
A Proof Theory for Generic Judgments:
An extended abstract

Dale Miller
INRIA/Futurs/Saclay &École polytechnique

dale.miller@inria.fr

Alwen Tiu
École polytechnique & Penn State University

tiu@cse.psu.edu

Abstract

A powerful and declarative means of specifying com-
putations containing abstractions involves meta-level, uni-
versally quantifiedgeneric judgments. We present a proof
theory for such judgments in which signatures are associ-
ated to each sequent (used to account for eigenvariables of
the sequent) and to each formula in the sequent (used to
account for generic variables locally scoped over the for-
mula). A new quantifier,∇, is introduced to explicitly ma-
nipulate the local signature. Intuitionistic logic extended
with ∇ satisfies cut-elimination even when the logic is ad-
ditionally strengthened with a proof theoretic notion of defi-
nitions. The resulting logic can be used to encode naturally
a number of examples involving name abstractions, and we
illustrate using theπ-calculus and the encoding of object-
level provability.

Keywords: proof search, reasoning about operational se-
mantics, generic judgments, higher-order abstract syntax.

1. Eigenvariables and generic reasoning

In specifying and reasoning about computations involv-
ing abstractions, one needs to encode both the static struc-
ture of such abstractions and their dynamic structure during
computation. One successful approach to such an encod-
ing, generally calledhigher-order abstract syntax[22], uses
λ-terms to encode the static structure of abstractions and
universally quantified judgments to encode their dynamic
structure.

There are, of course, several ways to prove a univer-
sally quantified expression,∀γx.B. An approach that can
be called theextensional, attempts to proveB[t/x] for all
(closed) termst of type γ. This rule might involve an in-
finite number of premises if the domain of the typeγ is
infinite. If the typeγ is defined inductively, a proof byin-
ductioncan replace the need for infinite premises with finite
premises (thebasecases andinductivecases) but with the

need to discover invariants. Another moreintensionalap-
proach, however, involves introducing a new, generic vari-
able, say,c : γ, that has not been introduced before in the
proof, and to prove the formulaB[c/x] instead. In natural
deduction and sequent calculus proofs, such new variables
are calledeigenvariables.

In Gentzen’s original presentation of the sequent cal-
culus [5], eigenvariables were immutable: reading proofs
bottom-up, once an eigenvariable is introduced it is not used
as a site for substitution. In other words, Gentzen’s eigen-
variables did not vary in proof construction: rather they
acted more as fresh, scoped constants.

The generic interpretation of quantifiers generally entails
the extensional interpretation: this is a simple consequence
of the cut-elimination theorem as follows. Assume that the
sequentΓ −→ ∀x.B is proved using the introduction of∀
on the right from the premiseΓ −→ B[c/x], wherec is
an eigenvariable andΠ(c) is a proof of this premise. Sim-
ilarly, assume that the sequentΓ′, ∀xB −→ C is proved
using the introduction of∀ on the left from the premise
Γ′, B[t/x] −→ C, wheret is some term. To reduce the rank
of the cut formula∀x.B between the sequentsΓ −→ ∀x.B
andΓ′,∀xB −→ C, the eigenvariablec in the sequent cal-
culus proofΠ(c) must be substituted byt to yield a proof
Π(t) of Γ −→ B[t/x]: in this way, the cut-formula is now
the smaller formulaB[t/x]. In Gentzen, this role ofc in
Π(c) as a site for substitution only takes place in the meta-
theory of proofs and not in proofs themselves.

Recent years have witnessed two different developments
in the role of eigenvariables in the specification of compu-
tation systems.

Eigenvariables as fresh, scoped constantsFocusing on
their intensionalnature and guarantee of newness or fresh-
ness in proof search, eigenvariables have been used to en-
code name restrictions in theπ-calculus [15], nonces in se-
curity protocols [1], reference locations in imperative pro-
gramming [2, 16], and constructors hidden within abstract
data-types [12]. Eigenvariables also provide an essential

Σ : (σ, y : γ) . B[y/x],Γ −→ C
Σ : σ .∇γx.B, Γ −→ C ∇L

Σ : Γ −→ (σ, y : γ) . B[y/x]
Σ : Γ −→ σ .∇γx.B

∇R

Figure 1. Rules for the ∇-quantifier.

aspect of recursive programming with data encoded using
higher-order abstract syntax. In this role, eigenvariables are
essentially constants, scoped over part of a computation.

Eigenvariables as variables to instantiate Computation
in logic programming can be seen as a (restricted) form of
cut-free proof search. Cut and cut-elimination can then be
used to reason directly about computation: for example, if
A has a cut-free proof (that is, it can be computed) and we
know thatA ⊃ B can be proved (possibly with cuts), cut-
elimination allows us to conclude thatB has a cut-free proof
(that is, it can be computed). As we mentioned above, such
direct reasoning on logic specification involves instantia-
tions of eigenvariables. Similarly, focusing on theirexten-
sionalnature guaranteed by cut-elimination, enrichments to
the sequent calculus have been proposed by [7, 24, 6, 9] in
which eigenvariables are intended as variables to be substi-
tuted. This enrichment to proof theory (discussed here in
Section 4) holds promise for providing proof systems for
the direct reasoning of logic specifications (see, for exam-
ple, the above mentioned papers as well as [10, 11]).

These two approaches are, however, at odds with each
other. Consider, for example, the problem of representing
restriction of names or nonces using∀ quantification. (The
following example can be dualized in the event that a logi-
cal specification uses∃ quantification instead of∀, as in, for
example, [1]). One can imagine that a proof of the expres-
sion∀x∀y.P (x, y) involves two different fresh “names” or
“nonces” whereas a proof of the expression∀z.P (z, z) in-
volves just one such item. Of course, in logic, the implica-
tion∀x∀y.P (x, y) ⊃ ∀z.P (z, z) holds, so if there is a proof
with the two different names, there must be one with those
names identified (via cut-elimination), and this is unlikely
to be the intended meaning of such quantification. This sug-
gests that when using eigenvariables solely to provide scope
and freshness to names, one cannot reason directly with the
specification using the center piece of proof theory: cut-
elimination.

2. The∇-quantifier

One approach to solving this problem of forcing one con-
nective, the∀-quantifier, to have two behaviors that are not
entirely compatible, is to extend the logic with a new quan-

tifier. In this paper, we do this by adding the∇-quantifier:
its role will be to declare variables to be new and of local
scope. The syntax of the formula∇γx.B is like that for the
universal and existential quantifiers. Following Church’s
approach with the Simple Theory of Types [3] formulas are
given the typeo, and for all typesγ not containingo,∇γ is
a constant of type(γ → o) → o. The expression∇γλx.B
is usually abbreviated as simply∇γx.B or as∇x.B if the
type information is either simple to infer or not important.

Intuitionistic sequents without the need to account for∇
are structures of the form

Σ : B1, . . . , Bn −→ B0.

Here,Σ is a signaturecontaining the list of all (explicitly
typed) eigenvariables of the sequent. We writeΣ ` t :
γ to denote thatt is a simply typedλ-term of typeγ in
which there may appear the (fixed) logical and non-logical
constants as well as those eigenvariables inΣ. We shall also
sayt is aΣ-term (of typeγ), and, ifγ is o, t is aΣ-formula.
In the displayed sequent above,n ≥ 0 andB0, B1, . . . , Bn

are Σ-formulas. Informally, the “extensional” reading of
this sequent would be that for every substitutionθ that maps
a variablex : γ ∈ Σ to a term of typeγ, if Biθ holds for all
i = 1, . . . , n, thenB0θ holds.

To account for this new quantifier, we introduce into se-
quents a new element of context. Sequents will now have
one global signature (containing the sequent’s eigenvari-
ables) and severallocal signatures, used to scope locally
fresh variables. More generally, sequents have the structure

Σ : σ1 . B1, . . . , σn . Bn −→ σ0 . B0.

Here,σi, for i = 0, . . . , n are signatures and the other items
are as above. We shall consider sequents to be binding
structures in the sense that the signatures, both the global
and local ones, are abstractions over their respective scopes.
The variables inΣ andσi will admit α-conversion by sys-
tematically changing the names of variables in signatures as
well as those in their scope, following the usual convention
of theλ-calculus. In general, however, we will assume that
the local signaturesσi contain names different than those
in the global signatureΣ. The expressionσ . B is called a
generic judgmentor simply judgment. We use script letters
A, B, etc. to denote judgments. We write simplyB instead
of σ . B if the signatureσ is empty.

The introduction rules for∇ are given in Figure 1. The
variabley must be new to the variables inσ andΣ (implicit
in the definition of sequent). The expression(σ, y : γ) de-
notes the signature containing the type declarationy : γ
appended to the end of the listσ. Notice that since the left
and right rules are essentially the same, this quantifier will
be self dual.

2

Σ : σ . B, Γ −→ D
Σ : σ . B ∧ C, Γ −→ D ∧L Σ : σ . C, Γ −→ D

Σ : σ . B ∧ C, Γ −→ D ∧L Σ : Γ −→ σ . B Σ : Γ −→ σ . C
Σ : Γ −→ σ . B ∧ C

∧R
Σ : σ . B, Γ −→ D Σ : σ . C, Γ −→ D

Σ : σ . B ∨ C, Γ −→ D ∨L Σ : Γ −→ σ . B
Σ : Γ −→ σ . B ∨ C

∨R Σ : Γ −→ σ . C
Σ : Γ −→ σ . B ∨ C

∨R
Σ : Γ −→ σ . B Σ : σ . C, Γ −→ D

Σ : σ . B ⊃ C, Γ −→ D ⊃ L Σ : σ . B, Γ −→ σ . C

Σ : Γ −→ σ . B ⊃ C
⊃ R

Σ, σ ` t : γ Σ : σ . B[t/x], Γ −→ C
Σ : σ . ∀γx.B, Γ −→ C ∀L Σ, h : Γ −→ σ . B[(h σ)/x]

Σ : Γ −→ σ . ∀x.B
∀R

Σ, h : σ . B[(h σ)/x], Γ −→ C
Σ : σ . ∃x.B, Γ −→ C ∃L Σ, σ ` t : γ Σ : Γ −→ σ . B[t/x]

Σ : Γ −→ σ . ∃γx.B
∃R

Σ : σ .⊥, Γ −→ B ⊥L Σ : Γ −→ σ .> >R Σ : B,B, Γ −→ C
Σ : B, Γ −→ C cL Σ : Γ −→ C

Σ : B, Γ −→ C wL

Σ : σ . B, Γ −→ σ . B
init

Σ : ∆ −→ B Σ : B,Γ −→ C
Σ : ∆,Γ −→ C cut

Figure 2. The intuitionistic rules of FOλ.

3. An intuitionistic logic with ∇

We now consider Gentzen’s LJ calculus [5] with the ad-
dition of global and local signatures and∇. Besides this
new quantifier, the other logical connectives are⊥, >, ∧,
∨,⊃, ∀γ , and∃γ (again, the typeγ does not containo) and
their inference rules are given in Figure 2. Notice that no
inference rule in Figure 2 requires non-empty local signa-
tures: as a result, if all the local signatures in sequents in a
derivation built from those rules are set to empty, the result-
ing derivation is a standard derivation in intuitionistic logic.

The interaction between the global and local signatures
and the universal and existential quantifiers needs some ex-
planations. In the rule for∀L (and, dually, for∃R), the
quantifier appears in the scope of the global signatureΣ
and the local signatureσ. This quantifier can be instan-
tiated (reading the rule bottom-up) with a term built from
variables in both of these signatures. Similarly, in the rule
for ∀R (and, dually, for∃L), the quantifier appears in the
scope of the global signatureΣ and the local signatureσ.
This quantifier can be instantiated (reading the rule bottom-
up) with an eigenvariable whose intended range is over
all terms built from variables inΣ and σ. Since, how-
ever, the eigenvariableh is stored in the global scope, its
dependency onσ would be forgotten unless we employ
some particular encoding technique. For this purpose, we
useraising [14]: to denote a variable of typeγ0 that can
range over some set of constants and over the variables in
σ = (x1 : γ1, . . . , xn : γn) (n ≥ 0), we can use instead the
term (hx1 . . . xn) where the variableh ranges over the set
of constants only (the dependency onσ can be forgotten).
Of course, the type ofh will be γ1 → · · · → γn → γ0

instead of simplyγ0. In the inference rules of Figure 2, we
write (hσ) to denote(hx1 . . . xn).

For the sake of consistency with a naming convention
from the papers [8, 9], we shall refer to the inference system
defined with just the rules in Figure 2 asFOλ (mnemonic
for a “first-order logic forλ-expressions”). The proof sys-
tem resulting from the addition of the rules for∇ (Figure 1)
is calledFOλ∇.

Below are some theorems ofFOλ∇ involving ∇. In
these formulas, we use¬C to abbreviateC ⊃ ⊥ and we
write B ≡ C to denote(B ⊃ C) ∧ (C ⊃ B).

∇x¬Bx ≡ ¬∇xBx
∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx
∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx
∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x∀yBxy ≡ ∀h∇xBx(hx)
∇x∃yBxy ≡ ∃h∇xBx(hx)
∇x∀yBxy ⊃ ∀y∇xBxy
∇x.> ≡ >, ∇x.⊥ ≡ ⊥

As a result of these equivalences,∇ can alway be given
atomic scope within formulas (with the simple cost of rais-
ing the quantified variables in its scope).

Below are some non-theorems ofFOλ∇ involving∇.

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx
∇zBzz ⊃ ∇x∇yBxy ∇xBx ⊃ ∀xBx
∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

∇xB ≡ B ∀xBx ⊃ ∇xBx

3

4. Introduction rules for definitions

Introduction rules are, generally, restricted to logical
connectives and quantifiers. The recent development of a
proof theoretic notion ofdefinitions[7, 24, 6, 9] provides
left and right introduction rules also for non-logical predi-
cate symbols, provided that they are “defined” in terms of
other predicates appropriately. Given certain restrictions on
the syntax of definitions, a proof system with such definition
introduction rules can enjoy cut-elimination. In this section,
we take the treatment of definitions from [8, 9] and extend
it to handle local signatures.

Definition 1 A definitional clauseis written∀x̄[p t̄
4= B],

wherep is a predicate constant, every free variable of the
formula B is also free in at least one term in the listt̄ of
terms, and all variables free inp t̄ are contained in the list̄x
of variables. The atomic formulap t̄ is called theheadof the
clause, and the formulaB is called thebody. The symbol
4= is used simply to indicate a definitional clause: it is not
a logical connective. Adefinitionis a (perhaps infinite) set
of definitional clauses. The same predicate may occur in
the head of multiple clauses of a definition: it is best to
think of a definition as a mutually recursive definition of the
predicates in the heads of the clauses.

Although predicates are defined via mutual recur-
sion, circularities through implications (negations) must be
avoided. To do this, we stratify definitions by first associat-
ing to each predicatep a natural numberlvl(p), thelevelof
p. The notion of level is generalized to formulas as follows.

Definition 2 Given a formulaB, its level lvl(B) is defined
as follows:

1. lvl(p t̄) = lvl(p)

2. lvl(⊥) = lvl(>) = 0

3. lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

4. lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

5. lvl(∀x.B) = lvl(∇x.B) = lvl(∃x.B) = lvl(B).

We shall require that for every definitional clause∀x̄[p t̄
4=

B], lvl(B) ≤ lvl(p). This requirement allows us to prove
cut-elimination forFOλ∆∇ (see Section 5 and [9, 25]).

Introduction rules for defined atoms involve the use of
substitutions. We recall some basic definitions related to
substitutions. Asubstitutionθ is a mapping (with appli-
cation written in postfix notation) from variables to terms,
such that the set{x | xθ 6= x} is finite. Although sub-
stitutions are extended to mappings from terms to terms,
generic judgments to generic judgments, etc, when we re-
fer to thedomainand therangeof a substitution, we refer

Σ : Γ −→ (σ . B)θ
Σ : Γ −→ σ . A

defR, wheredfn(Σ, ε, σ . A, θ,B)

{Σρ : (σ . B)θ, Γρ −→ Cρ | dfn(Σ, ρ, σ . A, θ, B)}
Σ : σ . A, Γ −→ C defL

Figure 3. The definition introduction rules

to those sets defined on this most basic function. A substi-
tution is extended to a function from terms to terms in the
usual fashion. Composition of substitutions is defined as
t(θ ◦ σ) = (tθ)σ, for all termst. Two substitutionsθ and
σ are considered equal if for all variablesx, xσ =η xθ
(equal moduloη-conversion). The empty substitution is
written asε. The application of a substitutionθ to a generic
judgmentx1, . . . , xn . B, written as(x1, . . . , xn . B)θ, is
x1, . . . , xn . B′, if (λx1 . . . λxn.B)θ is equal (moduloλ-
conversion) toλx1 . . . λxn.B′. If Γ is a multiset of generic
judgments, thenΓθ is the multiset{Jθ | J ∈ Γ}. Finally, if
Σ is a signature thenΣθ is the signature that results from re-
moving fromΣ the variables in the domain ofθ and adding
the variables that are free in the range ofθ.

The following relation will be useful for the introduction
rules for defined atoms.

Definition 3 The relationdfn(Σ, ρ, σ . A, θ,B) holds for
the formulasA and B, the substitutionsρ and θ, and
the (disjoint) signaturesΣ and σ whenever the following
holds: the variablesh1, . . . , hn are distinct from the vari-
ables inΣ and σ, the signatureσ is the list of variables
ȳ = y1, . . . , yp (p ≥ 0), the given definition contains a

clause∀x1, . . . , xn.[H ′ 4= B′], the formulasB andH are
“raised” versions ofB′ andH ′, that is,

B = B′[(h1 ȳ)/x1, . . . , (hn ȳ)/xn]

H = H ′[(h1 ȳ)/x1, . . . , (hn ȳ)/xn]

and(λy1 · · ·λypA)ρ = (λy1 · · ·λypH)θ.

The right and left rules for atoms are given in Figure 3.
Specifying a set of sequents as the premise should be under-
stood to mean that each sequent in the set is a premise of the
rule. Notice that in thedefL rule, the free variables of the
conclusion can be instantiated in the premises. In particular,
a variable can possibly be removed fromΣ and several new
variables can be added.

These rules for definitions add considerable expressive
power to intuitionistic logic. For example,defR is essen-
tially the backchainingrule found in logic programming,
while defL is essentially a case analysis on how an atom
can be proved and can be used to establishfinite failure.
Together, these two rules can be used to encode simulation

4

and bisimulation in certain abstract transition systems [11].
Other uses involve reasoning about computational system
[10].

The proof system that arises from adding together the
inference rules in Figures 2 and 3 is calledFOλ∆. If we add
to FOλ∆ the rules in Figure 1, the resulting proof system
is calledFOλ∆∇ (pronounced “fold nabla”). It is this logic
that will involve us for the remainder of this abstract.

5. The meta-theory ofFOλ∆∇

Of course, the main meta-theorem forFOλ∆∇ is cut-
elimination.

Proposition 4 Given a fixed stratified definition, a sequent
has a proof inFOλ∆∇ if and only if it has a cut-free proof.

Proof Outline. The proof of cut-elimination forFOλ∆IN

[9] can be adapted to this setting. TheFOλ∆IN logic in-
cludes induction and hence the induction required to prove
termination is much more complicated than is required for
FOλ∆∇, which does not incorporate induction. Here, an
induction involving the heights of proofs works similarly to
that done by Gentzen [5], with an additional measure in-
volving the level of cut formulas. The stratification of def-
initions makes sure that the level of cut formulas decreases
when permuting up cut over definition rules. Other aspects
of the proof are similar. Central to the proof is the following
substitution lemma aboutFOλ∆∇ proofs: if Σ : Γ −→ C
has a proof andθ be a substitution, then there is a deriva-
tion of Σθ : Γθ −→ Cθ with the same or lesser height. A
complete proof of cut elimination can be found in [25].

In certain situations, the difference between∇ and∀ can-
not actually be observed. More specifically, consider the
following restrictions on formulas and definitions. Anhc-
goal (named for Horn clauses) is a formula built from>,
∧, ∨, and∃. An hc∀-goal is a formula built from>, ∧,
∨, ∃, and∀, while anhc∇-goal is a formula built from>,
∧, ∨, ∃, and∇. A definition is anhc-definition(resp.,hc∀-
definitionandhc∇-definition) if the body of all of its clauses
arehc-goals(resp.,hc∀-goalsandhc∇-goals). Notice that
all such definitions are trivially stratifiable. Numerous inter-
esting computer science motivated specifications are exam-
ples ofhc∀-definitions: we consider in more detail two such
examples in Sections 6 and 7. The proof of the following
proposition follows by a simple induction on the structure
of FOλ∆∇ proofs.

Proposition 5 Let D be anhc∀-definition and letD′ be
thehc∇-definition resulting from replacing all occurrences
of ∀ in the body of clauses ofD with ∇. Similarly, letG
be anhc∀-goal and letG′ be thehc∇-goal resulting from
replacing all occurrences of∀ in G with ∇. The sequent

Σ : · −→ · . G is provable using definitionD if and only if
the sequent· : · −→ Σ . G′ is provable using definitionD′.

As a consequence of this proposition, the difference be-
tween∀ and∇ (or, equivalently, between the global and
local signatures of a sequent) cannot be seen if one is sim-
ply attempting to “evaluate”hc∀ logical programs by de-
termining the goals that they can prove. A difference be-
tween these two quantifiers only starts to appear (forhc∀-
definitions) if more interesting goals are considered: for ex-
ample, in Section 6, we illustrate the differences between∀
and∇ with the specification of simulation and bisimulation
in theπ-calculus.

A natural question to ask about∇, in relation to its role
as local binder, is whether the relative orders among consec-
utive∇’s matters, or more precisely, whether the formula

∇y∇xBxy ⊃ ∇x∇yBxy

is provable inFOλ∆∇. Of course, this formula is not prov-
able in the logic without definitions. Consider the following
Definition and Proposition.

Definition 6 A definition D is noetherianif for every def-
inition clause∀x̄.[pt̄

4= B] in D, it holds thatlvl(p) >
lvl(B).

Proposition 7 Given a noetherian definition, the sequent
Σ : Γ, σ . B −→ σ′ . B, whereσ′ is a permutation ofσ, is
provable inFOλ∆∇.

Proof By induction on the level ofB with subordinate in-
duction on the size ofB. In the case whereB is an atomic
formula, we applydefL followed bydefR. Since the defi-
nition is noetherian, we always get formulas of lower level
as a result. A detailed proof can be found in [25].

Thus, for noetherian definitions,∇’s can be inter-
changed. We conjecture that this is also true for non-
noetherian definitions as well.

6. Example: theπ-calculus

Operational semantics of specification languages or pro-
gramming languages is often given using inference rules,
following the small-step approach (a.k.a., structured oper-
ational semantic) or big-step approach (a.k.a. natural se-
mantics). Frequently, the specification of such semantics re-
quires new symbols to be created to be used for such things
as nonces in security protocols [1], locations for reference
cells [2, 16], or new communication channels [19]. Given
the logicFOλ∆∇, we now have the ability to scope vari-
ables within sequents either globally via∀ or locally via
∇. We illustrate these choices with a specification of the
π-calculus.

5

τ.P
τ−−→ P

τ
P

A−−→ Q

[x = x]P
A−−→ Q

match
P

A−−⇀ Q

[x = x]P
A−−⇀ Q

match

P
A−−→ R

P + Q
A−−→ R

sum
Q

A−−→ R

P + Q
A−−→ R

sum
P

A−−⇀ R

P + Q
A−−⇀ R

sum
Q

A−−⇀ R

P + Q
A−−⇀ R

sum

P
A−−→ P ′

P |Q A−−→ P ′ |Q
par

Q
A−−→ Q′

P |Q A−−→ P |Q′
par

P
A−−⇀ M

P |Q A−−⇀ λn(Mn |Q)
par

Q
A−−⇀ N

P |Q A−−⇀ λn(P |Nn)
par

∇n(Pn
A−−→ P ′n)

νn.Pn
A−−→ νn.P ′n

res
∇n(Pn

A−−⇀ P ′n)

νn.Pn
A−−⇀ λm νn.(P ′nm)

res
∇y(My

↑xy−−→ M ′y)

νy.My
↑x−−⇀ M ′

open

outx y P
↑xy−−→ P

output
P

↓x−−⇀ M Q
↑x−−⇀ N

P |Q τ−−→ νn.(Mn |Nn)
close

P
↑x−−⇀ M Q

↓x−−⇀ N

P |Q τ−−→ νn.(Mn |Nn)
close

in x M
↓x−−⇀ M

input
P

↓x−−⇀ M Q
↑xy−−→ Q′

P |Q τ−−→ (My) |Q′
com

P
↑xy−−→ P ′ Q

↓x−−⇀ N

P |Q τ−−→ P ′ | (Ny)
com

Figure 4. The rules for the (late) π-calculus.

Consider encodingπ-calculus [19] using higher-order
abstract syntax following [17, 18]. Since we are focused
here on abstractions in syntax, we shall deal with onlyfi-
nite π-calculus expression, that is, expressions without! or
defined constants. Extending this work to infinite process
expressions should be possible by adding induction (as in
[11]) or co-induction to our proof system. We shall require
three primitive syntactic categories:n for channels,p for
processes, anda for actions. The output prefix is the con-
structorout of typen → n → p → p and the input prefix
is the constructorin of type n → (n → p) → p: the π-
calculus expressions̄xy.P andx(y).P are represented as
(out x y P) and (in x λy.P), respectively. We use| and
+, both of typep → p → p and written as infix, to de-
note parallel composition and summation, andν of type
(n → p) → p to denote restriction. Theπ-calculus ex-
pression(x)P will be encoded asνλn.P , which itself is
abbreviated as simplyνx.P . The match operator,[· = ·]· is
of type n → n → p → p. Whenτ is written as a prefix,
it has typep → p. Whenτ is written as an action, it has
typea. The symbols↓ and↑, both of typen → n → a, de-
note the input and output actions, respectively, on a named
channel with a named value: e.g.,↓ xy denotes the action
of inputtingy on channelx.

We use two predicates to encode the one-step transition

semantics for theπ-calculus. The predicate· ·−−→ · of type
p → a→ p → o encodes transitions involving free values

and the predicate· ·−−⇀ · of typep → (n → a) → (n →

p) → o encodes transitions involving bound values. Fig-
ure 4 (taken from [18]) contains the inference rules specify-
ing the late version of the transitions for theπ-calculus [19].
In these rules, capital letters (possibly primed) are used to
denote schema variables for inference rules: these schema
variables have primitive types such asa, n, andp as well as
functional types such asn→ aandn→ p. These inference
rules can trivially be written as definition clauses: a few
such clauses are presented in Figure 5. Here, schema vari-
ables are universally quantified (implicitly) at the top-level
of such clauses. Notice that the complicated side conditions
in the original specification ofπ-calculus are not present
here as they are now part of the meta-logic. For example,
the side condition thatx 6= y in the open rule is handled by
using two different quantifier scopes forx andy and the rule
of logic that substitutions cannot capture bound variables.

Let L be the complete definition for the one step transi-
tion for theπ-calculus. Clearly,L is anhc∇-definition. Let
let L′ be the result of replacing all occurrences of∇ in L
with ∀. Furthermore, letL′′ be the result of replacing all
occurrences of the symbol

4= in the clauses ofL′ by reverse
implication: thus,L′′ is a set of formulas and is not a defi-
nition. If we are interested in only computing the one-step
transitions of the lateπ-calculus, that is, proving the atomic

formulasP
A−−→ P ′ or P

A−−⇀ P ′, then the following ob-
servations are easy to establish. LetB range over atomic
formulas. Proposition 5 implies that· : · −→ B is provable
in FOλ∆∇ using definitionL if and only if · : · −→ B

6

νn.Pn
A−−→ νn.Qn

4= ∇n(Pn
A−−→ Qn)

νy.Py
↑X−−⇀ Q

4= ∇y(Py
↑Xy−−→ Qy)

in X M
↓X−−⇀ M

4= >
P |Q τ−−→ S | (T Y) 4= ∃X.P

↑XY−−→ S ∧Q
↓X−−⇀ T

Figure 5. Corresponding definition clauses

simP Q
4= ∀A∀P ′ [(P

A−−→ P ′) ⊃ ∃Q′.(Q A−−→ Q′)
∧ simP ′ Q′] ∧

∀X∀P ′ [(P
↓X−−⇀ P ′) ⊃ ∃Q′.(Q

↓X−−⇀ Q′)
∧ ∀w.sim (P ′w) (Q′w)] ∧

∀X∀P ′ [(P
↑X−−⇀ P ′) ⊃ ∃Q′.(Q

↑X−−⇀ Q′)
∧∇w.sim (P ′w) (Q′w)]

Figure 6. Definition of π-calculus simulation

is provable inFOλ∆ using definitionL′. Furthermore, a
cut-free proof of· : · −→ B in FOλ∆ using definition
L′ does not contain occurrences ofdefL, and, as a result,
the definition mechanism itself can be replaced: the sequent
· : · −→ B is provable inFOλ∆ with the definitionL′ if
and only if the sequentΣ : L′′ −→ B is provable inFOλ.

Thus, only standard logic programming (such as in
λProlog) is needed to compute the one-step transitions of
theπ-calculus, and∇ and definitions do not add expressive
power. To see what expressive power is contributed by both
∇ and definitions in a proof system, consider the problem of
computing the relationship of simulation for theπ-calculus.
(For simplicity, we shall consider only simulation and not
bisimulation: extending to bisimulation is not difficult but
does introduce several more cases and make our examples
more difficult to read.)

To illustrate how∇ and∀ in the body of this definition
clause differ, consider following fourπ-calculus expres-
sions. (Here we are using the usual abbreviations: when
the name, sayz is used as a prefix, it denotes the prefix
z(w) wherew is vacuous in its scope; when the name,z̄ is
used as a prefix, it denotes the prefixz̄a, wherea is some
fixed value; the expression̄x(y).P abbreviates(y)x̄y.P ;
and when a prefix is written without a continuation, the con-
tinuation 0 is assumed. Thus, for example,ȳ | z denotes
ȳa.0 | z(w).0.)

P1 = x(y).(ȳ | z) P2 = x(y).((ȳ.z) + (z.ȳ))
P3 = x̄(y).(ȳ | z) P4 = x̄(y).((ȳ.z) + (z.ȳ))

The processP2 is simulated byP1 but the converse is not
true since afterP1 preforms an(↓ xz), it is possible for the

resulting process to take aτ step. The sequence of actions
(↓ xz) and τ is not possible withP2. The processesP3

andP4 do, however, simulate each other (they are, in fact,
bisimilar). The only difference between these pairs of pro-
cesses is, of course, that the first is prefixed with a bounded
input prefix while the second is prefixed with a bounded
output prefix. These different bounded prefixes are handled
in the simulation definition in Figure 6 using, in one case,∀
and the other case∇.

For example, consider proving the sequent

· : · −→ sim (x(y).(ȳ | z)) (x(y).((ȳ.z) + (z.ȳ))),

which, as we discussed above, should fail. (For readability,
we shall useπ-calculus syntax directly instead of the ab-
stract syntax on which the actual logic is based.) The free
namesx andz are interpreted as meta-level constants. The
attempt to prove this sequent reduces (viadefR, ∀ and⊃ R)
to needing to prove the three sequents (1-3) in Figure 7. A
simple argument about the permutabilities of inference rules
[9] shows that if a sequent with an atom on the left has a
proof, it has a proof with an instance of thedefL rule that
introduces that atom. Thus, we can conclude that sequents
(1) and (3) are trivially provable since the required unifica-
tion problem indefL fails for all clauses in the definition.
The second sequent is the consequence of a non-trivial oc-
currence of thedefL rule, giving rise to the need to prove
sequent (4) in Figure 7 (here, the variableN is instantiated
to x andP ′ is instantiated toλy.(ȳ | z)). Proving this re-
quires making the appropriate substitution forQ′ (obvious)
and then proving the sequent

· : · −→ ∀w.sim (w̄ | z) ((w̄.z) + (z.w̄))

Similarly to our first step, proving this reduces to the three
sequents (5), (6), and (7). ApplyingdefL rule to sequents
(6) and (7) produces one premise for each case, which even-
tually leads to proving the sequentsw, u : · −→ sim w̄ w̄
and· : · −→ u.simz z; both are trivially provable. A proof
of (5) usingdefL has two premises: one withA instantiated
to τ , w to z, andP ′ to 0 | 0, and one withA instantiated to
↑ wa andP ′ to 0 |z (w is not instantiated). The first of these
premise sequents is the sequent

· : · −→ ∃Q′[((z̄.z) + (z.z̄))
τ−−→ Q′ ∧ sim (0 | 0) Q′]

This is not provable since there is noτ transition from
((z̄.z) + (z.z̄)). As a result, since this sequent is not prov-
able we may conclude that the original sequent is not prov-
able. The reason for this failure is also clear from this at-
tempt of a proof construction: although bothP1 and P2

make an initial input step, the first of the resulting pair of
processes can make aτ step but the second cannot.

Turning to the case of expressionsP3 andP4, consider
proving the sequent

· : · −→ sim (x̄(y).(ȳ | z)) (x̄(y).((ȳ.z) + (z.ȳ))),

7

A,P ′ : (x(y).(ȳ | z))
A−−→ P ′ −→ ∃Q′[(x(y).((ȳ.z) + (z.ȳ)))

A−−→ Q′ ∧ simP ′ Q′] (1)

N, P ′ : (x(y).(ȳ | z))
↓N−−⇀ P ′ −→ ∃Q′[(x(y).((ȳ.z) + (z.ȳ)))

↓N−−⇀ Q′ ∧ ∀w.sim (P ′w) (Q′w)] (2)

N, P ′ : (x(y).(ȳ | z))
↑N−−⇀ P ′ −→ ∃Q′[(x(y).((ȳ.z) + (z.ȳ)))

↑N−−⇀ Q′ ∧∇x.sim (P ′x) (Q′x)] (3)

· : · −→ ∃Q′[(x(y).((ȳ.z) + (z.ȳ)))
↓x−−⇀ Q′ ∧ ∀w.sim (w̄ | z) (Q′w)] (4)

w, A, P ′ : (w̄ | z)
A−−→ P ′ −→ ∃Q′[((w̄.z) + (z.w̄))

A−−→ Q′ ∧ simP ′ Q′] (5)

w, N, P ′ : (w̄ | z)
↓N−−⇀ P ′ −→ ∃Q′[((w̄.z) + (z.w̄))

↓N−−⇀ Q′ ∧ ∀u.sim (P ′u) (Q′u)] (6)

w, N, P ′ : (w̄ | z)
↑N−−⇀ P ′ −→ ∃Q′[((w̄.z) + (z.w̄))

↑N−−⇀ Q′ ∧∇u.sim (P ′u) (Q′u)] (7)

· : · −→ ∃Q′[(x̄(y).((ȳ.z) + (z.ȳ)))
↑x−−⇀ Q′ ∧∇w.sim (w̄ | z) (Q′w)] (4′)

A, P ′ : w . (w̄ | z)
(Aw)
−−→ (P ′w) −→ w . ∃Q′[((w̄.z) + (z.w̄))

(Aw)
−−→ Q′ ∧ sim (P ′w) Q′] (5′)

N, P ′ : w . (w̄ | z)
↓(Nw)
−−⇀ (P ′w) −→ w . ∃Q′[((w̄.z) + (z.w̄))

↓(Nw)
−−⇀ Q′ ∧ ∀u.sim (P ′wu) (Q′u)] (6′)

N,P ′ : w . (w̄ | z)
↑(Nw)
−−⇀ (P ′w) −→ w . ∃Q′[((w̄.z) + (z.w̄))

↑(Nw)
−−⇀ Q′ ∧∇u.sim (P ′wu) (Q′u)] (7′)

Figure 7. Some sequents

which, as we discussed above, should succeed. A proof
attempt of this sequent proceeds similar to the previous ex-
ample, yielding the sequent(4′) in Figure 7. Proving this
reduces to the three sequents(5′), (6′), and(7′): notice that
w is not given global scope in the sequents but local scope
and that the eigenvariables (A, P ′, andN ′) are raised with
respect to their counterparts in(5), (6), and(7)). Sequents
(6′) and(7′) are proved as in(6) and(7). In this case, how-
ever, a proof of(5′) usingdefL has exactly one premise,
whereA instantiated toλw. ↑ wa andP ′ to λw.0 | z. The
resulting sequent is

· : · −→ w .∃Q′[((w̄.z)+ (z.w̄))
↑wa−−→ Q′ ∧ sim (0 | z) Q′]

This sequent, like all the remaining ones in this proof at-
tempt, now have a simple proof.

Notice that although we have now encountered higher-
order unification problems and higher-order substitutions,
the unification problems generated from this particular ex-
ample fall within thehigher-order pattern unificationor Lλ

unification problems [13, 21]. This subset of the unifica-
tion of simply typedλ-terms has complexity similar to that
of first-order unification: it is decidable (in linear time) and
has most general unifiers when unifiers exist. Proof search
for a sequent that starts out with first-order quantification
will remain “essentially” first-order, even though raising in-
troduces variables of higher-order type.

The encoding ofπ-calculus above can also be extended
to include the mismatch operator by using negation.

(x = y) ⊃ ⊥ P
A−−→ Q

[x 6= y]P
A−−→ Q

mismatch

Operationally, mismatch is modeled as failure of unification

at the logic level. Notice that the resulting definition is not
Horn anymore since we have an implication in the body of
the clause representing the above inference rule. As a con-
sequence, Proposition 5 is not applicable to this definition.

7. Example: an object-logic encoding

Consider the problem of proving the formula

∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉],

where q is a three place predicate,〈·, ·〉 is used to form
pairs, t1 and t2 are some first-order terms, and the only
assumptions for the predicateq are the (universal closure
of the) three atomic formulas:q X X Y , q X Y X and
q Y X X. Clearly, this query succeeds only if termst2 and
t3 are equal [18]. One natural way to formalizing this rea-
soning involves first encoding provability of an object-level
first-order logic inFOλ∆∇ and then to reason directly on
this encoding. Letobj be the type of object-level formulas
and let the object-level logic constants be:>̂ of typeobj, &
and⇒ of typeobj → obj → obj, and∀̂ and∃̂ be the quan-
tifiers at type(i → obj) → obj (for some fixed typei rang-
ing over first-order object-level terms). To encode provabil-
ity, we use four predicates:pv · of type obj → o encodes
first-order provability,bc(·, ·) of type obj → obj → o en-
codes “backchaining”,atom· describes object-level atomic
formulas, andprog · describes object-level logic programs
clauses. Figure 8 presents an encoding of provability for
a first-order logic programming language that is restricted
to hc∀. Figure 9 contains such additional clauses for the
example we are considering here.

Notice that while the object-level logic here ishc∀ (since

8

pv >̂ 4= >
pv (G & G′) 4= pv G ∧ pv G′

pv (∀̂G) 4= ∇x.pv (Gx)
pv (∃̂G) 4= ∃x.pv (Gx)

pv A
4= ∃D.atomA ∧ progD ∧ bc(D,A)

bc(A,A) 4= atomA

bc(G ⇒ D,A) 4= bc(D, A) ∧ pv G

bc(∀̂D,A) 4= ∃t. bc(D t, A)

Figure 8. Interpreter for an object-level logic.

X = X
4= >

atom(q X Y Z) 4= >
prog(∀̂X ∀̂Y q X X Y) 4= >
prog(∀̂X ∀̂Y q X Y X) 4= >
prog(∀̂X ∀̂Y q Y X X) 4= >

Figure 9. Additional definition clauses.

we are concerned with the provability of a universally quan-
tified formula), the meta-level definition ishc∇.

The query that captures our intended example is the fol-
lowing formula

∀x, y, z[pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) ⊃ y = z]

along with the definition consisting of the clauses in Fig-
ures 8 and 9. Attempting a proof of this formula leads to
the following sequent (after applying some right rules and a
pair ofdefL and∇L rules):

X,Y, Z : (s, r) . pv (q 〈s,X〉 〈r, Y 〉 〈r, Z〉) −→ .Y = Z.

A series ofdefL rules will now need to be applied in order to
work through the encoding for the object-level interpreter.
In the end, three separate unification problems will be at-
tempted, one for each of the three ways to prove the predi-
cateq. In particular, thedefL rule will attempt to unify the
termλsλr.(q 〈s,X〉 〈r, Y 〉 〈r, Z〉) with each of the follow-
ing three terms:

λsλr.(q (X ′ s r) (X ′ s r) (Y ′ s r))
λsλr.(q (X ′ s r) (Y ′ s r) (X ′ s r))
λsλr.(q (Y ′ s r) (X ′ s r) (X ′ s r))

The first two unification problems fail and hence the corre-
sponding occurrences ofdefL succeed. The third of these
unification problems is solvable, however, withX ′ instan-
tiated toλsλr.〈r, Z〉, Y ′ instantiated toλsλr.〈s, Z〉, Y in-
stantiated toZ (or vice versa), andX uninstantiated. As a

result, this third premise is the sequent· : · −→ Y = Y ,
which is provable usingdefR.

The more common approach to encoding object-logic
provability into a meta-logic uses the meta-level universal
quantifier instead of the∇ for the clause encoding the prov-
ability of object-level universal quantification: that is, the
clause

pv (∀̂x.G x) 4= ∀x[pv (G x)].

is used instead. In this case, attempting a proof of this for-
mula reduces to an attempt to prove the sequent

X,Y, Z : .pv (q 〈s1, X〉 〈s2, Y 〉 〈r, Z〉) −→ .Y = Z,

and weres1 ands2 are two terms. To complete the proof,
these two terms must be chosen to be different. While this
sequent can be proved, doing so requires the assumption
that there are two such terms (the domain is non-empty and
not a singleton). Our encoding using∇ allows this (meta-
level) proof to be completed in a more natural way without
this assumption.

8. Related work and conclusion

We have maintained the approach to specification in
which meta-level and proof-level abstractions are used to
encode abstractions both of the static structure of expres-
sions (e.g., using meta-levelλ-abstractions to encode the
input prefix in theπ-calculus) and the dynamic structure
of computation (e.g., name generation as eigenvariables).
While this style of syntactic representation has been suc-
cessfully used to enumerate judgments about operational
semantics and to encode object-logic provability, proof
level abstractions (eigenvariables) seem inadequate when
one wishes to reason about computation directly (as out-
lined in Section 1). Since this style of syntactic representa-
tion is best understood declaratively within proof theory, we
have explored a simple mechanism within sequent calculus
to expand the notion of abstraction in the building of proofs.
In [18], we provided some experiments in specification that
this paper attempts to formalize using proof theory.

It is natural to ask about possible connections between
the∇-quantifier here and the new quantifier of Pitts and
Gabbay [4, 23]. Both are self dual and both have simi-
lar sets of applications in mind. There are significant dif-
ferences, however:∇ has a natural proof theory with a
cut-elimination theorem but has no set theoretic semantics,
while Pitts and Gabbay have a model theory based on set
theory but no cut-elimination result. While∇ neither im-
plies nor is implied by∀ or ∃, the quantifier of Pitts and
Gabbay is entailed by∀ and entails∃.

To work with larger examples than those shown here, one
needs an implementation ofFOλ∆∇. The Isabelle theorem
prover should provide a promising setting for building an

9

interactive theorem prover given the work reported in [20].
A natural next step is to attempt adding directly toFOλ∆∇

induction and co-induction: induction should work much as
it does inFOλ∆IN [9]. Some related work on co-induction
appears in [20].

Acknowledgments The authors wish to thank Catuscia
Palamidessi for valuable discussions regarding ourπ-
calculus examples. We would also like to thank the anony-
mous reviewers of this paper for their helpful suggestions
on an earlier draft of this paper. This work has been sup-
ported in part by NSF grants CCR-9912387, INT-9815645,
and INT-9815731. The second author gratefully acknowl-
edges support from LIX at́Ecole polytechnique.

References

[1] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell,
and A. Scedrov. A meta-notation for protocol analysis. In
R. Gorrieri, editor,Proceedings of the 12th IEEE Computer
Security Foundations Workshop — CSFW’99, pages 55–69,
Mordano, Italy, 28–30 June 1999. IEEE Computer Society
Press.

[2] J. Chirimar.Proof Theoretic Approach to Specification Lan-
guages. PhD thesis, University of Pennsylvania, February
1995.

[3] A. Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 5:56–68, 1940.

[4] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding.Formal Aspects of Computing,
13:341–363, 2001.

[5] G. Gentzen. Investigations into logical deductions. In M. E.
Szabo, editor,The Collected Papers of Gerhard Gentzen,
pages 68–131. North-Holland Publishing Co., Amsterdam,
1969.

[6] J.-Y. Girard. A fixpoint theorem in linear logic. Email to the
linear@cs.stanford.edu mailing list, February 1992.

[7] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic ap-
proach to logic programming. ii. Programs as definitions.
Journal of Logic and Computation, 1(5):635–660, October
1991.

[8] R. McDowell. Reasoning in a Logic with Definitions and In-
duction. PhD thesis, University of Pennsylvania, December
1997.

[9] R. McDowell and D. Miller. Cut-elimination for a logic with
definitions and induction.Theoretical Computer Science,
232:91–119, 2000.

[10] R. McDowell and D. Miller. Reasoning with higher-order
abstract syntax in a logical framework.ACM Transactions
on Computational Logic, 3(1):80–136, January 2002.

[11] R. McDowell, D. Miller, and C. Palamidessi. Encoding tran-
sition systems in sequent calculus.Theoretical Computer
Science, 294(3):411-437, 2003.

[12] D. Miller. Lexical scoping as universal quantification. In
Sixth International Logic Programming Conference, pages
268–283, Lisbon, Portugal, June 1989. MIT Press.

[13] D. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification.Jour-
nal of Logic and Computation, 1(4):497–536, 1991.

[14] D. Miller. Unification under a mixed prefix.Journal of Sym-
bolic Computation, pages 321–358, 1992.

[15] D. Miller. The π-calculus as a theory in linear logic: Pre-
liminary results. In E. Lamma and P. Mello, editors,Pro-
ceedings of the 1992 Workshop on Extensions to Logic Pro-
gramming, number 660 in LNCS, pages 242–265. Springer-
Verlag, 1993.

[16] D. Miller. Forum: A multiple-conclusion specification lan-
guage. Theoretical Computer Science, 165(1):201–232,
Sept. 1996.

[17] D. Miller and C. Palamidessi. Foundational aspects of syn-
tax. In P. Degano, R. Gorrieri, A. Marchetti-Spaccamela,
and P. Wegner, editors,ACM Computing Surveys Sympo-
sium on Theoretical Computer Science: A Perspective, vol-
ume 31. ACM, Sep 1999.

[18] D. Miller and A. Tiu. Encoding generic judgments. InPro-
ceedings of FSTTCS, number 2556 in LNCS, pages 18–32,
December 2002.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, Part I.Information and Computation, pages 1–
40, September 1992.

[20] A. Momigliano, S. Ambler, and R. Crole. A hybrid encoding
of Howe’s method for establishing congruence of bisimilar-
ity. In LFM’02, volume 70.2 ofENTCS, 2002.

[21] T. Nipkow. Functional unification of higher-order patterns.
In M. Vardi, editor,LICS93, pages 64–74. IEEE, June 1993.

[22] F. Pfenning and C. Elliott. Higher-order abstract syn-
tax, In Proceedings of the ACM-SIGPLAN Conference on
Programming Language Design and Implementation, ACM
Press, pages 199–208, June 1988.

[23] A. M. Pitts. Nominal logic, a first order theory of names and
binding. Information and Computation. To appear. (A pre-
liminary version appeared in theProceedings of the 4th In-
ternational Symposium on Theoretical Aspects of Computer
Software(TACS 2001), LNCS 2215, Springer-Verlag, 2001,
pp 219–242.).

[24] P. Schroeder-Heister. Cut-elimination in logics with defini-
tional reflection. In D. Pearce and H. Wansing, editors,Non-
classical Logics and Information Processing, volume 619 of
LNCS, pages 146–171. Springer, 1992.

[25] A. Tiu. Cut-elimination for a logic with generic
judgments. April 2003. Draft available via
http://www.cse.psu.edu/˜tiu/foldn2.pdf .

10

