
Defining the meaning of TPTP formatted proofs

Roberto Blanco, Tomer Libal and Dale Miller

Inria & LIX/École polytechnique
{roberto.blanco,tomer.libal,dale.miller}@inria.fr

Abstract

The TPTP library is one of the leading problem libraries in the automated theorem
proving community. Along the years, support was added for problems beyond those in first-
order clausal form. Another addition was the augmentation of the language to support
proofs outputted from theorem provers and the maintenance of a proof library, called
TSTP. In this paper we propose another augmentation of the language for the support of
the semantics of the inference rules used in these proofs.

1 Introduction

A key element in optimizing the performance of systems is the ability to compare them on
a common benchmark. This benchmark, for the automated theorem proving community, is
depicted via the ‘Thousands of Problems for Theorem Provers’ (TPTP) library [15]. A part of
the library success lies in its accompanying syntax, which is both intuitive to read and strong
enough to encode all kinds of problems. Another advantage of the syntax is its predicative
form which allows the use of logic programming for parsing and other utilities. As part of the
evolution of the library and its syntax, a support for proofs was added. In order to support the
proof library, called ‘Thousands of Solutions from Theorem Provers’ (TSTP), an augmentation
to the syntax was required for the support of different types of proofs, in particular directed
acyclic graph proofs. This syntax allows to describe these proofs in a structural way by defining
the elements involved in each step as well as the inference used and some additional annotations.
One shortcoming of this format is its emphasis on syntax only and its inability to describe
precisely the semantics of the inferences used.

The increased complexity of noways theorem provers brought with it a stronger need for
proof certification. Errors in proofs can result from several sources, from bugs in the code to
inconsistencies in the object theory. In order to amend that, several tools for proofs certification
were implemented which allows for a better confidence in the theorem provers output. These
tools, though, had so far only a small success in the general community. The main reason for
that is that a key component in certifying proofs is the ability to understand the semantics
of the object calculi, without which, certification itself will rely heavily on sophisticated proof
search methods and therefore, prone to the same problems as those of the theorem provers.

The difficulty in understanding the semantics of the object calculi lies in the gap between
the implementors of theorem provers and those of the proof certifiers. The normal process
currently for certifying the output of a certain theorem prover is for a dedicated team on the
certifier side to try to understand the semantics of each inference rule of the object calculus.
This approach suffers many times from missing documentation, different naming and versioning
of software, and insufficient information in the proofs themselves [3].

One way to overcome this gap is to supply the implementors of theorem provers with an
easy to use and well-known format in which to describe the semantics of their inference rules.
This format should be general enough to allow both precise (functional) definitions - translating
a proof in the object calculus into a proof in another, trusted and well known, calculus - and

1

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

somewhat informal definitions, which hint on the right way to understand the object calculus,
without specifying how to actually reconstruct a proof.

In this paper we propose to use a format which is well known for the implementors of
theorem provers - the TPTP format itself - for the purpose of describing not only problems and
proofs, but the semantics of proofs as well. This will make a TPTP file an independent unit of
information which could be used for certification as well.

An additional advantage of using the TPTP format to specify semantics is the same one
mentioned above for building tools for the TPTP library. The predicate logic form of the
problems, their solutions, and now, also their semantics, will allow proof certifiers which are
based on logical programming to easily be able to access the semantics and will diminish the
gap between the theorem provers and their certifiers further. Such a logic program, such the
checkers proof certifier [3], will only require minor computations to be applied to the input
files, if any. Those, making the trust of the certification process stronger.

The paper is organized as follows. In the next section we present and describe both the
TPTP syntax and the notion of using predicates in order to define the semantics of logics. In
section 3 we present and discuss the minor augmentations needed in the TPTP format in order
to support the ability to use this format to denote semantics. Section 4 is devoted to the full
description of three examples from three different theorem provers. The last section suggests
some advantages of using this approach and conclude the work.

2 Preliminaries

2.1 Syntax in TPTP

A beneficial side effect of the TPTP library as gold standard test for automated theorem
provers is the development of a language to express logic problems —and their solutions— and
its adoption among the theorem provers whose input it aspires to be. It is no coincidence that
this language is credited as one of the keys to the lasting success of the project [15].

The TPTP language is based on a core language that builds upon Church’s simple theory
of types, called THF0 [1]. It supports three different languages: first-order form (FOF) and
clause normal form (CNF) for untyped first-order logic, typed first-order form (TFF), and typed
higher-order (THF). All three are defined on top of the core language THF0, itself a “syntacti-
cally conservative extension” of FOF as one of the primeval components of the language, and
a subset of the full-fledged THF. The syntax is based on the concept of annotated formulae
and is expressive enough to structure proofs and embed arbitrarily complex information as
annotations.

Among the stated design goals of the format extensibility and readability (both by machines
and logicians) figure prominently. In addition, care has been taken to ensure the grammar
remains compatible with the logic programming paradigm, and TPTP documents are, in fact,
valid Prolog programs.

For defining a formula using the TPTP format, one uses the following template:

Lang (Name, Role , Formula , Annotations)

where Lang ∈ {cnf,fof,tff,thf,tpi}, Role describes the role of the formula - i.e. ‘axiom’
or ‘type’, Formula is the encoding of the formula in the respective language and Annotations
is an optional additional information.

The information in the first three arguments, Lang,Role and Formula, is enough to describe
most kinds of problems. Since further structure is required in order to describe proofs, an

2

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

extensive use of the Annotations field is being made.
A template for defining structural derivations is the following:

Lang (Name, Role , Formula , i n f e r e n c e (Rule , Add i t i ona l In f o))

Where Rule denotes the name of the inference rules used and AdditionalInfo normally
refers to the names of the formulae which were used in order to apply this rule. Formula, as
before, is an encoding of the derived formula in the respective language.

Another useful feature of TPTP is the include directive, which performs a syntactical
inclusion of one file into another. This directive may help reducing redundancies.

2.2 Denoting semantics as logic programs

As already mentioned, one way to formally describe the semantics of an inference rule is by
a functional translation of an instance of this rule into a derivation in another, well-known,
calculus. Logic programming generalizes this idea by allowing also some notion of proof search
in this calculus. Using logic programming, one does not have to give a precise functional
translation but a set of predicates which ensures that the search adheres to some requirements,
such as bounded space.

A precise definition of this approach and the infrastructure required to support it were given
by Miller [8] and were implemented, among others, in the checkers proof certifier [3]. The basic
idea was to program a set of predicates which will guide the search in the target calculus. By
guiding the search for a derivation of an instance of an inference rule in a well-known calculus,
these set of predicates can be considered as denoting the semantics of this inference.

The definition of these predicates using the TPTP syntax is the ultimate goal of our proposal,
and before illustrating it we need to present the underlying principles behind the idea.

First, and critically, semantic descriptions are not “one size fits all”: there is an underlying
trade-off between space and time. More detailed semantic translations, insofar as the informa-
tion provided is useful, produce more efficient verifications; conversely, high-level, conceptual
descriptions may serve as guidance but cannot be used to generate a constructive decision proce-
dure without additional information, or search. On one extreme are fully functional translations
of inference rules, on the other minimal but sufficient hints to allow a possible reconstruction of
a proof in an independent calculus. The later is a bit more general than that defined by Miller,
which requires these hints to be sufficiently strong as to be able to guide the proof search. In
contrast, here we consider the full spectrum of implicit vs. explicit reconstruction.

For example, suppose we wish to obtain a proof of a formula A ∧B ∧ C. It may simply be
stated that to do this separate proofs for A, B, and C are needed:

A B C
A ∧B ∧ C

To understand the meaning of this inference rule, one can try to infer the conclusion from
the hypotheses using a well-known calculus, the sequent calculus for example, which tells us
that in order to derive the original goal, two proofs are needed, one for A and a second one for
B ∧ C, and then divide in turn this second composite proof into sub-proofs of B and C:

A
B C
B ∧ C

A ∧B ∧ C
The question of whether we can trust the first inference relies on the fact that its semantics

is defined by the second, in the sense that it constitutes a formal derivation of the intended

3

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

meaning, namely, that one can obtain a proof of the conjunction of three goals from proofs of
each of those goals. Trust in the calculus of choice extends to trust in the inference rules that
it can justify. Contrariwise, consider an alternative candidate for an inference rule.

A B C
A ∨B ∨ C

It can be proved that a reasonable calculus will be unable to derive an inference of this
shape. In the absence of a trustworthy proof reconstruction of the postulated inference rule, its
validity cannot be accepted.

Consider now the more realistic case of paramodulation [11], a concrete instance of which
we study in section 4.1. In this case, an explicit functional translation of the formal definition
is far from being trivial. Conversely, it may be stated, more informally, that paramodulation
handles equality modulo reflexivity: that is to say, the transitivity and symmetry axioms can be
used to simulate this rule in a logic without explicit handling of equality (note that reflexivity
axioms must be given externally for the equality procedure to be complete).

By applying some additional effort, this approach was implemented successfully in checkers

and is capable of guiding the proof search for arbitrary instances of the paramodulation rule.
This implies, therefore, that supplying the two axioms consists of enough information to help
the automatic certification of this inference rule.

3 Thousands of Semantically Annotated Solutions for The-
orem Provers (TATP)

In order to define the semantics of logical formulae of order n, one needs to use the syntax of
the meta-level, i.e. formulae of order n + 1. As seen in section 2, TPTP is equipped with the
necessary syntax in order to define formulate of arbitrary finite order. For example, in order to
define the provability of a classical first-order quantifier, one can use the following formula in
λProlog notation: pr(∀x.Bx) :- Πx.pr(Bx) [4] where Π is the meta-level universal quantifier.

TPTP proofs are already annotated by the inference rules that are used in order to derive
the formula. This annotation, though, lacks the semantics and normally cannot be understood
by a person not familiar with the calculus in which the proof is written in.

We will harness therefore the power of the TPTP thf syntax in order to allow the imple-
mentor of a theorem prover to include semantics information about these annotations. Note
that by using the TPTP include directive, one doesn’t need to include these definitions in
every proof generated but just define them once.

In order to allow such a use, we can first define a new role for formula definitions. We
therefore add the following directive to the TPTP syntax:
<formula role> :== semantics.

A TPTP semantics definition will have the following form:

th f (Name, semantics , Formula , Annotations)

where Name, by convention, should consist of the prover name, underscore and then the
inference name which was used in the proof. Next, we allow arbitrary higher-order typed formula
in the semantics definitions. In the rest of the paper, though, we ignore typing information in
order to focus on clarity. Note that the logical programming language λProlog requires formula
to be in higher-order hereditary-Harrop form [9]. Therefore, it would be advantageous to define

4

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

the semantics in this form as then one could use, with minimal intervention, proof checking
software like checkers to verify proofs and the proofs will be, therefore, self-contained.

A question we still need to answer is how one can define the semantics of an inference rule
and how can we make the task as simple as possible. The decision taken here is to allow the
implementor of a theorem prover to use, in order to define the semantics of his own rules, the
inference rules and the theory of any other calculus. In general, the implementor of a resolution
theorem prover can decide to specify the semantics using the inference rules of another theorem
prover. It would be better though, to specify the semantics using the inference rules of a well
known calculus, like the original resolution calculus by Robinson [12], for example.

When defining proofs in the TPTP format, the information of which inference rule to used
is supplied using the annotation directive. We will do the same and use this directive in order
to supply the information of what calculus is being used in order to define the semantics.

In order to achieve that, we will add the following directives to the TPTP syntax:
<source> ::= <calculus info>

<calculus info> ::= calculus(<calculus name><optional info>)

<calculus name> ::= <atomic word>

Using these directives, the user can specify the name of the calculus used and supply addi-
tional information, such as the name of a paper where this calculus is defined.

The last remaining task is to be able to bind the instances of the inferences rules in the
proofs to their semantics definitions. We suggest the following convention - in order to specify
an inference call of dag form, which are the ones used in proofs, the user will use the following
predicate: <inference rule>(f, f1, . . . , fn) where f is the derived formula and the remaining
formula are the ones used in the derivation. Examples of this convention are given next.

4 Examples

We demonstrate the use of the annotations on three examples taken from inference rules used
by three different theorem provers.

4.1 Paramodulation in the E prover

This inference rule has the following form
cnf(c3,role, clause,inference(pm,[status(thm)],[c1, c2, theory(equality)])).
where role and clause defines the role and the content of the clause and c1, c2 and c3 are the
two clauses on which the rule is applied and the result, respectively. The semantics of this rule
are similar to the semantics of the paramodulation rule [11] but are symmetric for both c1 and
c2.

To define the semantics of this rule, we will use as foundation the following definition of
paramodulation.

Definition 1 (Paramodulation [11]). Given clauses A and α′ = β′∨B (or β′ = α′∨B) having
no variable in common and such that A contains a term δ, with δ and α′ having a most general
common instance α identical to α′[si/ui] and to δ[tj/wj], form A′ by replacing in A[tj/wj] some
single occurrence of α (resulting from an occurrence of δ) by β′[si/ui], and infer A′ ∨B[si/ui].

The E prover implements a variation of paramodulation in its pm rule, expressed in TPTP
syntax with the following form:

5

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

cn f (ClauseId , Role , Formula , i n f e r e n c e (pm, [s t a t u s (thm)] ,
[SourceId1 , SourceId2 , theory (e q u a l i t y)]))

Here, SourceId1 and SourceId2 are the two clauses to which the paramodulation rule is
applied to obtain ClauseId, corresponding to the formula given by Formula and with role Role.
The semantics of this rule are similar to the semantics of the paramodulation rule (from [11]
and our definition), with the peculiarity that the tactic presents symmetry for both ClauseId1

and ClauseId2.
To produce the full definition we proceed in two steps. First we present a TPTP formula

that denotes the semantics of the pm rule.

th f (eprover pm , semantics , Formula , c a l c u l u s (paramodulation ,
[p . 5 in [11]]))

Second, we define Formula as the mapping between the specific variation of paramodulation
defined by the E prover (namely, the pm tactic) and the canonical semantics derived from the
definition:

∀ SourceId1 , SourceId2 , ClauseId :
pm(SourceId1 , SourceId2 , ClauseId)

⇐ paramodulation (ClauseId , SourceId1 , SourceId2)
∨ paramodulation (ClauseId , SourceId2 , SourceId1)

Where, as usual, free variables are universally quantified; we have made this quantification
explicit in the present formulation.

4.2 Binary resolution in Vampire

Vampire [10] is a theorem prover that implements the superposition calculus. Proofs proceed
by saturation and rely on redundancy elimination and a wide range of advanced techniques to
maximize performance, one of its original design goals. It features a rich collection of inference
rules and supports the TPTP syntax, including various extensions. After Vampire 3.0, there
have been no public releases available for download, extending to version 4.0 as available in
TSTP and System on TPTP. In the absence of a technical manual or an in-depth systems
description, it becomes necessary to inspect TSTP to approximate the actual semantics of the
program.

Definition 2 (Binary resolution [12]). Given two clauses A = a1∨ . . .∨am and B = b1∨ . . .∨bn
and a pair of complementary literals, one from each clause, i.e., ai = ¬bj or ¬ai = bj, the
resolution rule derives a new clause with all the literals except the complementary pair: C =
a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ am ∨ b1 ∨ . . . ∨ bj−1 ∨ bj+1 ∨ . . . ∨ bn.

The binary resolution rule includes the possibility of applying a unification procedure to a
pair of unifiable literals, and substituting the most general unifier in the resolvent C. Some
categories of binary resolution can be defined. These are not necessarily mutually exclusive:

• Positive resolution, if one of the parent clauses is a positive clause, i.e., all its literals are
positive.

• Negative resolution, if one of the parent clauses is a negative clause, i.e., all its literals
are negative.

6

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

• Unit resolution, if one of the parent clauses is a unit clause, i.e., formed by exactly one
literal.

Vampire outputs natively to TPTP in addition to its own internal format, closer to that of
Prover9 that we treat in the next subsection. Now, we consider the TPTP output of the basic
resolution rule.

f o f (ClauseId , p la in , Formula ,
i n f e r e n c e (r e s o l u t i o n , [] , [SourceId1 , SourceId2]))

The translation takes this to the higher-order formula and adjusts the annotation infor-
mation in the inference name to point to the name of the logic program that implements the
procedure.

th f (vampi r e r e so lu t i on , semantics , Formula , c a l c u l u s (ho l))

Where Formula is defined to be

∀ S1 , S2 , R1 , R2 : r e s o l u t i o n (S1 , S2 , R1 ∨ R2)
⇐ ∃ L : memb and rest (S1 , L , R1) ∧ memb and rest (S2 , ¬L , R2)
∨ memb and rest (S1 , ¬L , R1) ∧ memb and rest (S2 , L , R2) .

Here we use a list-like predicate representing a “member and rest” operation to select a
literal from a clause and yield a copy of the clause without the chosen literal, but still use
disjunction as clause concatenation.

A clause produced by binary resolution is specified by the two premise clauses and, con-
sidering each of these in CNF form, and in turn a CNF form as an indexed list of disjuncts,
by the disjunct from each clause that is involved. We also assume a predicate specifying, and
therefore declaratively implementing, binary resolution, that acts on formulae and can check
whether the specified application of resolution yields the target formula.

4.3 Hyperresolution in Prover9

Prover9 [7] is a theorem prover based around the techniques of resolution and paramodulation,
and the successor of the Otter theorem prover. The last available version is 2009-11A, dated
November 2009. While development has since ceased, the tool remains in use. Prover9 does
not produce output in TPTP format, and therefore TSTP contains unparsed execution traces.
However, the input and output formats of the prover are simple and well documented, and
their semantics can be easily formalized. Interestingly, such a translation procedure offers the
possibility of generating the native TSTP output that is missing from the problem library,
together with its semantics.

In this subsection we consider hyperresolution [5], one of the primary tactics used by Prover9.
An informal definition of the inference rule follows.

Definition 3 (Hyperresolution [5]). Assume a nucleus clause A, nonpositive, with a number
k of negative literals ¬ai1 , . . . ,¬aik , and as many satellite clauses B1, . . . , Bk, each of which
resolves on of those negative literals, i.e., Bj = . . .∨ aij ∨ The hyperresolution rule resolves
all the negative literals in the nucleus, each with its satellite, producing a positive clause C.

Hyperresolution can be seen as a sequence of applications of binary resolution. It is likewise
possible to reverse polarities and speak of negative hyperresolution. A related concept is that of

7

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

unit-resulting resolution, where the satellites are unit clauses and the nucleus is reduced down
to a single literal, i.e., another unit class.

Prover9 implements this as the hyper tactic. The output language divides files in several
sections, one of which contains proofs presented as justifications: a sequence of clauses, each
derived from the starting clauses or by previous derivations in the chain. Inferences in each
step of the justification are themselves lists of tactics: exactly one primary tactic, possibly
followed by a number of secondary tactics. Hyperresolution is one of the primary tactics, and
for simplicity we will consider its treatment in isolation. It will become clear that sequences of
secondary steps follow an analogous compositional pattern.

An example of hyperresolution step is this: hyper(59, b,47,a, c,38,a). Here, clauses
are referenced by Arabic numerals and literals within a clause by letters: a, b, c. . . Though
represented by a plain list, it is to be interpreted as the nucleus clause followed by a sequence
of triples, each specifying a satellite clause and the literals that are involved to produce the
next clause in the hyperresolution chain. Thus, in the example, 59 is the nucleus; applying
binary resolution to its second literal and the first literal of clause 47 produces a new clause;
and applying binary resolution again, this time between the third literal of the new clause and
the first literal of 38, produces the final result.

Ignoring labels and secondary steps in Prover9 syntax, an instance of the hyperresolution
rule is expressed as follows.

Clause Formula . [hyper (Nucleus ,
F i r s t1 , S a t e l l i t e 1 , Second1 ,
. . . ,
FirstN , S a t e l l i t e N , SecondN)]

For the translation to our extension of TPTP, we provide the logic program that implements
the procedure and define the mapping.

th f (p rove r9 hype r r e so lu t i on , semantics , Formula , c a l c u l u s (ho l))

And here Formula defines the logical semantics of hyperresolution recursively, in terms of
the same generic (binary) resolution procedure that was used to model the tactic in Vampire.

∀ S1 , S2 , R: h y p e r r e s o l u t i o n ([S1 , S2] , R)
⇐ r e s o l u t i o n (S1 , S2 , R) .

∀ S1 , S2 , Ss , R: h y p e r r e s o l u t i o n ([S1 , S2 | Ss] , R)
⇐ ∃ R’ : r e s o l u t i o n (S1 , S2 , R’)

∧ h y p e r r e s o l u t i o n ([R’ | Ss] , R) .

Insofar as the sequence of clauses and the expected final formula are known, we can ignore
the triples passed as additional info and entrust the backtracking search mechanism to find an
appropriate application of hyperresolution (assuming one exists). Consequently, the encoding
drops the conjunct selection guidance given by Prover9 and represents a more general problem,
solvable directly by the definition given here.

4.4 Object- to meta-level lifting of disjunction in LEO-II

As a final example, we consider a two-level logic tactic in the theorem prover LEO-II. In
particular, we consider the extcnf or pos tactic, which is responsible for lifting a disjunction
from the object level to the meta level of the logic [14]. The rule has the following definition:

8

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

C ∨ [A ∨B]
tt

C ∨ [A]
tt ∨ [B]

tt

The tool expresses the application of this rule natively in TPTP syntax as follows.

th f (ClauseId , p la in , Formula ,
i n f e r e n c e (ex t cn f o r po s , [s t a t u s (thm)] , [SourceId]))

It should be noted that atoms in LEO-II are labeled with either true or false using the
TPTP notation F = $true. Once a substitution is applied, atoms can become more complex
formulae. Concretely, this inference rule is used to translate the object-level disjunction into
the clause-level one.

To provide the semantics of this rule, we use a higher-order logic formulation:

th f (l e o 2 e x t c n f o r p o s , semantics , Formula , c a l c u l u s (ho l))

And here Formula supplies the following definition for the underlying semantics.

∀ ClauseId , SourceId :
e x t c n f o r p o s (ClauseId , SourceId)

⇐ (((∀ C: C ⇔ C = >) ∧ SourceId) ⇒ ClauseId)

Again, with explicit quantification. It is easily seen that using the additional axiom one can
easily use any calculus for higher-order logic to prove this normalization rule.

5 Discussion and Conclusion

Even when we restrict our attention to the resolution theorem provers community, there are
several different approaches for proof certification. Sutcliffe [16] proposed to use the proof
derivations in the TSTP library as a skeleton, which one can use, with the help of theorem
provers, to reconstruct a proof. The Dedukti proof certifier [2] is a universal proof certifier
which was successfully used in order to certify proofs of the iProver resolution theorem prover
[6]. The closest to the approach presented in this paper is that of the system checkers [3],
which uses logic programming in order to encode semantics and reconstruct proofs and was
used in order to partially certify Eprover’s [13] proofs. While the first method is based on using
theorem provers for filling in the missing semantics in TPTP proofs, the later two systems are
based on a concrete effort to denote the semantics of different theorem provers using functional
and relational approaches, respectively. This effort is normally done by a different team than
that which implemented the theorem prover and which has the deepest knowledge about the
actual semantics of its calculus.

The approach which was taken in this paper tries to make this effort easier and more
accessible to the implementors of theorem provers. First, the language used to denote the
semantics is well known to the implementors as it is already used for both the input problems
and to output proofs. Second, unlike the last two systems mentioned, the implementors have
a high degree of flexibility in which to define the semantics and are not restricted by external
notions such as efficient or effective translations. This indeed put at risk the ability to mechanize
these definitions into an actual certifier for the system but as mentioned in the paper, the parts
which cannot be mechanized as given can, at least, be used to bring mechanization closer with
some further help, for example by the certification team.

9

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

The aims of this approach is to convince the implementors of theorem provers that even
semi formal semantics, which can easily be defined using the approach presented, are useful for
the purpose of full certification of their provers. The implementors control thus fully the effort
required by them in order to generate the semantics. The examples given in this paper ranges
from a minimal effort of just specifying axioms to a greater effort of defining a full translation.
While the second can be used efficiently by any of the two systems described at the beginning
of this section, the first method requires only minimal additional approach in order to be used
for proof reconstruction by a system like checkers.

To conclude, TPTP can serve as a format for specifying the semantics of proofs for various
degrees of concreteness. By using the same format for both problems, proofs and semantics,
implementors are encouraged to consider the semantics as part of the implementation effort.
This effort can both serve as a documentation of the internal calculus and as an implementation
of the semantics which can be later used for proof checking.

Acknowledgments. This work has been funded by the ERC Advanced Grant ProofCert.

References

[1] Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. Thf0–the core of the tptp language for
higher-order logic. In Automated Reasoning, pages 491–506. Springer, 2008.

[2] Guillaume Burel. A shallow embedding of resolution and superposition proofs into the λΠ-calculus
modulo. In J. C. Blanchette and J. Urban, editors, Third International Workshop on Proof Ex-
change for Theorem Proving (PxTP 2013), volume 14 of EPiC Series, pages 43–57. EasyChair,
2013.

[3] Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier checkers. In Hans De Nivelle,
editor, Proceedings of the 24th Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX), number 9323 in LNCS, pages 201–210. Springer, 2015.

[4] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic programming
language. In Ninth International Conference on Automated Deduction, number 310 in LNCS,
pages 61–80, Argonne, IL, May 1988. Springer.

[5] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet. Resolution deci-
sion procedures. In Handbook of automated reasoning, pages 1791–1849. Elsevier Science Publishers
BV, 2001.

[6] Konstantin Korovin. iprover–an instantiation-based theorem prover for first-order logic (system
description). In Automated Reasoning, pages 292–298. Springer, 2008.

[7] William McCune. Prover9 and Mace4. https://www.cs.unm.edu/~mccune/prover9/

[8] Dale Miller. A proposal for broad spectrum proof certificates. In J.-P. Jouannaud and Z. Shao,
editors, CPP: First International Conference on Certified Programs and Proofs, volume 7086 of
LNCS, pages 54–69, 2011.

[9] D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge University Press,
June 2012.

[10] Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE. AI
Communications, 15(2-3):91–110, 2002.

[11] G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order theories with equal-
ity. In Jörg H. Siekmann and Graham Wrightson, editors, Automation of Reasoning, Symbolic
Computation, pages 298–313. Springer Berlin Heidelberg, 1983.

[12] J. A. Robinson. A machine-oriented logic based on the resolution principle. JACM, 12:23–41,
January 1965.

10

https://www.cs.unm.edu/~mccune/prover9/

Defining the meaning of TPTP formatted proofs R. Blanco, T. Libal, D. Miller

[13] Stephan Schulz. System description: E 1.8. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 735–743. Springer, 2013.

[14] Nik Sultana and Christoph Benzmüller. Understanding leo-ii’s proofs. In IWIL@ LPAR, pages
33–52, 2012.

[15] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[16] Geoff Sutcliffe. Semantic derivation verification: Techniques and implementation. International
Journal on Artificial Intelligence Tools, 15(6):1053–1070, 2006.

11

	Introduction
	Preliminaries
	Syntax in TPTP
	Denoting semantics as logic programs

	Thousands of Semantically Annotated Solutions for Theorem Provers (TATP)
	Examples
	Paramodulation in the E prover
	Binary resolution in Vampire
	Hyperresolution in Prover9
	Object- to meta-level lifting of disjunction in LEO-II

	Discussion and Conclusion

