
An Intuitionistic Logic for Sequential Control

Chuck Liang1 and Dale Miller2

1 Department of Computer Science, Hofstra University, Hempstead, NY, US
chuck.c.liang@hofstra.edu

2 INRIA Saclay & LIX/Ecole Polytechnique, Palaiseau, France
dale.miller@inria.fr

Abstract
We introduce a propositional logic ICL, which adds to intuitionistic logic elements of classical reasoning
without collapsing it into classical logic. This logic includes a new constant for false, which augments
false in intuitionistic logic and in minimal logic. We define Kripke models for ICL and show how they
translate to several other forms of semantics. We define a sequent calculus and prove cut-elimination. We
then formulate a natural deduction proof system with a term calculus that gives a direct, computational in-
terpretation of contraction. This calculus shows that ICL is fully capable of typing programming language
control operators such as call/cc while maintaining intuitionistic implication as a genuine connective.

1 Introduction

It is now well known that the Curry-Howard correspondence can be extended beyond intuitionis-
tic logic. Since Griffin ([7]) showed the relationship between certain classical axioms and control
operators, several constructive classical systems have been formulated, including Girard’s LC proof
system [5] and Parigot’s deduction system, from which is derived λµ-calculus [14] and its variants.

However, the isomorphism between λ-abstraction and intuitionistic implication is a very strong
one. If one collapses intuitionistic logic into classical logic altogether and considers the whole arena
of classical proofs, then one is confronted with the fact that classical implication does not have the
same strength as its intuitionistic counterpart. For example, intuitionistic implication corresponds to
the programming notion of localized scope. In classical logic, however, (A ⇒ B) ∨ C is equivalent
to B ∨ (A ⇒ C), which means that the assumption A is not localized to the left disjunct. The con-
structive meaning of classical logic is dependent on how we choose to interpret classical implication:
for example, ¬A ∨B and ¬(A ∧ ¬B) convey different kinds of procedural information.

On the other hand, if we embed classical logic into intuitionistic logic via a double-negation
translation, then the constructive meaning of classical proofs is also changed, for we can only expect
λ-terms from such a translation, and not λµ-terms.

We propose a new logic that is an amalgamation of intuitionistic and classical logics, one that
does not collapse one into the other. We refer to this logic as Intuitionistic Control Logic (ICL). In
contrast to intermediate logics, we do not add new axioms to intuitionistic logic but a new logical
constant for false. We distinguish between two symbols: 0 and ⊥. The constant 0 is false in intu-
itionistic logic. The two constants will allow us to define two forms of negation: ∼A and ¬A. For
example, A ∨ ¬A will be provable but not A ∨ ∼A. On the other hand, neither form of negation is
involutive because both negations are defined by intuitionistic implication (A ⊃ 0 and A ⊃ ⊥).

ICL can also be described as intuitionistic logic plus a version of Peirce’s law. However, that
description alone is unsatisfactory: we desire clear semantics and proof systems with cut-elimination
procedures that make computing possible. We define several forms of semantics, including versions
of Kripke models and cartesian closed categories. These intuitionistic structures do not become
degenerate in ICL. The cut-elimination procedures we define will include a form of structural re-
duction as found in λµ calculus, thereby showing that control operators can be obtained without a
complete collapse into classical logic.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Intuitionistic Control Logic

Valid Invalid
¬A ∨A ∼A ∨A

(¬P ⊃ P) ⊃ P ((P ⊃ Q) ⊃ P) ⊃ P

0 ⊃ A ⊥ ⊃ A

¬A ∨B ≡ ¬(A ∧ ¬B) ∼A ∨B ≡ ∼(A∧ ∼B)

¬(A ∧B) ≡ (¬A ∨ ¬B) ¬(A ∧ ¬B) ≡ ¬¬(A ⊃ B)

¬¬A ≡ A ∨ ⊥ ∼∼A ⊃ A

∼¬A ⊃ A ¬¬A ⊃ A

A ⊃ ¬∼A ¬ ∼A ⊃ A

A ⊃ ¬¬A A ⊃ ∼¬A

A ⊃∼∼A (¬B ⊃ ¬A) ⊃ (A ⊃ B)

Table 1 Sample Truths and Falsehoods; ¬A = A ⊃ ⊥, ∼A = A ⊃ 0, (A ≡ B) = (A ⊃ B)∧(B ⊃ A).

2 Syntax; Sample Truths and Falsehoods

We consider only propositional logic in this presentation. The formulas of ICL are freely composed
from atomic formulas, the binary connectives ∧, ∨ and ⊃, and the logical constants >, 0 and ⊥.
Although there are three constants, two for false and one for true, ICL should not be confused with
a “three-valued logic:” this will be obvious from its semantics. Without ⊥, ICL is identical to
intuitionistic logic, which is not finitely truth-valued.

We define two forms of negation as abbreviations for the following formulas

∼A = A ⊃ 0 ¬A = A ⊃ ⊥

We wish to present ICL using a careful balance of syntax and semantics. However, to give the
reader a quick overview of the properties of this logic, we list in Table 1 some of the most important
valid and invalid formulas. Several of the formulas in the table do not contain ⊥ as a subformula. It
holds that a formula that does not contain ⊥ is valid in ICL if and only if it is valid in intuitionistic
logic. Some formulas were selected to emphasize this fact. It will be an over-generalization to say
that “⊥ is weaker than 0.” In particular, ¬(A ∧ ¬B) 6≡ ¬¬(A ⊃ B) whereas the (intuitionistic)
equivalence holds if ¬ is replaced by ∼.

We have highlighted Peirce’s formula with Q replaced by ⊥, (¬P ⊃ P) ⊃ P , which we refer
to as “our version of Peirce’s formula.” This formula is of central importance to ICL. A similar
formula is∼¬A ⊃ A, which is ((A ⊃ ⊥) ⊃ 0) ⊃ A. It will allow us to emulate the control operator
C. ICL does not have an involutive negation as both∼∼A ⊃ A and ¬¬A ⊃ A are invalid. However,
with two forms of negation there are more combinations to consider.

3 Kripke Semantics

We formally define ICL using a Kripke-style semantics. We consider only Kripke frames that are
(finitely) rooted: it is known that intuitionistic propositional models can also be assumed to have
this restriction. Such frames are the basis of models of the form 〈W, r,�, |=〉, where � is a partial
ordering relation on the set of possible worlds W and r ∈ W is the unique root such that r � u for
all u ∈ W. The binary relation |= relates elements of W to sets of atomic formulas; |= is monotonic
in that if u � v then u |= a implies v |= a. The |= relation is also extended to all formulas in a way
that observes the following rules. Here we use the symbols u and v to represent arbitrary possible
worlds in W and the symbol q to represent worlds that are properly above r (q � r).

Chuck Liang and Dale Miller 3

u |= >; u 6|= 0
r 6|= ⊥
q |= ⊥ for all q � r
u |= A ∧B iff u |= A and u |= B

u |= A ∨B iff u |= A or u |= B

u |= A ⊃ B iff for all v � u, v 6|= A or v |= B.
We shall refer to this version of Kripke models as r-models. The only differences between forcing
rules in r-models and those of regular Kripke models for intuitionistic logic are in regard to ⊥. All
worlds properly above r force ⊥, but not r itself. The usual property of monotonicity is established
inductively on formulas:

if u � v then u |= A implies v |= A for all formulas A.

A formula is considered valid in a r-model if it is valid in all worlds: by monotonicity this means
that it is valid in r. If a formula A is valid in model M we write M |= A. A formula is valid in ICL
if it is valid in all models. Both 0 and ⊥ are inconsistent as they have no models.

To illustrate reasoning in this semantics, given the root r of a model, if r 6|= A, then r |= A ⊃ ⊥
because if q � r then q |= ⊥. Thus all models validate A ∨ ¬A. In fact, it holds that r |= A if
and only if r 6|= ¬A. However, ¬¬A ⊃ A remains invalid. For a countermodel, let r 6|= a for some
atomic a and also let q 6|= a for some q � r. We always have that q |= ¬¬a since q |= ⊥, thus
q |= ¬¬a and q 6|= a, so r 6|= ¬¬a ⊃ a.

Since intuitionistic models can be assumed to have rooted frames, the following is immediate:

I Proposition 1. A formula that does not contain ⊥ as a subformula is valid in ICL if and only if it
is valid in intuitionistic logic.

Given that A ∨ ¬A is valid, ICL looses the disjunction property for formulas that contain ⊥, but
will gain much in return.

Classical Implication and a General Law of Admissible Rules
One should not expect ¬¬A ⊃ A to be valid because ⊃ represents intuitionistic implication. We

can define “classical implication” within ICL as a derived connective:
Classical Implication: A ⇒ B = ¬A ∨B

Unlike in intuitionistic logic, ¬A ∨ B is equivalent to ¬(A ∧ ¬B), so it is not necessary to use a
negative translation. If we replaced⊃with⇒, then ¬¬A ⇒ A becomes abbreviation for ¬¬¬A∨A,
which is valid. It is easy to verify that the contrapositive axiom (¬B ⇒ ¬A) ⇒ (A ⇒ B) is valid,
and that⇒ correctly represents classical implication. Both A ⇒ ⊥ and A ⇒ 0 are in fact equivalent
to ¬A, and in this sense ¬ can be called classical negation.

Equivalent forms of classical implication include A ⊃ (B ∨ ⊥) and A ⊃ ¬¬B. These alterna-
tives each carry different procedural information, as reflected by the structure of proofs. However,
¬¬(A ⊃ B) is not an equivalent definition of A ⇒ B. Intuitionistic implication does not collapse
into ⇒ even in the scope of ¬¬. This means that it is possible to mix classical and intuitionistic
reasoning in ICL, e.g., the axiom schema ¬¬A ⇒ A may be instantiated with a formula containing
⊃ without loosing the meaning of ⊃. In contrast, ∼∼ (A ⊃ B) collapses to a classical implication
by Glivenko’s theorem.

Although ¬¬A ⊃ A is not valid in all models, if in any model r |= ¬¬A then it must be that
r 6|= ¬A, which in turn means that r |= A because all q above r forces ¬A. Thus it is an admissible
rule of ICL that if ¬¬A is valid then A is also valid. In fact, we can prove a general property of
admissible rules as follows

I Proposition 2. If the classical implication A ⇒ B is valid, then A is valid implies B is valid.

4 Intuitionistic Control Logic

r

• •

•

T

⊥⊥

• •

• •

0

b

a
R2

D2

Figure 1 A Kripke frame with root (on the left) and a Heyting algebra with ⊥⊥ (on the right) along with an
adjunction with a two element boolean algebra.

As proof, if in any model r |= ¬A ∨ B and r |= A, then it cannot be that r |= ¬A since r 6|= ⊥.
Therefore it must be that r |= B.

Thus, every classically valid implication corresponds to at least an admissible rule of ICL.
In intuitionistic logic, an admissible rule can also be obtained from a proof of ∼A ∨ B (by the

disjunction property). However,∼A∨B does not represent classical implication. That would require
a negative translation such as ∼(A ∧ ∼B) or ∼∼(A ⊃ B): these formulas are not equivalent to
∼A ∨B, and do not give us a general admissibility property for intuitionistic logic.

The simplicity of the proof of Proposition 2 illustrates the utility of having a Kripke semantics
for ICL.

4 Further Semantic Characterizations

In this section we describe several alternative semantic interpretations of ICL, culminating in a
category-theoretic description that will lead to the proof theory of later sections.

4.1 ⊥ in a Finite Heyting Algebra

To those familiar with the translation of Kripke models into Heyting algebras by forming a lattice of
upwardly closed subsets of the Kripke frame (see Fitting [4, Chapter 1]), it should be clear that for
any frame with a root, there is a unique, second largest element of the lattice. This element is the
upwardly closed set of all elements of the poset except the root. This element denotes ⊥; i.e., it is
the set of all possible worlds that force ⊥. Figure 1 includes an example of such a Heyting algebra.
We write ⊥⊥ for the semantic denotation of ⊥. ⊥⊥ and the top element T form a natural, two-element
boolean algebra, which is all that is required for propositional classical logic. ICL formulas such as
A ⊃ ⊥ and A ∨ ⊥ are all interpreted inside this subalgebra. The connectives are interpreted as in
intuitionistic logic: ∧ is meet, ∨ is join and ⊃ is the relative pseudo-complement.

4.2 ⊥ in the Metric Space of Reals

Since Gödel showed that intuitionistic logic is not finitely truth-valued, no finite Heyting algebra
suffices to interpret all of propositional intuitionistic logic. For this purpose we require the Heyting
algebra derived from the topology of a dense-in-itself metric space, such as that of the real line R.
Here, ∨ and ∧ are interpreted by the union and intersection of open sets respectively, and A ⊃ B is
interpreted by A → B, which is the interior of (R−A) ∪B.

A result of Tarski shows that, given a finite Heyting algebra H and a dense-in-itself metric space,
in this case the topology of R, there is a dense, open subspace G of R and an isomorphism f from

Chuck Liang and Dale Miller 5

H into a subalgebra HG of G. If we applied this result to finite Heyting algebras with a unique
second-largest element, i.e., with ⊥⊥, we can deduce that f(⊥⊥) maps to a dense subset of G (except
in the special case when f(⊥⊥) is empty), and that G− f(⊥⊥) consists of a set of isolated points. In
fact, for propositional logic, we can show this set can be assumed to consist of a single, arbitrary
point. In this semantics of ICL ⊥⊥ is R minus a single number. To be consistent with the usual habit
of associating the number 1 with true, let us choose this number to be 1:

⊥⊥ = {x ∈ R : x < 1 or x > 1}

A valuation (i.e., model) is represented by a mapping h from atomic formulas to open subsets of
R that is extended to all formulas as follows:

1. h(>) = R; h(0) = ∅; h(⊥) = ⊥⊥
2. h(A ∧B) = h(A) ∩ h(B)
3. h(A ∨B) = h(A) ∪ h(B)
4. h(A ⊃ B) = h(A) → h(B)

There is, however, also a degenerate case, which corresponds to r-models with frames consisting
of only one element: the root r itself (this also refers to the special case of an empty f(⊥⊥) above).
Thus the definition of h on atomic formulas is given an secondary extension to h′:

1. h′(a) = R if 1 ∈ h(a); h′(a) = ⊥⊥ if 1 6∈ h(a) for atoms a

2. h′(0) = h′(⊥) = ⊥⊥; h′(>) = R
3. h′(A ∨B) = h′(A) ∪ h′(B); h′(A ∧B) = h′(A) ∩ h′(B)
4. h′(A ⊃ B) = h′(A) → h′(B)
h′ maps all formulas into the two-element boolean algebra {R,⊥⊥}. A formula A is considered valid
if for all h, h(A) = R and h′(A) = R. The following properties hold for h and h′:

1 ∈ h(A) if and only if h(A) → ⊥⊥ = ⊥⊥, and likewise for h′

1 6∈ h(A) if and only if h(A) → ⊥⊥ = R, and likewise for h′.
1 ∈ h(A) if and only if 1 6∈ h(¬A), and likewise for h′.

The significance of these properties is that, in order to verify an formula of ICL that involves
⊥, it is often only necessary to consider the cases 1 ∈ h(A) and 1 6∈ h(A) (and similarly for h′)
for each atomic formula A in the formula. In other words we can build a kind of truth table. For
example, for h(A ∨ ¬A), if 1 ∈ h(A) then h(¬A) = ⊥⊥, so h(A) ∪ h(¬A) = R. If 1 6∈ A, then
h(¬A) = I((R−A) ∪ ⊥⊥) = I(R) = R. Here, I is the interior operation.

This form of semantics is in fact quite different from the finite Kripke models and other structures
explored here. We have included it here not just as another semantics, but because it offers a context
for expanding ICL: there can be more than one “⊥” in this space (see Section 8.2).

For further exposition of this form of semantics, the reader may consult the longer version of this
paper [11], as well as the treatise of Rasiowa and Sikorski [15] for background information. For a
modern proof of the topological completeness of intuitionistic logic, see Mints [12, Chapter 9].

4.3 ⊥ in a Cartesian Closed Category

Since neither form of negation in ICL is involutive, cartesian closed categories should not collapse
into posets as they do when forcefully applied to classical logic.

Let 2 represent the category that consists of two objects a and b and three arrows: the identity
arrows ida : a → a and idb : b → b plus a single arrow s : a → b. This category is nothing but a
two-element boolean algebra.

6 Intuitionistic Control Logic

Let D be a cartesian closed category with terminal object T (as well as coproducts and an initial
object 0). We write “X → Y ” to mean any arrow from X to Y . An object X is uninhabited if
HomD(T, X) = ∅. Let D2 be a functor from D to 2 defined as follows:

D2(X) = a if X is uninhabited.
D2(X) = b if T → X exists in D.

Arrows are mapped by D2 in the only possible way. In particular, if T → X exists but Y is
uninhabited then it must hold that HomD(X, Y) = ∅. Only arrows Y → X may exist and are
mapped to s : a → b in 2.

Now assume that D2 has a right adjoint R2, which is a functor from 2 to D (as illustrated
in Figure 1). Then there is a one-to-one correspondence between arrows X → R2(Y) in D and
D2(X) → Y in 2. If such an adjunction exists, then R2(b) will indeed be isomorphic to the
terminal object T. However, the analogous relationship does not hold between R2(a) and the
initial object.

Let ⊥⊥ = R2(a). As opposed to the initial object, ⊥⊥ is a terminal object in the full subcategory
of uninhabited objects in D. In other words:

I Proposition 3. For each object X in a category D with ⊥⊥, X is uninhabited if and only if there
is a unique arrow ηX : X → ⊥⊥.

In fact, the unique arrow is given by a natural transformation η that is part of the adjunction. Also
implied by the property is that ⊥⊥ is uninhabited and there is at most one arrow A → ⊥⊥ for any A.

There is no arrow ⊥⊥(⊥⊥A
) → A (which corresponds to ¬¬A ⊃ A), since ⊥⊥ is not the initial

object except in degenerate cases.
We shall only consider those categories that contain ⊥⊥. Examples of these categories include

any finite Heyting algebra with a second-largest element (see Figure 1). Here, it is clear that R2(a)
must be the second largest element. These algebras correspond to Kripke frames with a unique root,
and thus to the Kripke r-models of ICL. This is enough to prove the completeness of this categorical
characterization of ICL in so far as provability is concerned. However, we are of course interested in
a categorical interpretation not just of validity but of proofs. Since there is at most one arrow to ⊥⊥
from any object, there is a collapse of all proofs of formulas ¬A. However, there are formulas that
contain ⊥ but do not suffer the collapse. For example, A ∨⊥ is logically equivalent to ¬¬A. While
there is at most one proof of ¬¬A, there can still be many proofs of A, and therefore of A ∨ ⊥.

4.4 The Representation of Proofs

From the essential property of ⊥⊥ we are tempted to conclude that arrows such as T → A + ⊥⊥A

“exist” using an argument that starts by assuming that “either T → A exists or A is uninhabited.”
While this argument is not constructive, we can isolate the classical assumption to a single constant
and still derive a meaningful semantics of proofs modulo that constant. Within the proof theory of
ICL, this corresponds to using an axiom to capture this constant.

We can attempt to construct an arrow T → B under the assumption that B is uninhabited. Crit-
ically, in our brand of categories “B is uninhabited” is equivalent to “B → ⊥⊥ exists” (equivalently
T → ⊥⊥B exists). Review the functional completeness result from [9]: for any cartesian (closed)
category K we may assume an indeterminate arrow x : T → A and form the polynomial category
K[x]. Then given any f(x) : T → C in K[x], there is a unique arrow h : T → CA such that
app(h, x) = f(x). In other words, h = λx.f(x).

We can also assume an indeterminate arrow d : T → ⊥⊥B . The essential property of ⊥⊥, com-
bined with functional completeness, means we can argue that if T → B exists in the polynomial
category K[d], then T → B exists in K. This argument is a constructive interpretation of Proposi-

Chuck Liang and Dale Miller 7

tion 3. In proof theory, one might implement this kind of inference as one of two sets of rules:

[¬A], Γ ` A

Γ ` A
, or as

Γ ` A; [A, ∆]

Γ ` A; [∆]
and

Γ ` A; [∆]

Γ ` ⊥; [A, ∆]

Clearly these rules capture some form of contraction. The brackets [] designate a special context
for the special assumptions ¬B, which are distinguished from other assumptions that may appear in
a purely intuitionistic context (as in ¬A ` ¬A). While the first rule appears closer to our concep-
tual explanation, the second pair of rules have better proof-theoretic characteristics, including the
subformula property. The “cut-elimination” procedure is also clearer with the second version.

We have put “cut-elimination” in quotes because it is relatively easy to see that the first inference
rule can be considered a cut against our version of Peirce’s formula:

s : ¬Ad, Γ ` A

λd.s : Γ ` ¬A ⊃ A
⊃I

γ : ` (¬A ⊃ A) ⊃ A

γ(λd.s) : Γ ` A
⊃E (cut)

Gentzen-style Hauptsatz cannot eliminate cuts against axioms (unless the axiom is never used). Such
proofs will include the constant γ. Technically there is a γX for each type/object X . In categorical
terms, the special property of ⊥⊥ tells us that an arrow γP : P (⊥⊥P

) → P is at least “not non-
existent.” Depending on whether P is inhabited or uninhabited, we can construct γP from

P (⊥⊥P
) → T → P (inhabited) or P (⊥⊥P

) → P (⊥⊥P
) ×T → P (⊥⊥P

) × ⊥⊥P → P (uninhabited).

A more refined semantics in which γ can be argued to exist in a stronger sense would be interesting
but not necessarily a better match for our proof theory and its computational interpretation. What
we have is a semantics of proofs modulo γ that matches the extent of our proof theory. The proof
theory cannot eliminate the above cut and, therefore, has the same limit as its semantics.

If this proof theory is regarded as defective, then it should be noted that the right-side contraction
rule of Gentzen’s LK can be given a similar interpretation. Although we cannot eliminate the cut,
we can still permute other cuts around it. The second choice in inference rules rephrases this process
as a familiar one: the permutation of cut above contraction. We can still speak of cut-elimination
in a technical sense. When we formulate rewriting rules for “λγ-terms,” the γ, being a persistent
cut/contraction, will not disappear after reduction in contrast to the λ-binder after β-reduction. Those
who are familiar with the λµ-calculus should recognize this phenomenon: the µ binder behaves
similarly. Our proof-terms will yield computational meaning by giving us the control operators.

In the following, we will ignore the difference between the arrows A → B and the corresponding
arrows T → BA. However, we shall write [d] for the arrow B → ⊥⊥ that corresponds canonically to
d : T → ⊥⊥B . We choose this syntax to more clearly show the correspondence with λµ calculus.

For example, we can prove our version of the excluded middle, A +⊥⊥A, by assuming the arrow
[d] : (A+⊥⊥A) → ⊥⊥, then constructing T → (A+⊥⊥A). Now the formula ¬(A∨¬A) ⊃ (A∨¬A)
is provable in intuitionistic logic (with ¬ interpreted as minimal negation), and the proof uses both
a left- and a right-injection on the two “copies” of A ∨ ¬A. The proof is isomorphic to a classical
proof of A ∨ ¬A using contraction (such a proof is found in the next section). Let ω` and ωr be the

injections arrows. Composing A
ω`

−→ (A + ⊥⊥A)
[d]−→ ⊥⊥ gives us [d]ω` : A → ⊥⊥, from which we

can obtain ωr(λx.[d]ω`(x)) : T → A +⊥⊥A. This arrow is a “polynomial” over the indeterminate

d. We can use λ-abstraction to form an arrow λd.ωr(λx.[d]ω`(x)) : ⊥⊥(A+⊥⊥A
) → (A +⊥⊥A). Now

we apply γ (for type A ∨ ¬A): the proof term of A ∨ ¬A can thus be represented by

γ
(A+⊥⊥A

)
(λd.ωr(λx.[d]ω`(x))) : T → A +⊥⊥A

In the following sections we will shorten the syntax and just write γd.ωr(λx.[d]ω`(x)).

8 Intuitionistic Control Logic

A, B, Γ ` C; [∆]

A ∧B, Γ ` C; [∆]
∧L

A, Γ ` C; [∆] B, Γ ` C; [∆]

A ∨B, Γ ` C; [∆]
∨L

Γ ` A; [∆] B, Γ ` C; [∆]

A ⊃ B, Γ ` C; [∆]
⊃L

0, Γ ` A; [∆]
0L ⊥, Γ ` ⊥; [∆]

⊥L

Γ ` A; [∆] Γ ` B; [∆]

Γ ` A ∧B; [∆]
∧R

Γ ` A; [∆]

Γ ` A ∨B; [∆]
∨R1

Γ ` B; [∆]

Γ ` A ∨B; [∆]
∨R2

A, Γ ` B; [∆]

Γ ` A ⊃ B; [∆]
⊃R

Γ ` >; [∆]
>R

A, Γ ` A; [∆]
Id

Γ ` A; [A, ∆]

Γ ` A; [∆]
Con

Γ ` A; [∆]

Γ ` ⊥; [A, ∆]
Esc

Figure 2 The Sequent Calculus LJC

5 Sequent Calculus and Cut Elimination

The first proof system we present for ICL is motivated by our semantic completeness proof, which
uses the tableaux method. However, our proof system has the appearance of a sequent calculus, given
in Figure 2. In a sequent Γ ` A; [∆], the sets Γ and ∆ represent the left and right-side contexts, for
which weakening can be shown to be admissible. The notation B,Θ represents {B} ∪ Θ and does
not preclude the possibility that B ∈ Θ; thus contraction is obviated in these contexts. The formula
A in Γ ` A; [∆] is called the control formula. There is always exactly one control formula. A
formula A is provable if ` A; [] is provable. The following is a sample proof:

A ` A; []
Id

A ` A ∨ ¬A; []
∨I1

A ` ⊥; [A ∨ ¬A]
Esc

` ¬A; [A ∨ ¬A]
⊃I

` A ∨ ¬A; [A ∨ ¬A]
∨I2

` A ∨ ¬A; []
Con

Note the correspondence with the proof term of Section 4.4: Esc represents the application of
the indeterminate [d] and Con represents γ. Except for the Esc and Con rules, LJC is a typical
intuitionistic sequent calculus. Formulas inside the [∆] context play no role in provability without
the Esc (escape) rule. In fact, without Esc a proof is still entirely intuitionistic since the Con rule
would become useless. A LJC proof can be considered to consist of segments of intuitionistic proofs
joined by Esc. It is immediate that a formula that does not contain ⊥ as a subformula can only have
an intuitionistic proof. A formula containing ⊥ may still have an intuitionistic proof if the proof
does not use Esc: in such a case ⊥ will have the same meaning as false in minimal logic.

The ⊥L rule is only needed if one wishes to apply the Id rule only to atomic formulas.

5.1 Cut Elimination

The cut rules for LJC are the following:

Γ ` A; [∆] A,Γ′ ` B; [∆′]
ΓΓ′ ` B; [∆∆′]

cut
Γ ` A; [B,∆] B,Γ′ ` C; [∆′]

ΓΓ′ ` A; [C,∆∆′]
cut2

Chuck Liang and Dale Miller 9

The proof of cut-elimination can be found in a longer version of this paper online [11]. For this
presentation, cut-elimination in the context of natural deduction, in Section 6, is more relevant.

5.2 Soundness and Completeness

The Soundness of LJC with respect to the Kripke semantics is proved by induction on the structure
of proofs. However, one must be careful with the semantic interpretation of a sequent.

Let Γ̂ represent the ∧-conjunction over all formulas in Γ. If Γ is empty, then Γ̂ represents >.
Let ∆̌ represent the ∨-disjunction over all formulas in ∆. If ∆ is empty, then ∆̌ represents 0. The
semantic interpretation of a sequent as a formula is defined as:

M |= (Γ ` A; [∆]) if and only if M |= (¬∆̌ ∧ Γ̂) ⊃ A.
This interpretation is adequate for soundness, for an end-sequent ` A; [] is interpreted as ((0 ⊃
⊥) ∧ >) ⊃ A, which is equivalent to A.

Our completeness proof for LJC makes critical use of cut-elimination. Given an unprovable
formula, we construct a countermodel by saturation. We say that (Γ,∆) are ⊥-consistent if Γ `
⊥; [∆] is not provable. The idea is to generate a maximally ⊥-consistent saturation to represent the
root world r of the countermodel. Since A∨¬A is always provable, by cut-elimination it follows that
the saturation must contain exactly one of A or ¬A for each formula A. Thus, any proper extension
to the saturation will result in ⊥-inconsistent sets. This is exactly what we want: r 6|= ⊥ but q |= ⊥
for all q � r. See [11] for further details and [4] for background on this style of completeness proof.

From cut-elimination and completeness it also follows that (propositional) ICL is decidable.

6 Natural Deduction and the Lambda-Gamma Calculus

In this section we present the natural deduction system NJC with a proof-term calculus that extends
λ-calculus. While the presentation here does not strictly assume knowledge of the λµ calculus, some
important background for this section can be found in Section 4.4. The basis of this term system
is Parigot’s λµ-calculus [14] and its many variants, notably those found in [1], [2] and [13]. We
have chosen a syntax close to λµ, although the name γ seem appropriate given our formulations in
Section 4.4. We first present the implicational fragment, then discuss disjunction (and conjunction)
separately in Section 8.1.

We define a λγ-term as one of the following forms:
λ-variables x, y, . . . and γ-variables a, b, . . .

λ-abstraction λx.t and γ-abstraction γa.s

applications (s t), and escapees [a]t

In terms of Section 4.4, there should only one class of variables since γd.X is really γ(λd.X).
For convenience, however, λ-variables represent indeterminate morphisms T → A while γ-variables
represent indeterminates A → ⊥⊥. The implicational fragment of NJC is found in Figure 3. The
equivalence between NJC and LJC follows from cut-elimination in LJC. We have chosen a mul-
tiplicative treatment of contexts in this presentation, although contexts are still represented with
sets. Terms are associated with entire subproofs (not with individual formulas). Formulas in the
left-context Γ are indexed by unique λ-variables and formulas in the right-context [∆] are indexed
by unique γ-variables. A term [a]t is really just (a t), but a is a γ-variable. We assume that all
bound variables are renamed whenever necessary. Contractions inside the Γ and ∆ contexts are still
admissible, but may require variable renaming.

The cut rules are also admissible in NJC and can be annotated with terms as follows:

t : Γ ` A; [∆] s : Ax,Γ′ ` B; [∆′]
(λx.s) t : ΓΓ′ ` B; [∆∆′]

cut
t : Γ ` A; [Bd,∆] s : Bx,Γ′ ` C; [∆′]

t{[d](λx.s)w/[d]w} : ΓΓ′ ` A; [Cd,∆∆′]
cut2

10 Intuitionistic Control Logic

t : Ax, Γ ` B; [∆]

(λx.t) : Γ ` A ⊃ B; [∆]
⊃I

t : Γ ` A ⊃ B; [∆] s : Γ′ ` A; [∆′]

(t s) : ΓΓ′ ` B; [∆∆′]
⊃E

s : Γ ` 0; [∆]

abort s : Γ ` A; [∆]
0E

exit : Γ ` >; [∆]
>I

x : Ax, Γ ` A; [∆]
Id

t : Γ ` A; [∆]

[d]t : Γ ` ⊥; [Ad, ∆]
Esc

u : Γ ` A; [Ad, ∆]

γd.u : Γ ` A; [∆]
Con

Figure 3 NJC with Terms: the Implicational Fragment

The admissibility of cut2 is by translation to cut:

r : Γ1 ` B; [∆1] s : Bx,Γ′ ` C; [∆′]
(λx.s)r : Γ1Γ′ ` C; [∆1∆′]

cut

[d](λx.s)r : Γ1Γ′ ` ⊥; [Cd,∆1∆′]
Esc

...
t{[d](λx.s)w/[d]w} : ΓΓ′ ` A; [Cd,∆∆′]

cut2

There may be many instances of Esc with associated terms [d]w inside the subproof t. cut2 requires
a form of substitution different from that of β-reduction. Substitution must take place inside the
left subproof. The substitution t{[a]v/[a]w} represents “inductively replacing in t all occurrences
of subterms of the form [a]w with [a]v:” this is the same structural substitution operation found in
λµ-calculus [14].

Now consider the permutation of cut above contraction in the following case:

t : Γ ` A; [Ad,∆]
γd.t : Γ ` A; [∆] Con

s : Ax,Γ′ ` B; [∆′]
(λy.s) (γd.t) : ΓΓ′ ` B; [∆∆′]

cut

The redex (λx.s) (γd.t) represents such a cut. There are two ways to reduce this cut: either β-
reduction, or a combination of β-reduction and structural reduction (cut both instances of A above
Con). To preserve confluence, some choice must be made. One possibility (adopted often in similar
systems, including [13]), is to require a call-by-value reduction strategy. This may in fact be the most
reasonable choice, but our goal is to explore, in this presentation, a larger range of possibilities that
the structure of ICL proofs suggest. We choose a similar approach to that of the original λµ-calculus,
which is to defer to β-reduction in the above situation. The cut2 form of reduction, however, will
reappear in the context of ∨-elimination in Section 8.1. Only redexes of the form (γd.s)t require
structural reduction. These redexes correspond to proofs of the form

s : Γ ` A ⊃ B; [(A ⊃ B)d,∆]
γd.s : Γ ` A ⊃ B; [∆] Con

t : Γ′ ` A; [∆′]
(γd.s) t : ΓΓ′ ` B; [∆∆′]

⊃E

Such a proof is transformed by reducing the outer redex, represented by A ⊃ B outside of [],
as well as all redexes inside the subproof s indicated by subterms [d]w. The reductions rules are
listed in Figure 4: they define cut-elimination for NJC. All rules are implied to have requirements
regarding capture-avoiding substitution (e.g. in the µγ rule d is not free in t).

Chuck Liang and Dale Miller 11

1. (λx.s) t −→ s[t/x]. (β-reduction)

2. (γd.s) t −→ γd.(s{[d](w t)/[d]w} t). (µγ-reduction)

3. abort(s) t −→ abort(s). (aborted reduction)

4. γa.s −→ s when a does not appear free in s. (vacuous contraction)

5. γa.γb.s −→ γa.s[a/b]. (γ-renaming)

6. [d]γa.s −→ [d]s[d/a]. (µ-renaming)

Figure 4 Term Reduction Rules for the Implicational Fragment

The rule for abort is justified since if 0-elimination proves A ⊃ B then certainly 0-elimination
proves B. abort can be considered to be a constant of type 0 ⊃ A (which has proof λx.abort x).
Note that (γd.abort s) t reduces to γd.abort s{[d]w t/[d]w}: the outer application to t is absorbed.

The µ-renaming rule is also found in λµ-calculus. In the context of NJC it corresponds to the
elimination of a redundant contraction, because the active formula A in an Esc rule can always
persist in the context ∆:

s : Γ ` A; [Ab, ∆]

γb.s : Γ ` A; [∆]
Con

[d]γb.s : Γ ` ⊥; [Ad, ∆]
Esc

is converted to
s[d/b] : Γ ` A; [Ad, ∆]

[d]s[d/b] : Γ ` ⊥; [Ad, ∆]
Esc

Likewise, the γ-renaming rule eliminates consecutive contractions, which are redundant since con-
tractions inside the [∆] context are always admissible. Another rule that should be classified with
the renaming rules is the elimination of a vacuous γ binder. With this rule, the term for a purely
intuitionistic proof will reduce to a λ-term.

Subject Reduction, Strong Normalization and Confluence
Subject reduction is a consequence of the fact that the reduction rules follow cut-elimination and

other valid proof transformations. Strong normalization is proved using the reducibility method of
Tait and Girard. Our proof follows closely the proof (for the simply typed version) found in [6]
because we found it to be readily adaptable. Much of this proof, including the reducibility criteria,
can be used virtually without modification. The proof of confluence likewise follows the standard
approach of Tait-Martin-Löf, by first defining a parallel, reflexive reduction relation. Further details
of these proofs are found in [11].

7 The Computational Content of Contraction

An important proof term is that of our version of Peirce’s formula:

x : (¬P ⊃ P)x ` ¬P ⊃ P ; []

y : (¬P ⊃ P)x, P y ` P ; []
Id

[d]y : (¬P ⊃ P)x, P y ` ⊥; [P d]
Esc

λy.[d]y : (¬P ⊃ P)x ` ¬P ; [P d]
⊃I

(x λy.[d]y) : (¬P ⊃ P)x ` P ; [P d]
⊃E

γd.(x λy.[d]y) : (¬P ⊃ P)x ` P ; []
Con

λx.γd.(x λy.[d]y) : ` (¬P ⊃ P) ⊃ P ; []
⊃I

This term is different from what corresponds to Peirce’s formula in λµ-calculus and its variants
in that it does not require a second [d] to label the entire subterm under γd, for that is obviated
by the fact that γ represents contraction. Cut-elimination in the presence of a contraction requires
reductions inside the [] context as well as outside.

12 Intuitionistic Control Logic

s : Γ ` A; [∆] t : Γ′ ` B; [∆′]

(s, t) : ΓΓ′ ` A ∧B; [∆∆′]
∧I

s : Γ ` A ∧B; [∆]

(s)` : Γ ` A; [∆]
∧E1

s : Γ ` A ∧B; [∆]

(s)r : Γ ` B; [∆]
∧E2

s : Γ ` A; [Bd, ∆]

ω`d.s : Γ ` A ∨B; [∆]
∨I1

s : Γ ` B; [Ad, ∆]

ωrd.s : Γ ` A ∨B; [∆]
∨I2

v : Γ1 ` A ∨B; [∆1] s : Ax, Γ2 ` C; [∆2] t : By, Γ3 ` C; [∆3]

(λx.s, λy.t) v : Γ1Γ2Γ3 ` C; [∆1∆2∆3]
∨E

Figure 5 NJC Rules for Disjunction and Conjunction

Now, γd.X is in fact γ(λd.X). The above proof term can be seen as λx.γ(λd.(x λy.(d y))),
which is just the eta-expanded form of γ. This is no surprise given the analysis of Section 4.4.

Call this term K, then (K M k1 k2) reduces to γd.(M λy.[d](y k1 k2)) k1 k2. For example,
given the term context E[z] = (z k1 k2), E[KM] reduces to γd.E[M(λy.[d]E[y])]: this emulates
the behavior of call/cc (see [2] for further analysis of λµ-based systems and control operators).

In contrast to call/cc, the C operator of Felleisen et al. [3] has a different behavior, and has
been given the classical type ¬¬A ⇒ A. The ICL formulas ¬¬A ⊃ A and ∼∼A ⊃ A are both
unprovable, but we can consider a proof of ∼¬A ⊃ A:

x :∼¬Ax `∼¬A; []

y :∼¬Ax, Ay ` A; []
Id

[d]y :∼¬Ax, Ay ` ⊥; [Ad]
Esc

λy.[d]y :∼¬Ax ` ¬A; [Ad]
⊃I

x λy.[d]y :∼¬Ax ` 0; [Ad]
⊃E

abort (x λy.[d]y) :∼¬Ax ` A; [Ad]
0E

γd.abort (x λy.[d]y) :∼¬Ax ` A; []
Con

λx.γd.abort (x λy.[d]y) : ` ∼¬A ⊃ A; []
⊃I

Call this term C1, then C1M , when applied to a term t, is only subject to structural reduction inside
the abort subterm. We note that C1M = K(λk.abort(M k)) and that C1(λz.M) = abort(M) for z

not free in M (the γd in this term will be vacuous). Compare C1 to the version of C in the original
λµ-calculus: λx.µα.[ϕ](x λy.µδ.[α]y). Here abort replaces the free variable ϕ (which, like abort,
persists in the term after reduction). All valid formulas of ICL are proved by closed terms.

8 Extending ICL

The materials presented in the previous sections are self-contained and complete. In this section we
discuss two important directions of continuing work that extend the computational content of proofs.

8.1 The Computational Content of Disjunction

The computational potential of our approach to combining classical and intuitionistic logics is not
limited to the implicational fragment. It is possible to add a conjunction and as well as a (non-
additive) disjunction. We extend the syntax of terms to include injective abstractions ω`a.s and
ωra.s, as well as the usual pairs (s, t) and projections (s)` and (s)r. NJC is extended to include
the rules of Figure 5. The ω`/r binders are generalizations of injection operators. The interpretation
of disjunctions using a form of abstraction is not so unusual when one considers its similarity to

Chuck Liang and Dale Miller 13

implication: both can be seen as non-additive disjunctions (but ∨ is not “multiplicative” either)1. A
∨-introduction rule discharges a formula from the right context just as ⊃-introduction discharges a
formula from the left context. A vacuous ω`/r binder degrades to an injection. These ∨-introduction
rules are equivalent to the additive forms given the Con rule (the technical proofs of [11] were in
fact executed for the non-additive version). The rewrite rules of λγ are extended to include

(u, v) (ω`d.t) −→ γd.(u t{[d](v w)/[d]w});
(u, v) (ωrd.t) −→ γd.(v t{[d](u w)/[d]w}) (ω-reduction)
(u, v) γd.t −→ γd.(u, v) t{[d](u, v)w/[d]w} (ωγ-reduction)
(u, v)` −→ u; (u, v)r −→ v. (projections)
(γd.s)` −→ γd.s`{[d]w`/[d]w}; (γd.s)r −→ γd.sr{[d]wr/[d]w}. (γ-projections)

Since a pair may appear in the scope of γ, projection must be defined for such pairs as special
instances of structural substitution. Likewise, an ω-binder may also appear inside γ, hence the ωγ

rule. The critical ω-reduction rules correspond to the cut-elimination case for ∨:

u : Γ ` A; [Bd, ∆]

ω`d.u : Γ ` A ∨B; [∆]
∨I1

s : Ax, Γ ` C; [∆] t : By, Γ ` C; [∆]

(λx.s, λy.t) ω`d.u : Γ ` C; [∆]
∨E

This proof reduces to:

u : Γ ` A; [Bd, ∆] t : By, Γ ` C; [∆]

u{[d](λy.t)w/[d]w} : Γ ` A; [Cd, ∆]
cut2

s : Ax, Γ ` C; [∆]

(λx.s) u{[d](λy.t)w/[d]w} : Γ ` C; [Cd, ∆]
cut

γd.(λx.s) u{[d](λy.t)w/[d]w} : Γ ` C; [∆]
Con

One possible interpretation of this type of ∨-elimination, (λx.(x s), λy.u) (ω`d.t), is the execution
of a procedure that could throw an exception, with the second lambda term representing an exception
handler. Expressions [d]e throw exceptions.

The extended NJC is equivalent to LJC and is thus sound and complete, although some results
such as strong normalization have yet to be extended to the additional rules.

8.2 Adding Multiple Controls

Non-additive disjunction in ICL can potentially extend the proofs-as-programs paradigm beyond
the use of control operators. However, the fact that all expressions of the form [d]e have type ⊥
limits the types that reasonable programs are expected to have2. Though some of the theoretical
elegance of ICL would be lost, it may be useful to have more than one version of⊥. The topological
semantics of Section 4.2 provides a framework for this extension. Tarski’s result that allowed us to
map finite Heyting algebras to the topology of R in fact indicate that ⊥⊥, as the second-largest point
in a finite algebra, can be represented by other dense open sets (except the special case where the
finite algebra has but two elements). Such a set consists of a countable collection of disjoint open
intervals (countable by the density of the rationals in R). Its complement, which is a closed set,
consist of a countable set of isolated points (with an empty interior).

Let R1 = R− {1}. Let I be the set of all integers and let I1 represent I− {1}. Let RI represent
R − I: this is a dense open set that consists of all intervals . . . (−1 : 0), (0 : 1), (1 : 2), Here,

1 Our ω`/r-binders are similar to the one of [16]: while their ∨-introduction rule also involves an abstraction (but is
invertible/multiplicative), their ∨-elimination carries a completely different computational meaning. Similar rules
for introducing disjunctions have also been given in [8, Chapter 7].

2 this was pointed out to us by Hugo Herbelin.

14 Intuitionistic Control Logic

(a : b) is {x ∈ R : a < x < b}. Note that if RI ⊆ B, then B is also an open set. Between R1 and
RI one finds a boolean lattice of dense open sets, each set corresponds to a subset of I1. Call this
“lattice of bottoms” B. For each B ∈ B, A ∪ (A → B) = R for any open set A.

In this version of ICL, ⊥ is now a connective of one argument. Formulas ⊥A are interpreted by

h(⊥A) = (R1 − h(A)) ∪ RI

The special case of a two-element algebra is still handled by h′, with h′(⊥A) = h′(0) = R1: h′ does
not require separate inference rules. The following properties hold:

h(⊥0) = R1; h(⊥>) = RI

h(⊥(A∪B)) = h(⊥A) ∩ h(⊥B); h(⊥(A∩B)) = h(⊥A) ∪ h(⊥B); h(⊥⊥⊥
A

) = h(⊥A)
If h(A) ⊆ h(B), then h(⊥B) ⊆ h(⊥A) (the converse does not hold).

Since ⊥ is involutive within B, we adopt the following syntactic identities: ⊥(A∧B) = ⊥A ∨⊥B ,

⊥(A∨B) = ⊥A ∧ ⊥B , and ⊥⊥⊥
A

= ⊥A. However, ⊥(A⊃B) cannot be decomposed syntactically. The
non-intuitionistic inference rules are now as follows:

Γ ` A; [A, ∆]

Γ ` A; [∆]
Con

Γ ` A; [∆]

Γ ` ⊥B ; [A, ∆]
Esc

Γ, B ` A; [∆]

Γ,⊥A ` ⊥B ; [∆]
Swap

One might expect the Esc rule to change more than it has. Recall that a formula A inside [∆] is
equivalent to a ¬A on the left side of the sequent. To keep the subformula property, we now assume
that "¬A" always represents A ⊃ ⊥A. Under this assumption, there is a hidden second premise of
Esc that is equivalent to ¬A,Γ,⊥A ` ⊥B . However, this premise follows from the given premise
by weakening and Swap, and is therefore redundant. Because Esc is virtually unchanged, all the
proofs of ICL are still valid using any ⊥B in place of ⊥. With the restriction B = A in the Esc rule,
the proof terms will also be the same.

Cut-elimination extends to the Swap rule. We are continuing the study of this logic.

9 Conclusion: ICL and Linear Logic

We end this paper by acknowledging an obvious fact: the original impetus for using two constants
for false came from linear logic. The first insights into the existence of ICL came from considering
where to place⊥ in context of the semantics of intuitionistic logic, specifically in the metric space of
reals. However, it is not correct to suppose that ICL can be translated into linear logic by using any
translation of intuitionistic logic, then just translate⊥ to⊥. The linear formula A⊕(!A−◦⊥), which
naively translates A ∨ ¬A, has no proof. A polarized translation in the style of LC might work, at
least for ∧, ∨ and atomic negation. Say that ⊥ is “negative,” ¬a is negative for atomic a, and A∨B

is negative if A or B is negative (similarly for ∧). Then translate negative A ∨B using O instead of
⊕. However, it is not at all clear if this translation can be extended to ⊃ in general. It is unlikely:
consider a translation of (¬P ⊃ P) ⊃ P that allows ⊃ to stay intuitionistic (equivalent to !A−◦B).
In terms of emulating ICL proofs, formulas inside the [∆] context are subject to structural rules but
not to introduction rules until the control formula is ⊥. Linear formulas ?!A can give this behavior,
and we can emulate an ICL proof once we know when formulas must be treated this way. However,
formulas containing “?!” cannot form synthetic connectives (it destroys focus), and therefore cannot
be used for a direct translation of ICL formulas into linear logic.

The proof systems for ICL in fact bare strong similarities to LC. The ∨ in LC can also behave
additively or multiplicatively. The formula inside the stoup can never be removed unless it is neg-
ative. But LC does not accommodate intuitionistic implication. Girard’s attempt to extend LC to
include intuitionistic logic in a system called LU was not entirely successful, as he acknowledges.

Chuck Liang and Dale Miller 15

In a slightly prior work [10] we introduced another system that extends LC to include intuitionistic
logic. That system is also based on polarization. ICL is not a fragment of any of these systems. It
is not based on any notion of polarity or duality that is assumed to exist a priori. Both semantically
and proof-theoretically, it inherits the machinery of intuitionistic logic.

Acknowledgments. The authors wish to thank François Lamarche for valuable comments on Sec-
tions 4.3 and 4.4, as well as Hugo Herbelin, Alexis Saurin, Stéphane Lengrand and others for dis-
cussions after talks given on this work.

References

1 Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In Thirtieth
International Colloquium on Automata, Languages and Programming, ICALP, pages 871–885.
Springer-Verlag, LNCS vol 2719, 2003.

2 Philippe de Groote. On the relation between lambda-mu calculus and the syntactic theory of se-
quential control. In Logic Programming and Automated Reasoning, 5th international conference
LPAR’94, pages 31–43, 1994.

3 M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of sequential control.
Theoretical Computer Science, 52(3):205–237, 1987.

4 Melvin C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-Holland, 1969.
5 Jean-Yves Girard. A new constructive logic: classical logic. Math. Structures in Comp. Science,

1:255–296, 1991.
6 Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University Press,

1989.
7 Timothy Griffin. The formulae-as-types notion of control. In 17th Annual ACM Symp. on Principles

of Programming Languages, pages 47–57, 1990.
8 Anders Starcke Henriksen. Adversarial Models for Cooperative Interactions. PhD thesis, Univer-

sity of Copenhagen, December 2011.
9 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University

Press, 1986.
10 Chuck Liang and Dale Miller. Polarized intuitionistic logic. Submitted, 2011.
11 Chuck Liang and Dale Miller. Intuitionistic control logic. Manuscript available online:

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclpaper.pdf, 2012.
12 Grigori Mints. A Short Introduction to Intuitionistic Logic. Kluwer Academica-Plenum Publishers,

New York, 2000.
13 C.H. Luke Ong and Charles Stewart. A Curry-Howard foundation for functional computation with

control. In Symposium on Principles of Programming Languages, pages 215–227, 1997.
14 Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In LPAR:

Logic Programming and Automated Reasoning, International Conference, volume 624 of LNCS,
pages 190–201. Springer, 1992.

15 Helena Rasiowa and Roman Sikorski. The Mathematics of Metamathematics. Panstwowe
Wydawnictwo Naukowe, Warsaw, 1963.

16 E. Ritter, D. Pym, and L. Wallen. Proof-terms for classical and intuitionistic resolution. Journal of
Logic and Computation, 10(2):173–207, 2000.

	Introduction
	Syntax; Sample Truths and Falsehoods
	Kripke Semantics
	Further Semantic Characterizations
	 in a Finite Heyting Algebra
	 in the Metric Space of Reals
	 in a Cartesian Closed Category
	The Representation of Proofs

	Sequent Calculus and Cut Elimination
	Cut Elimination
	Soundness and Completeness

	Natural Deduction and the Lambda-Gamma Calculus
	The Computational Content of Contraction
	Extending ICL
	The Computational Content of Disjunction
	Adding Multiple Controls

	Conclusion: ICL and Linear Logic

