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The network is the prover

Sun Microsystems (1984): The network is the computer

The formal methods community
uses many isolated provers
technologies: proof assistants
(Coq, Isabelle, HOL, PVS, etc),
model checkers, SAT solvers, etc.

Goal: Permit the formal methods community to become a network
of communicating provers.

We shall use the term “proof certificate” for those circulating
documents denoting proofs.



Many computer systems producing many kinds of proofs

There is a wide range of provers.
• automated and interactive theorem provers
• computer algebra systems
• model checkers, SAT solvers
• type inference, static analysis
• testers

There is a wide range of “proof evidence.”
• proof scripts: steer a theorem prover to a proof
• resolution refutations, natural deduction, tableaux, etc
• winning strategies, simulations

If the necessary networking infrastructure is built, a wider range of
provers and proof evidence would appear.



Separate proofs from provenance

Most formal proofs are tied to some specific technology: change a
version number and a proof may no longer check.

We focus here on how we might separate proof from provenance.

Provers output proof evidence for a theorem (via some “proof
language”).

Trusted checkers must be available to check such evidence.

If we do our job right, proofs become a commodity and our
attention turns other aspects of computer systems.



The need for frameworks

Three central questions:

How can we manage so many “proof languages”?

Will we need just as many proof checkers?

How does this improve trust?

Computer scientists have seen this kind of problem before.

We develop frameworks to address such questions.

lexical analysis: finite state machines / transducers

language syntax: grammars, parsers, attribute grammars,
parser generators

programming languages: denotational and operational
semantics
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A framework for proof evidence: First pick the logic

Church’s Simple Theory of Types (STT) is a good choice for the
syntax of formulas.

Allow both classical or intuitionistic logic.

Propositional, first-order, and higher-order logics are easily
identifiable sublogics of STT.

Many other logics can adequately be encoded into STT: eg,
equational, modal, etc.

There is likely to always be a frontier of research that involves
logics that do not fit well into a fixed framework. C’est la vie.



Earliest notion of formal proof

Frege, Hilbert, Church, Gödel, etc, made extensive use of the
following notion of proof:

A proof is a list of formulas, each one of which is either
an axiom or the conclusion of an inference rule whose
premises come earlier in the list.

While granting us trust, there is little useful structure here.



The first programmable proof checker

LCF/ML (1979) viewed proofs as
slight generalizations of such lists.

ML provided types, abstract
datatypes, and higher-order
programming in order to increase
confidence in proof checking.

Many provers today (HOL, Coq,
Isabelle) are built on LCF.



More recent advances: Atoms and molecules of inference

Atoms of inference
• Gentzen’s sequent calculus first provided these: introduction,

identity, and structural rules.

• Girard’s linear logic refined our understanding of these further.

• To account for first-order structure, we also need fixed points
and equality.

Rules of Chemistry
• Focused proof systems show us that certain pairs of atoms

stick together while others pairs form boundaries.

Molecules of inference
• Collections of atomic inference rules that stick together form

synthetic inference rules (molecules of inference).



Features enabled for proof certificates

• Simple checkers can be implemented.
Only the atoms of inference and the rules of chemistry (both
small and closed sets) need to be implemented in a checker of
certificates.

• Certificates support a wide range of proof systems.
The molecules of inference can be engineered into a wide range
of inference rules.

• Certificates are based (ultimately) on proof theory.
Immediate by design.

• Proof details can be elided.
Search using atoms will match search in the space of molecules:
that is, the checker will not invent new molecules.



An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.



An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.



An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.
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Foundational Proof Certificates

1 There are many forms of proof evidence.

2 FPC can define the semantics of many of them.

3 Logic programming can provide prototype checkers.

4 Compliant checkers can be built based on the semantics.



Clerks and experts: the office workflow analogy

Imagine an accounting office that needs to check if a certain
mound of financial documents (provided by a client) represents a
legal tax form (as judged by the kernel).

Experts look into the mound and extract information and
• decide which transactions to dig into and
• release their findings for storage and later reconsideration.

Clerks take information released by the experts and perform some
computations on them, including their indexing and storing.

Focused proofs alternate between two phases: synchronous
(experts are active) and asynchronous (clerks are active).

The terms decide, store, and release come from proof theory.

A proof certificate format defines workflow and the duties of the
clerks and experts.



Proof checking and proof reconstruction

Clearly, (determinate) computation is built into this paradigm: the
clerks can perform such computation.

Proof reconstruction might be needed when invoking not-so-expert
experts.

Non-deterministic computation is part of the mix: non-determinism
is an important resource that is useful for proof-compression.



The LKneg proof system

Use invertible rules where possible. In propositional classical logic,
both conjunction and disjunction can be given invertible rules.

` ·;B
` B

start
` ∆, L; Γ

` ∆; L, Γ
store ` ∆,A,¬A; · init

` ∆; Γ
` ∆; false, Γ

` ∆;B,C , Γ

` ∆;B ∨ C , Γ ` ∆; true, Γ

` ∆;B, Γ ` ∆;C , Γ

` ∆;B ∧ C , Γ

Here, A is an atom, L a literal, ∆ a multiset of literals, and Γ a list
of formulas. Sequents have two zones.

This proof system is a decision procedure (resembling conjunctive
normal forms). A small (constant sized) certificate is possible.

Consider proving (p ∨ C ) ∨ ¬p for large C .
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The LKpos proof system

Non-invertible rules are used here.

` B; ·;B
` B

start
` B;N ,¬A;B

` B;N ;¬A restart ` B;N ,¬A;A
init

` B;N ;Bi

` B;N ;B1 ∨ B2 ` B;N ; true
` B;N ;B1 ` B;N ;B2

` B;N ;B1 ∧ B2

Here, A is an atom and N is a multiset of negated atoms.
Sequents have three zones.

The ∨ rule can consume some external information or some
non-determinism.

An oracle string, a series of bits used to indicate whether to go left
or right, can be a proof certificate.



A proof in LKpos

Let C have several alternations of conjunction and disjunction.

Let B = (p ∨ C ) ∨ ¬p.

` B;¬p; p
init

` B;¬p; p ∨+ C
∗

` B;¬p; (p ∨+ C ) ∨+ ¬p
∗

` B; · ;¬p restart

` B; · ; (p ∨+ C ) ∨+ ¬p
∗

` B
start

The subformula C is avoided. Clever choices ∗ are injected at
these points: right, left, left. We have a small certificate and small
checking time. In general, these certificates may grow large.



Combining the LKneg and LKpos proof systems

Introduce two versions of conjunction, disjunction, and their units.

t−, t+, f −, f +,∨−,∨+,∧−,∧+

Introduce the two kinds of sequent, namely,
` Θ ⇑ Γ: for invertible (negative) rules (Γ a list of formulas)
` Θ ⇓ B: for non-invertible (positive) rules (B a formula)



LKF : a focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,B ` Θ ⇑ Γ,B ′

` Θ ⇑ Γ,B ∧−B ′
` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,B,B ′

` Θ ⇑ Γ,B ∨−B ′

` Θ ⇓ t+
` Θ ⇓ B ` Θ ⇓ B ′

` Θ ⇓ B ∧+ B ′
` Θ ⇓ Bi

` Θ ⇓ B ∨+ B ′

Init

` ¬A,Θ ⇓ A

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P is a positive formula; N is a negative formula;
A is an atom; C positive formula or negative literal



Results about LKF

Let B be a propositional logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. B is a tautology if and only if B̂ has an LKF proof.
[Liang & M, TCS 2009]

Thus the different polarizations do not change provability but can
radically change the proofs.

Also:
• Negative (non-atomic) formulas are treated linearly (never

weakened nor contracted).
• Only positive formulas are contracted (in the Decide rule).



An example

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a Init ` Θ ⇓ b Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c
` Θ ⇓ ¬c Release

` Θ ⇓ a ∧+ b ∧+ ¬c and

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·



Example: Resolution as a proof certificate

• A clause: ∀x1 . . . ∀xn[L1 ∨ · · · ∨ Lm]

• C3 is a resolution of C1 and C2 if we chose the mgu of two
complementary literals, one from each of C1 and C2, etc.

• If C3 is a resolvent of C1 and C2 then ` ¬C1,¬C2 ⇑ C3 has a
short proof (decide depth 2 or less).

Translate a refutation of C1, . . . ,Cn into a (focused) sequent proof
with small holes:

Ξ
` ¬C1,¬C2 ⇑ Cn+1

...
` ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
` ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

Store

` ¬C1, . . . ,¬Cn ⇑ · Cut

Here, Ξ can be replaced with a “hole” annotated with bound 2.



Reference proof checking in λProlog

Logic programming can check proofs in
sequent calculus.

Proof reconstruction requires
unification and (bounded) proof search.

The λProlog programming language
[M & Nadathur, 1986, 2012] also
include types, abstract datatypes, and
higher-order programming.



From inference rules to λProlog clauses

We first “instrument” the inference rules with terms denoting proof
certificates and add premises that invoke “clerks” and “experts”.

Ξ1 ` Θ ⇑ Γ,A Ξ2 ` Θ ⇑ Γ,B ∧clerk(Ξ0,Ξ1,Ξ2)

Ξ0 ` Θ ⇑ Γ,A ∧− B

Ξ1 ` Θ ⇓ Γ,Bi ∨expert(Ξ0,Ξ1, i)

Ξ0 ` Θ ⇓ Γ,B1 ∨+ B2

Turning these inference rules sideways yields logic programs for
which soundness is easy to show.
The formal definition of “proof evidence” involves
• describing the structure of the certificate terms Ξ and
• providing the definition of the clerk and expert predicates.



What relations is there between LF and FPC?

We should be able to encode LF, LFSC (LF with side conditions),
and LF modulo (Dedukti) as FPCs.

Alone LF (a.k.a. λP) does not seem to have the right “atoms of
inference.”

• Canonical normal forms provide only one structuring of proofs
(negative connectives and atoms).
• These lack an analytic notion of sharing and a natural

treatments of parallel proof steps.



The multi-year ProofCert project

Recent results
• Formally define the FPC framework for first-order logic: for

classical and for intuitionistic logics. Based on LJF and LKF
(focused variant’s of Gentzen’s LJ and LK).
• Developed several proof certificate formats
• Classical logic: expansion trees, matings, CNF, etc.
• Intuitionistic logic: Frege systems, natural deduction,

dependently typed λ-calculus, equality reasoning, etc.
• Implemented a reference kernel (using λProlog / Teyjus)

Some future plans
• Treat typed λ-calculi fully: LF, LFSC, λP-modulo (Deduki)
• Design many more FPCs: linear reasoning, DPLL, SAT, etc.
• Expand to handle proofs based on induction / co-induction /

model checking. Need more proof theory for fixed points.
• Deployment. Competitions? TPTP?


