such as Coq, HOL, and Isabelle) with facilities
to handle bindings is clearly possible, it seems desirable to consider directly the compu-
tational principles surrounding the treatment of binding in syntax independent of a given
programming language. Developments in programming design has, of course, run into similar
situations where there was a choice to be made between accounting for features by extend-
ing existing programming languages or by the development of new programming languages.
Consider, for example, the following analogous (but more momentous) situation.

Historically speaking, the first high-level, mature, and expressive programming languages
to be developed were based on sequential computation. When those languages were forced to
deal with concurrency, parallelism, and distributed computing, they were augmented with,
say, thread packages and remote procedure calls. Earlier pioneers of computer program-
ming languages and systems—e.g., Dijkstra, Hoare, Milner—saw concurrency and commu-
nications not as incremental improvements to existing imperative languages but as a new
paradigm deserving a separate study. The concurrency paradigm required a fresh and direct
examination and in this respect, we have seen a great number of concurrency frameworks
appear: e.g., Petri nets, CSP, CCS, IO-automata, and the π-calculus. Given the theor-
etical results and understanding that have flowed from work on these and related calculi,
it has been possible to find ways for conventional programming languages to make accom-
modations within the concurrency and distributed computing settings. Such understanding
and accommodations were not likely to flow from clever packages added to programming
languages: new programming principles from the theory of concurrency and distributed
computing were needed.

Before directly addressing some of the computational principles behind bindings in syn-
tax, it seems prudent to critically examine the conventional design of a wide range of proof
assistants. (The following section updates a similar argument found in [52].)
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3 Dropping mathematics as an intermediate

Almost all ambitious theorem provers in use today follow the following two step approach
to reasoning about computation.

Step 1: Implement mathematics. This step is achieved by picking a general, well understood
formal system. Common choices are first-order logic, set theory, higher-order logic [16,
36], or some foundation for constructive mathematics, such as Martin-Löf type theory
[18, 19, 45].

Step 2: Reduce reasoning about computation to mathematics. Computation is generally
encoded via some model theoretic semantics (such as denotational semantics) or as an
inductive definition over an operational semantics.

A key methodological element of this proposal is that we shall drop mathematics as
an intermediate and attempt to find more direct and intimate connections between com-
putation, reasoning, and logic. The main problem with having mathematics in the middle
seems to be that many aspects of computation are rather “intensional” but a mathematical
treatment requires an extensional encoding. The notion of algorithm is an example of this
kind of distinction: there are many algorithms that can compute the same function (say, the
function that sorts lists). In a purely extensional treatment, it is functions that are represen-
ted directly and algorithm descriptions that are secondary. If an intensional default can be
managed instead, then function values are secondary (usually captured via the specification
of evaluators or interpreters).

For a more explicit example, consider whether or not the formula ∀wi. λx.x 6= λx.w

is a theorem. In a setting where λ-abstractions denote functions (the usual extensional
treatment), we have not provided enough information to answer this question: in particular,
this formula is true if and only if the domain type i is not a singleton. If, however, we are
in a setting where λ-abstractions denote syntactic expressions, then it is sensible for this
formula to be provable since no (capture avoiding) substitution of an expression of type i
for the w in λx.w can yield λx.x.

For a more significant example, consider the problem of formalizing the metatheory
of bisimulation-up-to [56, 72] for the π-calculus [57]. Such a metatheory can be used to
allow people working in concurrent systems to write hopefully small certificates (actual
bisimulations-up-to) in order to guarantee that bisimulation holds (usually witnessed dir-
ectly by only infinite sets of pairs of processes). In order to employ the Coq theorem
prover, for example, to attack such metatheory, Coq would probably need to be extended
with packages in two directions. First, a package that provides flexible methods for doing
coinduction following, say, the Knaster-Tarski fixed point theorems, would be necessary.
Indeed, such a package has been implemented and used to prove various metatheorems
surrounding bisimulation-up-to (including the subtle metatheory surrounding weak bisim-
ulation) [11, 70, 71]. Second, a package for the treatment of bindings and names that are
used to describe the operational semantics of the π-calculus would need to be added. Such
packages exist (for example, see [6]) and, when combined with treatments of coinduction,
may allow one to make progress on the metatheory of the π-calculus. Recently, the Hybrid
systems [27] has shown a different way to incorporate both induction, coinduction, and bind-
ing into a Coq (and Isabelle) implementation. Such an approach could be seen as one way
to implement this metatheory task on top of an established formalization of mathematics.

There is another approach that seeks to return to the most basic elements of logic by re-
considering the notion of terms (allowing them to have binders as primitive features) and the
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notion of logical inference rules so that coinduction can be seen as, say, the de Morgan (and
proof theoretic) dual to induction. In that approach, proof theory principles can be identified
in that enriched logic with least and greatest fixed points [7, 47, 58] and with a treatment of
bindings [81, 32]. Such a logic has been given a model-checking-style implementation [9] and
is the basis of the Abella theorem prover [8, 31]. Using such implementations, the π-calculus
has been implemented, formalized, and analyzed in some detail [80, 79] including some of
the metatheory of bisimulation-up-to for the π-calculus [13].

I will now present some foundational principles in the treatment of bindings that are
important to accommodate directly, even if we cannot immediately see how those principles
might fit into existing mature programming languages and proof assistants.

4 How abstract is your syntax?

Two of the earliest formal treatments of the syntax of logical expressions were given by
Gödel [35] and Church [16] and, in both of these cases, their formalization involved view-
ing formulas as strings of characters. Clearly, such a view of logical expressions contains
too much information that is not semantically meaningful (e.g., white space, infix/prefix
distinctions, parenthesis) and does not contain explicitly semantically relevant information
(e.g., the function-argument relationship). For this reason, those working with syntactic
expressions generally parse such expressions into parse trees: such trees discard much that
is meaningless (e.g., the infix/prefix distinction) and records directly more meaningful in-
formation (e.g., the child relation denotes the function-argument relation). One form of
“concrete nonsense” generally remains in parse trees since they traditionally contain the
names of bound variables.

One way to get rid of bound variable names is to use de Bruijn’s nameless dummy tech-
nique [21] in which (non-binding) occurrences of variables are replaced by positive integers
that count the number of bindings above the variable occurrence through which one must
move in order to find the correct binding site for that variable. While such an encoding
makes the check for α-conversion easy, it can greatly complicate other operations that one
might want to do on syntax, such as substitution, matching, and unification. While all
such operations can be supported and implemented using the nameless dummy encoding
[21, 43, 61], the complex operations on indexes that are needed to support those operations
clearly suggests that they are best dealt within the implementation of a framework and not
in the framework itself.

The following four principles about the treatment of bindings in syntax will guide our
further discussions.

Principle 1: The names of bound variables should be treated in the same way we
treat white space: they are artifacts of how we write expressions and they have no
semantic content.

Of course, the name of variables are important for parsing and printing expressions (just as
is white space) but such names should not be part of the meaning of an expression. This
first principle simply repeats what we stated earlier. The second principle is a bit more
concrete.

Principle 2: There is “one binder to ring them all.”1

1 A scrambling of J. R. R. Tolkien’s “One Ring to rule them all, ... and in the darkness bind them.”
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With this principle, we are adopting Church’s approach [16] to binding in logic, namely,
that one has only λ-abstraction and all other bindings are encoded using that binder. For
example, the universally quantified expression (∀x.B x) is actually broken into the expression
(∀(λx.B x)), where ∀ is treated as a constant of higher-type. Note that this latter expression
is η-equivalent to (∀ B) and universal instantiation of that quantified expression is simply
the result of using λ-normalization on the expression (B t). In this way, many details about
quantifiers can be reduced to details about λ-terms.

Principle 3: There is no such thing as a free variable.

This principle is taken from Alan Perlis’s epigram 47 [63]. By accepting this principle, we
recognize that bindings are never dropped to reveal a free variable: instead, we will ask for
bindings to move. This possibility suggests the main novelty in this list of principles.

Principle 4: Bindings have mobility and the equality theory of expressions must
support such mobility [51, 53].

Since the other principles are most likely familiar to the reader, I will now describe this last
principle in more detail.

5 Mobility of bindings

Since typing rules are a common operation in metatheory, I illustrate the notion of binding
mobility in that setting. In order to specify untyped λ-terms (to which one might attribute
a simple type via an inference), we introduce a (syntactic) type tm and two constants

abs : (tm→ tm)→ tm and app : tm→ tm→ tm.

Untyped λ-terms are encoded as terms of type tm using the translation define as

dxe = x, dλx.te = (abs (λx.dte)), and d(t s)e = (app dte dse).

The first clause here indicates that bound variables in untyped λ-terms are mapped to
bound variables in the encoding. For example, the untyped λ-term λw.ww is encoded as
(abs λw. app w w). This translation has the property that it maps bijectively α-equivalence
classes of untyped λ-terms to αβη-equivalence classes of simply typed λ-terms of type tm.

In order to satisfy Principle 3 above, we shall describe a Gentzen-style sequent as a
triple Σ : ∆ ` B where B is the succedent (a formula), ∆ is the antecedent (a multiset of
formulas), and Σ a signature, that is, a list of variables that are formally bound over the
scope of the sequent. Thus all free variables in the formulas in ∆ ∪ {B} are bound by Σ.
Gentzen referred to the variables in Σ as eigenvariables (although he did not consider them
as binders over sequents).

The following inference rule is a familiar rule.
Σ : ∆, typeof x (int→ int) ` C

Σ : ∆,∀τ(typeof x (τ → τ)) ` C ∀L

This rule states (when reading it from conclusions to premise) that if the symbol x can be
attributed the type τ → τ for all instances of τ , then it can be assumed to have the type
int→ int. Thus, bindings can be instantiated (the ∀τ is removed by instantiation). On the
other hand, consider the following inferences.

Σ, x : ∆, typeof dxe τ ` typeof dBe β
Σ : ∆ ` ∀x(typeof dxe τ ⊃ typeof dBe τ ′) ∀R

Σ : ∆ ` typeof dλx.Be (τ → τ ′)
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These inferences illustrate how bindings can, instead, move during the construction of a
proof. In this case, the term-level binding for x in the lower sequent can be seen as moving
to the formula-level binding for x in the middle sequent and then to the proof-level binding
(as an eigenvariable) for x in the upper sequent. Thus, a binding is not lost or converted to
a “free variable”: it simply moves.

The mobility of bindings needs to be supported by the equality theory of expressions.
Clearly, equality already includes α-conversion by Property 1. We also need a small amount
of β-conversion. If we rewrite this last inference rule using the definition of the d·e translation,
we have the inference figure.

Σ, x : ∆, typeof x τ ` typeof (Bx) τ ′

Σ : ∆ ` ∀x(typeof x τ ⊃ typeof (Bx) τ ′) ∀R

Σ : ∆ ` typeof (abs B) (τ → τ ′)

Note that here B is a variable of arrow type tm→ tm and that instances of these inference
figures will create an instance of (B x) that may be a β-redex. As I now argue, that β-redex
has a limited form. First, observe that B is a schema variable that is implicitly universally
quantified around this inference rule: if one formalizes this approach to type inference in,
say, λProlog, one would write a specification similar to the formula

∀B∀τ∀τ ′[∀x(typeof x τ ⊃ typeof (Bx) τ ′) ⊃ typeof (abs B) (τ → τ ′)].

Second, any closed instance of (B x) that is a β-redex is such that the argument x is not
free in the instance of B: this is enforced by the nature of (quantificational) logic since the
scope of B is outside the scope of x. Thus, the only form of β-conversion that is needed to
support this notion of binding mobility is the so-called β0-conversion rule [50]: (λx.t)x = t

or equivalently (in the presence of α-conversion) (λy.t)x = t[x/y], provided that x is not
free in λy.t.

Given that β0-conversion is such a simple operation, it is not surprising that higher-order
pattern unification, which simplifies higher-order unification to a setting only needing α, β0,
and η conversion, is decidable and unitary [50]. For this reason, matching and unification
can be used to help account for the mobility of binding. Note also that there is an elegant
symmetry provided by binding and β0-reduction: if t is a term over the signature Σ ∪ {x}
then λx.t is a term over the signature Σ and, conversely, if λx.s is a term over the signature
Σ then the β0-reduction of ((λx.s) y) is a term over the signature Σ ∪ {y}.

To illustrate how β0-conversion supports the mobility of binders, consider how one spe-
cifies the following rewriting rule: given a conjunction of universally quantified formulas,
rewrite it to be the universal quantification of the conjunction of formulas. In this setting,
we would write something like:

(∀(λx.A x)) ∧ (∀(λx.B x)) 7→ (∀(λx.(A x ∧B x))).

To rewrite an expression such as (∀λz(p z z))∧(∀λz(q a z)) (where p, q, and a are constants)
we first need to use β0-expansion to get the expression

(∀λz((λw.(p w w))z)) ∧ (∀λz((λw.(q a w))z))

At this point, the pattern variables A and B in the rewriting rule can now be instantiated
by the closed terms λw.(p w w) and λw.(q a w), respectively, which yields the expression

(∀(λx.((λw.(p w w)) x ∧ (λw.(q a w)) x))).
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Finally, a β0-contraction yields the expected expression (∀(λx.(p x x)∧ (q a x))). Note that
at no time did a bound variable become unbound. Since pattern unification incorporates
β0-conversion, such rewriting can be accommodated simply by calls to such unification.

The analysis of these four principles above do not imply that full β-conversion is needed
to support them. Clearly, full β-conversion will implement β0-conversion and several systems
(which we shall speak about more below) that support λ-tree syntax do, in fact, implement
β-conversion. Systems that only implement β0-conversion have only been described in print.
For example, the Lλ logic programming language of [50] was restricted so that proof search
could be complete while only needing to do β0-conversion. The πI -calculus (the π-calculus
with internal mobility [74]) can also be seen as a setting where only β0-conversion is needed
[53].

6 Logic programming provides a framework

As the discussion above suggests, quantificational logic using the proof-search model of
computation can capture all four principles listed in the previous section. While it might be
possible to account for these principles also in, say, a functional programming language (a
half-hearted attempt at such a design was made in [49]), the logic programming paradigm
supplies an appropriate framework for satisfying all these properties. Such a framework is
available using the higher-order hereditary Harrop [54] subset of an intuitionistic variant of
Church’s Simple Theory of Types [16]: λProlog [53] is a logic programming language based
on that logic and implemented by the Teyjus compiler [73] and the ELPI interpreter [24].

The use of logic programming principles in proof assistants pushes against usual practice:
since the first LCF prover [37], many (most?) proof assistants have had intimate ties to
functional programming. For example, such theorem provers are often implemented using
functional programming languages: in fact, the notion of LCF tactics and tacticals was
originally designed and illustrated using functional programming principles [37]. Also, such
provers frequently view proofs constructively and can output the computational content of
proofs as functional programs [10].

I argue here that a framework based on logic programming principles might be more ap-
propriate for mechanizing metatheory than one based on functional programming principles.
Note that the arguments below do not lead to the conclusion that first-order logic program-
ming languages, such as Prolog, are appropriate for metalevel reasoning: direct support for
λ-abstractions and quantifiers (as well as hypothetical reasoning) are critical and are not
supported in first-order logic programming languages. Also, I shall focus on the specification
of mechanized metatheory tasks and not on their implementation: it is completely possible
that logic programming principles are used in specifications while a functional programming
language is used to implement that specification language (for example, Teyjus and Abella
are both implemented in OCaml).

6.1 Expressions versus values
In logic programming, (closed) terms denote themselves and only themselves (in the sense
of free algebra). It often surprises people that in Prolog, the goal ?- 3 = 1 + 2 fails, but
the expression that is the numeral 3 and the expression 1 + 2 are, of course, different ex-
pressions. The fact that they have the same value is a secondary calculation (performed
in Prolog using the is predicate). Functional programming, however, fundamentally links
expressions and values: the value of an expression is the result of applying some evaluation
strategy (e.g., call-by-value) to an expression. Thus the value of both 3 and 1 + 2 is 3 and
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these two expressions are, in fact, equated. Of course, one can easily write datatypes in
functional programming languages that denote only expressions: datatypes for parse trees
are such an example. However, the global notion that expressions denote values is particu-
larly problematic when expressions denote λ-abstractions. The value of such expressions in
functional programming is trivial and immediate: such values simply denote a function (a
closure). In the logic programming setting, however, an expression that is a λ-abstraction
is just another expression: following the principles stated in Section 4, equality of two such
expressions needs to be based on the rather simple set of conversion rules α, β0, and η. The
λ-abstraction-as-expression aspect of logic programming is one of that paradigm’s major
advantages for the mechanization of metatheory.

6.2 Syntactic types
Given the central role of expressions (and not values), types in logic programming are
better thought of as denoting syntactic categories. That is, such syntactic types are useful
for distinguishing, say, encodings of types from terms from formula from proofs or program
expressions from commands from evaluation contexts. For example, the typeof specification
in Section 5 is a binary relation between the syntactic categories tm (for untyped λ-terms)
and, say, ty (for simple type expression). The logical specification of the typeof predicate
might attribute integer type or list type to different expressions via clauses such as

∀T : tm ∀L : tm ∀τ : ty [typeof T τ ⊃ typeof L (list τ) ⊃ typeof (T :: L) (list τ)].

Given our discussion above, it seems natural to propose that if τ and τ ′ are both syntactic
categories, then τ → τ ′ is a new syntactic category that describes objects of category τ ′

with a variable of category τ abstracted. For example, if o denotes the category of formulas
(a la [16]) and tm denotes the category of terms, then tm→ o denotes the type of term-level
abstractions over formulas. As we have been taught by Church, the quantifiers ∀ and ∃ can
then be seen as constructors that take expressions of syntactic category tm→ o to formulas:
that is, these quantifiers are given the syntactic category (tm→ o)→ o.

6.3 Substitution lemmas for free
Consider an attempt to prove the sequent

Σ : ∆ ` typeof (abs R) (τ → τ ′)

where the assumptions (the theory) contains only one rule for proving such a statement,
such as the clause used in the discussion of Section 5. Since the introduction rules for ∀ and
⊃ are invertible, the sequent above is provable if and only if the sequent

Σ, x : ∆, typeof x τ ` typeof (R x) τ ′

is provable. Given that we are committed to using a proper logic (such as higher-order
intuitionistic logic), it is the case that modus ponens is valid and that instantiating an
eigenvariable in a provable sequent yields a provable sequent. In this case, the sequent

Σ : ∆, typeof N τ ` typeof (R N) τ ′

must be provable (for N a term of syntactic type tm all of whose free variables are in Σ).
Thus, we have just shown, using nothing more than rather minimal assumptions about the
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specification of typeof (and formal properties of logic) that if Σ : ∆ ` typeof (abs B) (τ → τ ′)
and Σ : ∆ ` typeof N τ then Σ : ∆ ` typeof (B N) τ ′. (Of course, instances of the term
(B N) are β-redexes and the reduction of such redexes result in the substitution of N
into the bound variable of the term that instantiates B.) Such lemmas about substitutions
are common and often difficult to prove [85]: in this setting, this lemma is essentially an
immediate consequent of using logic and logic programming principles [8, 46]. In this way,
Gentzen’s cut-elimination theorem (the formal justification of modus ponens) can be seen
as the mother of all substitution lemmas. The Abella theorem prover’s implementation of
the two-level logic approach to reasoning about computation [33, 48] makes it possible to
employ the cut-elimination theorem in exactly the style illustrated above.

6.4 Dominance of relational specifications
Another reason that logic programming can make a good choice for metatheoretic reasoning
systems is that logic programming is based on relations (not functions) and that metathe-
oretic specifications are often dominated by relations. For example, the typing judgment
describe in the Section 5 is a relation. Similarly, both small step (SOS) and big step (nat-
ural semantics) approaches to operational semantics describe evaluation, for example, as a
relation. Occasionally, specified relations—typing or evaluation—describe a partial function
but that is generally a result proved about the relation.

A few logic programming-based systems have been used to illustrate how typing and
operational semantic specifications can be animated. The core engine of the Centaur project,
called Typol, used Prolog to animate metatheoretic specifications [17] and λProlog has been
used to provide convincing and elegant specifications of typing and operational semantics
for expressions involving bindings [2, 53].

6.5 Dependent typing
The typing that has been motivated above is rather simple: one takes the notions of syntactic
types as syntactic category—e.g., programs, formulas, types, terms, etc—and adds the arrow
type constructor to denote abstractions of one syntactic type over another one. Since typing
is, of course, an open-ended concept, it is completely possible to consider any number of
ways to refine types. For example, instead of saying that a given expression denotes a term
(that is, the expression has the syntactic type for terms), one could instead say that such
an expression denotes, for example, a function from integers to integers. For example, the
typing judgment t : tm (“t denotes a term”) can be refined to t : tm (int→ int) (“t denotes a
term of type int→ int). Such richer types are supported (and generalized) by the dependent
type paradigm [20, 38] and given a logic programming implementation in, for example, Twelf
[64, 66].

Most dependently typed λ-calculi come with a fixed notion of typing and with a fixed
notion of proof (natural deduction proofs encoded as typed λ-terms). The reliance described
here on logical connectives and relations is expressive enough to specify dependently typed
frameworks [26, 77, 78] but it is not committed to only that notion of typing and proof.

7 λ-tree syntax

The term higher-order abstract syntax (HOAS) was originally defined as an approach to
syntax that used “a simply typed λ-calculus enriched with products and polymorphism” [65].
A subsequent paper identified HOAS as a technique “whereby variables of an object language
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are mapped to variables in the meta-language” [66]. The term HOAS is problematic for a
number of reasons. First, it seems that few, if any, researchers use this term in a setting that
includes products and polymorphism (although simple and dependently typed λ-calculus
are often used). Second, since the metalanguage (often the programming language) can
vary a great deal, the resulting notion of HOAS can vary similarly, including the case where
HOAS is a representation of syntax that incorporates function spaces on expressions [22, 39].
Third, the adjective higher-order seems inappropriate here: in particular, the equality (and
unification) of terms discussed in Section 5 is completely valid without reference to typing.
If there are no types, what exactly is “higher-order”? For these reasons, the term “λ-tree
syntax” [8, 53], with its obvious parallel to the term “parse tree syntax,” has been introduced
as a more appropriate term for the approach to syntactic representation described here.

While λ-tree syntax can be seen as a kind of HOAS (using the broad definition of HOAS
given in [66]), there is little connections between λ-tree syntax and the problematic aspects of
HOAS that arise when the latter uses function spaces to encode abstractions. For example,
there are frequent claims that structural induction and structural recursive definitions are
either difficult, impossible, or semantically problematic for HOAS: see, for example, [29, 39,
40]. When we consider specifically λ-tree syntax, however, induction (and coinduction) and
structural recursion in the λ-tree setting have been given proof theoretic treatments and
implementations.

8 Reasoning with λ-tree syntax

Proof search (logic programming) style implementations of specifications can provide simple
forms of metatheory reasoning. For example, given the specification of typing, both type
checking and type inference are possible to automate using unification and backtracking
search. Similarly, a specification of, say, big step evaluation can be used to provide a
symbolic evaluator for at least simple expressions [17].

There is, however, much more to mechanizing metatheory than performing unification
and doing logic programming-style search. One must also deal with negations (difficult for
straightforward logic programming engines): for example, one wants to prove that certain
terms do not have simple types: for example,

` ¬ ∃τ : ty. typeof (abs λx (app x x)) τ.

Proving that a certain relation actually describes a (partial or total) function has proved to
be an important kind of metatheorem to prove: the Twelf system [66] is able to automatically
prove many of the simpler forms of such metatheorems. Additionally, one should also deal
with induction and coinduction and be able to reason directly about, say, bisimulation of
π-calculus expressions as well as confluence of λ-conversion.

In recent years, several researchers have developed two extensions to logic and proof
theory that have made it possible to reason in rich and natural ways about expressions
containing bindings. One of these extensions involved a proof theory for least and greatest
fixed points: results from [47, 82] have made it possible to build automated and interactive
inductive and coinductive theorem provers in a simple, relational setting. Another extension
[32, 55] introduced the ∇-quantifier which allows logic to reason in a rich and natural way
with bindings: in terms of mobility of bindings, the ∇-quantifier provides an additional
formula-level and proof-level binder, thereby enriching the expressiveness of quantificational
logic.

Given these developments in proof theory, it has been possible to build both an interactive
theorem prover, called Abella [8, 30], and an automatic theorem prover, called Bedwyr
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[9], that unfolds fixed points in a style similar to a model checker. These systems have
successfully been able to prove a range of metatheoretic properties about the λ-calculus
and the π-calculus [1, 8, 81]. The directness and naturalness of the encoding for the π-
calculus bisimulation is evident in the fact that simply adding the excluded middle on name
equality changes the interpretation of that one definition from open bisimulation to late
bisimulation [81].

Besides the Abella, Bedwyr, and Twelf system mentioned above, there are a number of
other implemented systems that support some or all aspects of λ-tree syntax: these include
Beluga [67], Hybrid [27], Isabelle [62], Minlog [75], and Teyjus [60]. See [28] for a survey
and comparison of several of these systems.

The shift from conventional proof assistants based on functional programming principles
to assistants based on logic programming principles does disrupt a number of aspects of
proof assistants. For example, when computations are naturally considered as functional,
it seems that there is a lost of expressiveness and effectiveness if one must write those
specifications using relations. Recent work shows, however, that when a relation actually
encodes a function, it is possible to use the proof search framework to actually compute
that function [34]. A popular feature of many proof assistants is the use of tactics and
tacticals, which have been implemented using functional programs since their introduction
[37]. There are good arguments, however, that those operators can be given elegant and
natural implementations using (higher-order) logic programs [23, 25, 53]. The disruptions
that result from such a shift seem well worth exploring.

9 Conclusions

I have argued that parsing concrete syntax into parse trees does not yield a sufficiently
abstract representation of expressions: the treatment of bindings should be made more ab-
stract. I have also described and motivated the λ-tree syntax approach to such a more
abstract framework. For a programming language or proof assistant to support this level
of abstraction in syntax, equality of syntax must be based on α and β0 (at least) and
must allow for the mobility of binders from within terms to within formulas (i.e., quantifi-
ers) to within proofs (i.e., eigenvariables). I have also argued that the logic programming
paradigm—broadly interpreted—provides an elegant and high-level framework for specifying
both computation and deduction involving syntax containing bindings. This framework is
offered up as an alternative to the more conventional approaches to mechanizing metatheory
using formalizations based on more conventional mathematical concepts. While the POPL-
mark challenge was based on the assumption that increments to existing provers will solve
the problems surrounding the mechanization of metatheory, I have argued and illustrated
here that we need to make a significant shift in the underlying paradigm that has been built
into today’s most mature proof assistants.
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