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Abstract

The sequent calculus is often criticized for requiring proofs to contain large amounts
of low-level syntactic details that can obscure the essence of a given proof. Because each
inference rule introduces only a single connective, sequent proofs can separate closely related
steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the
sequential nature of sequent proofs forces proof steps that are syntactically non-interfering
and permutable to nevertheless be written in some arbitrary order. The sequent calculus
thus lacks a notion of canonicity : proofs that should be considered essentially the same may
not have a common syntactic form. To fix this problem, many researchers have proposed
replacing the sequent calculus with proof structures that are more parallel or geometric.
Proof-nets, matings, and atomic flows are examples of such revolutionary formalisms. We
propose, instead, an evolutionary approach to recover canonicity within the sequent calculus,
which we illustrate for classical first-order logic. The essential element of our approach is the
use of a multi-focused sequent calculus as the means for abstracting away low-level details
from classical cut-free sequent proofs. We show that, among the multi-focused proofs, the
maximally multi-focused proofs that collect together all possible parallel foci are canonical.
Moreover, if we start with a certain focused sequent proof system, such proofs are isomorphic
to expansion proofs—a well known, minimalistic, and parallel generalization of Herbrand
disjunctions—for classical first-order logic. This technique appears to be a systematic way to
recover the “essence of proof” from within sequent calculus proofs.

1 Introduction

The sequent calculus, initially developed by Gentzen for classical and intuitionistic first-order
logic [11], has become a standard proof formalism for a wide variety of logics. One of the chief
reasons for its ubiquity is that it defines provability in a logic parsimoniously and modularly,
where every logical connective is defined by introduction rules and where all other inference rules
are either structural rules (weakening/contraction) or identity rules (initial/cut). Sequent rules
can thus be seen as the atoms of logical inference. Different logics can be described simply by
choosing different atoms. For instance, linear logic [12] differs from classical logic by removing
the structural rules of weakening and contraction, and letting the multiplicative and the additive
variants of introduction rules introduce different connectives. The proof-theoretic properties of
logics can then be derived by analyzing these atoms of inference. For example, the cut-elimination
theorem directly shows that the logic is consistent.
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Yet, despite its success as a framework for establishing proof-theoretic properties, sequent
proofs themselves are syntactic monsters: they record the exact sequence of inferences rules even
when such details are not relevant to the essential high level features of the proof. The most
common approach taken to avoid the syntactic morass of the sequent calculus is one of revolution.
New proof formalisms different from the sequent calculus are proposed that are supposedly free
of syntactic bureaucracy. Usually, such formalisms are more parallel or geometric than sequent
proofs. The following list of examples of such systems is not exhaustive.

1. The mating method [2] and the connection method [5] represent proofs as a graph structure
among the literals in (an expansion of) a formula.

2. Expansion trees [29] record only the instantiations of quantifiers using a tree structure.

3. Proof-nets [12] eschew inference rules for more geometric representations of proofs in terms
of axiom and cut linkages.

4. Atomic flows [14] track only the flow of atoms in a proof and can expose the dynamics of
cut-elimination.

5. Even Gentzen’s natural deduction calculus [11, 34] is a more parallel representation of proofs
given that trees play a more intimate role in the structuring of inferences.

While such formalisms are capable of abstracting away from many low-level syntactic details,
it is worth noting that they are not without problems. At a basic level, showing when a proposed
structure is correct—that it actually represents a “proof”—requires checking global criteria such
as connectedness, acyclicity, or well-scoping. Such formalisms generally lack local correctness
criteria, wherein a partial (unfinished) proof object can be ensured to have only correct finished
forms. By contrast, every instance of a rule in a (partial) sequent proof can easily be checked to be
an instance of a proper rule schema. A second and bigger issue with such revolutionary formalisms
is that none of them is as general as the sequent calculus. Proof-nets, to pick an example, are only
well defined for the unit-free multiplicative linear logic (MLL) [12]. Even adding the multiplicative
units is tricky [24] and for larger fragments such as MALL with units the problem of finding a
polynomial time checkable proof-net formalism remains open.

In this paper, we argue that many of the benefits of such revolutionary approaches can be
achieved directly in the sequent calculus tradition by using a more evolutionary approach that
involves selecting suitable abstractions. Our technique can be described using the following broad
outline.

• We begin by limiting ourselves to cut-free focused proofs [1, 26]. Focusing is based on
the observation that it is sufficient for provability to consider only those cut-free sequent
proofs that are organized into an alternation of two kinds of phases for the principal
formulas. Briefly, in the positive phase, information—such as witnesses for existential
formulas or multiplicative splits of contexts—is added to the proof. This phase is inherently
non-deterministic from a proof search perspective. The other, negative phase is a choice-free
reduction of a given sequent to simpler premise sequents; this phase consumes no essential
information. Once we commit to focused proofs, we can ignore details such as the precise
manner in which the steps inside a phase are performed; only the boundaries between the
phases are important.

• Focusing phases can sometimes permute over each other in a manner similar to the way
inference rules can permute over each other. If two phases have no inter-dependencies and
can be done in parallel, then it is possible to allow both phases to be merged into a single
phase. To describe such parallel phases in a proof, we generalize focusing to multi-focusing,
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which enables the most important descriptive tool in our technique. Two multi-focused
proofs that are equivalent in terms of the underlying rule permutations of the sequent
calculus might nevertheless have different levels of parallelism in their phase structure.
We choose to limit our attention to those multi-focused proofs where the phases are as
parallel as possible (reading from the end-sequent upwards), which we call the maximally
multi-focused proofs (or often just maximal proofs).

• As a final step, we observe that if we choose the sequent rules carefully, then the maximal
multi-focused proofs are both unique and syntactically canonical in the following sense: two
permutatively equivalent multi-focused proofs have the same maximal form. It is important
to note that focusing, multi-focusing, and maximality are general concepts that may be
applied to essentially any cut-free sequent calculus: for example, in [7] these concepts are
defined for multiplicative-additive linear logic (MALL). The uniqueness of maximal proofs
is, however, sensitive to particular rule permutations.

In this paper, we apply this technique to establish two new results.

1. We give a multi-focused sequent calculus for classical first-order logic and show that
the maximal proofs obtained therefrom are unique representatives of their permutative
equivalence classes (theorem 32). We give a precise condition for rule permutations under
which such uniqueness theorems can be proven for any focused sequent calculus.

2. We then show that such maximal proofs are isomorphic to expansion proofs [29], a gen-
eralization of Herbrand disjunctions for classical first-order (and even higher-order) logic.
This result is surprising because it is known that expansion trees can be exponentially more
compact than sequent proofs [4].

In section 2, we give some background on the sequent calculus, on focusing, and on expansion
trees. Section 3 introduces the focused sequent calculus LKE that will be used to develop our
connection to expansion proofs. Section 4 then analyzes the equivalence classes of sequent proofs
that have the same expansion proof. This leads to a reverse mapping from expansion proofs to
sequent proofs, called sequentialization (section 4.3). Finally, section 5 presents and discusses the
isomorphism between maximal proofs and expansion proofs. Some related work is discussed in
section 6.

2 Sequent Calculus, Focusing, and Expansion Proofs

We use the usual syntax for (first-order) formulas (A,B, . . . ) and connectives drawn from
{>,∧,⊥,∨,¬,∀,∃}. Atomic formulas (a, b, . . . ) are of the form p(t1, . . . , tn) where p represents a
predicate symbol and t1, . . . , tn are first-order terms (n ≥ 0). Formulas are restricted to negation-
normal form (i.e., only atomic formulas can be ¬-prefixed) and two formulas are identical if
they are α-equivalent. We use the term literal to refer to either an atomic formula or a negated
atomic formula. We assume that all bound variables in a formula are pairwise distinct. We write
(A)
⊥

to stand for the De Morgan dual of A, and [t/x]A for the capture-avoiding substitution of
term t for x in A. We also write ∃~x.A for ∃x1. . . .∃xn. A, ∀~x.A for ∀x1. . . .∀xn. A, and [~t/~x] for
[t1/x1] · · · [tn/xn] if ~x = (x1, . . . , xn) and ~t = (t1, . . . , tn).

2.1 Sequent Calculus: LKN

We use one-sided sequents `Γ in which Γ is a multiset of formulas. Figure 1 contains the inference
rules for our sequent calculus that we call LKN. There is no cut rule, the initial rule is restricted to
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`Γ,¬a, a init
`Γ, A `Γ, B

`Γ, A ∧B ∧ `Γ,> >
`Γ, A,B

`Γ, A ∨B ∨
`Γ
`Γ,⊥ ⊥

`Γ, A

`Γ, ∀x.A ∀
`Γ, [t/x]A

`Γ, ∃x.A ∃
`Γ,∆

`Γ
contr

Notes:

1. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.

2. In the contr rule, ∅ 6= ∆ ⊆set Γ. Here, ∆ ⊆set Γ denotes the set inclusion of the underlying
sets of the multisets ∆ and Γ.

Figure 1: Rules of LKN.

atomic formulas, and all the rules except for ∃ are invertible. Since invertible rules are associated
with the negative polarity in focusing, we use the N in LKN to highlight the fact that is a variant
of Gentzen’s LK calculus in which most rules are invertible. The following rules are admissible in
LKN: in these rules, A can be any formula.

`Γ, A `Γ, (A)
⊥

`Γ
cut `Γ, (A)

⊥
, A

arbinit
`Γ
`Γ, A

weak
`Γ
` [t/x]Γ

subst

These admissible rules easily allow us to mimic any of the other standard inference rules for this
logic in LKN, including Gentzen’s original LK calculus, so completeness is immediate. Soundness
is equally trivial as every rule preserves classical validity under the interpretation of a sequent
`A1, . . . , An as the formula A1 ∨ · · · ∨An.

2.2 Focused Sequent Calculus: LKF

In the 1980s, logic programming was placed on strong proof-theoretic foundations by describing
the search for cut-free sequent proofs therein as an alternation of goal-reduction and back-chaining
phases [30]. Andreoli [1] subsequently generalized this treatment to identify a class of focused
proofs in the sequent calculus for classical linear logic. Comprehensive focused sequent calculi
have since been built for intuitionistic and classical logics [21, 26], and focusing is increasingly
being seen as a technique for unraveling the structure of proofs.

The LKF focused proof system, as presented in [26], deals with formulas in which the classical
connectives and constants are divided into two disjoint and dual polarity classes: the negatives
{t,&, f,

&

,∀} and the positives {1,⊗, 0,⊕,∃}.1 A non-atomic formula is negative or positive if its
top-level connective is negative or positive, respectively. Polarity is extended to all formulas by
arbitrarily classifying atomic formulas as positive; hence, negated atoms are negative.

From the perspective of truth, there is no difference between the positive and the negative
variants of a single unpolarized connective; i.e., A⊗B and A&B are equiprovable with A∧B, as
are A⊕B, A

&

B and A∨B, etc. However, the introduction rules for the two polarized variants of
a connective are different, which leads to different proofs for different choices of polarized variants
of a connective. In general, the introduction rules for negative connectives are all invertible,
meaning that the conclusion of any of these introduction rules is equivalent to its premises. The
introduction rules for the positive connectives are not necessarily invertible.

1We use the glyphs ⊗,

&

, etc. from linear logic even though their interpretation is classical.

4



Negative rules

`Γ ⇑∆, t

`Γ ⇑∆, A `Γ ⇑∆, B

`Γ ⇑∆, A&B

`Γ ⇑∆

`Γ ⇑∆, f

`Γ ⇑∆, A,B

`Γ ⇑∆, A

&

B

`Γ ⇑∆, A

`Γ ⇑∆, ∀x.A

Positive rules

`Γ ⇓ 1
`Γ ⇓∆, A `Γ ⇓Θ, B

`Γ ⇓∆,Θ, A⊗B
`Γ ⇓∆, A

`Γ ⇓∆, A⊕B
`Γ ⇓∆, B

`Γ ⇓∆, A⊕B
`Γ ⇓∆, [t/x]A

`Γ ⇓∆, ∃x.A

Structural rules

`Γ, L ⇑∆

`Γ ⇑∆, L
store `Γ,¬a ⇓ a init

`Γ ⇓∆

`Γ ⇑ · decide
`Γ ⇑∆

`Γ ⇓∆
release

Notes:

1. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.

2. In the store rule, L is a literal or a positive formula.

3. In the decide rule, ∆ contains only positive formulas and ∅ 6= ∆ ⊆set Γ.

4. In the release rule, ∆ contains no positive formulas.

Figure 2: Rules for the multi-focused version of LKF.

Figure 2 contains a multi-focused variant of the LKF system from [26]. The two phases of such
LKF proofs are depicted using two different sequent forms: negative sequents of the form `Γ ⇑∆
and positive sequents of the form `Γ ⇓∆. In either form, Γ is a multiset of literals or positive
formulas, and ∆ is a multiset of arbitrary formulas. In the positive sequent `Γ ⇓∆, we say that
the formulas in ∆ are its foci and we require ∆ to be non-empty. (We write `Γ m∆ to stand for
either sequent form when describing LKF proofs.) The rules for positive sequents define a positive
phase, and likewise those of the negative sequents define a negative phase. Mediating between the
phases are the structural rules decide and release. A positive phase begins (reading bottom up)
with a decide, followed by positive rules; eventually the foci become negative in which case the
proof enters the negative phase with release; the negative phase consists of negative introduction
rules for the negative connectives, or the store structural rule that transfers a literal or a positive
formula to the other zone. Notice that unlike LKN where contraction may be applied arbitrarily,
contraction is present in LKF only as part of the decide rule. As a result, the only formulas that
are contracted in LKF are positive formulas.

We formally state the soundness and completeness of LKF with respect to LKN (and hence to
Gentzen’s LK) in terms of an injection.

Definition 1. If B is a formula in LKF, then [B] denotes the formula in which all polarized
variants of connectives in B are mapped to their unpolarized variants, i.e., ⊗ and & to ∧, ⊕ and

&

to ∨, etc. If Γ is a multiset of formulas then [Γ] is defined to be the multiset {[B] | B ∈ Γ}. If
π is an LKF proof, we write [π] for the LKN proof that:

• replaces all sequents of the form `Γ m∆ with ` [Γ] , [∆] ;

• removes all instances of the rules store and release; and
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• renames decide to contr in π.

Theorem 2 (LKF vs. LKN).

1. If π is an LKF proof of `Γ m∆, then [π] is an LKN proof of ` [Γ] , [∆] (soundness).

2. If ` [∆] is provable in LKN, then ` · ⇑∆ is provable in LKF (completeness).

Proof. Soundness is immediate by observing that [−] preserves LKN validity. Completeness follows
by observing that every singly focused proof in the LKF calculus of [26], which is complete for LK

(and hence also for LKN), is also a proof in the multi-focused version of the calculus in figure 2.

The LKF proof system can be seen as a framework for describing a range of focused proof
systems for classical logic. The ordinary (unpolarized) connectives {>,∧,⊥,∨} can be mapped
to a positive variant {1,⊗, 0,⊕} or a negative variant {t,&, f,

&

}. Indeed, each occurrence of
each unpolarized connective in a formula can be individually mapped to a positive or a negative
variant in its polarized form. Different choices of polarization do not affect provability but can
greatly affect the structure of proofs.

2.3 Expansion Trees and Expansion Proofs

Herbrand’s theorem [17] tells us that recording how quantifiers are instantiated is sufficient to
describe a proof in classical first-order logic. Gentzen also noticed this for (cut-free) proofs of
prenex normal sequents via the mid-sequent theorem [11]. Miller defined expansion trees [29] for
full higher-order logic as a structure to record such substitution information without restriction
to prenex normal form. We shall use a first-order version of this notion here.

Definition 3. Expansion trees, eigenvariables, and a function Sh (read shallow formula of) that
maps an expansion tree to a formula are defined as follows:

1. If A ∈ {>,⊥}, or if A is a literal, then A is an expansion tree with top node A, and
Sh(A) = A.

2. If E is an expansion tree with Sh(E) = [y/x]A and y is not an eigenvariable of any node in
E, then E′ = ∀x.A+y E is an expansion tree with top node ∀x.A and Sh(E′) = ∀x.A. The
variable y is called an eigenvariable of (the top node of) E′. The set of eigenvariables of all
nodes in an expansion tree is called the eigenvariables of the tree.

3. If {t1, . . . , tn} (with n ≥ 0) is a set of terms and E1, . . . , En are expansion trees with
pairwise disjoint eigenvariable sets and with Sh(Ei) = [ti/x]A for i ∈ 1..n, then E′ =
∃x.A+t1 E1 · · ·+tn En is an expansion tree with top node ∃x.A and Sh(E′) = ∃x.A. The
terms t1, . . . , tn are known as the expansion terms of (the top node of) E′. The order of
writing the expansions is immaterial; if φ : 1..n→ 1..n is a permutation, then(

∃x.A+t1 E1 · · ·+tn En
)

=
(
∃x.A+tφ(1) Eφ(1) · · ·+tφ(n) Eφ(n)

)
.

4. If E1 and E2 are expansion trees that share no eigenvariables and ◦ ∈ {∧,∨}, then E1 ◦E2

is an expansion tree with top node ◦ and Sh(E1 ◦ E2) = Sh(E1) ◦ Sh(E2).

We consider the eigenvariables of an expansion tree to be bound over the entire expansion
tree, so systematic changes to eigenvariable names (α-conversion) result in equal trees. The
requirement of eigenvariables in different subtrees being disjoint ensures that no eigenvariable
is used to instantiate two different universal quantifiers within a given expansion tree. Sequent
proofs are often described with a similar condition, known as regularity, that demands that any
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eigenvariable used in the ∀ rule be globally unique. Regularity is not essential for the sequent
calculus because the correctness of each proof is locally checkable, so the same eigenvariable might
be used in different branches of a proof. However, the correctness criterion for expansion trees
(defined below) is global and hence needs globally unique variable names.

There is a simple way to coerce a formula into an expansion tree: use the bound variable of a
universally quantified subformula as the eigenvariable of its corresponding expansion, and use the
empty set of terms to expand an existentially quantified formula. Whenever we use a formula to
denote an expansion tree, we shall assume that we use this coercion. It is also natural to include
a notion of sequents of expansion trees.

Definition 4. If E1, . . . , En are expansion trees with pairwise disjoint eigenvariable sets, then
E = E1, . . . , En is an LKN expansion sequent. The shallow sequent of E, written Sh(E), is the
LKN sequent ` Sh(E1), . . . ,Sh(En).

Example 5. Consider the formula D = ∃x. (¬d(x) ∨ ∀y. d(y)). The expression

D +c
(
¬d(c) ∨ (∀y. d(y) +u d(u))

)
+u
(
¬d(u) ∨ (∀y. d(y) +v d(v))

)
is an expansion tree. Observe that the two eigenvariables u and v used to expand ∀y. d(y) are
distinct, even though u is used to expand an existential elsewhere. The nature of expansion
trees becomes more apparent if drawn as trees with labels on the arcs denoting eigenvariables or
expansions terms:

∃x. (¬d(x) ∨ ∀y. d(y))

∨

¬d(c) ∀y. d(y)

d(u)

u

c
∨

¬d(u) ∀y. d(y)

d(v)

v

u

Definition 6 (Labels and Dominators). In the expansion tree ∀x.A +x E (resp. in ∃x.A +t1

E1 · · · +tn En), we say that x (resp. ti) labels the top node of E (resp. Ei, for any i ∈ 1..n).
A term t dominates a node in an expansion tree if it labels a parent node of that node in the
tree. An expansion term t in E is said to be a topmost term of E if its corresponding existential
expansion node is not dominated by any other expansion term in E

Expansion trees as described are only a basic data structure for storing quantifier instances;
not all of them denote proofs. We say that an expansion tree is correct if it indeed denotes a proof.
The shallow formula of an expansion tree discards all the quantifier instances and is therefore
not suitable for defining the correctness criterion; we will need the following representation that
preserves the instances.

Definition 7. For an expansion tree E, the quantifier-free formula Dp(E), called the deep
formula of E, is defined as:

• Dp(E) = E if E ∈ {>,⊥} or if E is a literal;

• Dp(E1 ◦ E2) = Dp(E1) ◦ Dp(E2) for ◦ ∈ {∧,∨};

• Dp(∀x.A+y E) = Dp(E); and
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• Dp(∃x.A+t1 E1 · · ·+tn En) = Dp(E1) ∨ · · · ∨ Dp(En) if n > 0, and Dp(∃x.A) = ⊥.

We write Dp(E1, . . . , En) to mean Dp(E1) ∨ · · · ∨ Dp(En).

The correctness criterion also uses a dependency relation on expansion terms.

Definition 8. Let E be an expansion tree or expansion sequent and let <0
E be the binary relation

on the occurrences of expansion terms in E defined by t <0
E s if there is an x which is free in s

and which is the eigenvariable of a node dominated by t. Then <E , the transitive closure of <0
E ,

is called the dependency relation of E.

Viewed as a sequent proof, the dependency t <E s means that all ∃ introductions with t as
the witness term must be lower in the proof than those with s as the witness.

Definition 9 (Correctness). An expansion tree or an expansion sequent E is said to be correct if
<E is acyclic and Dp(E) is a tautology; we also say that E is an expansion proof of Sh(E).

Example 10. Let E be the expansion tree of example 5. It has two expansion terms: c and u.
Observe that c <E u because the node labeled with c dominates the ∀-node with eigenvariable u.
However u ≮E c, so <E is acyclic. Furthermore, Dp(E) = ¬d(c) ∨ d(u) ∨ ¬d(u) ∨ d(v), which is
a tautology. So, E is an expansion proof of the formula Sh(E) = ∃x. (¬d(x) ∨ ∀y. d(y)).

Theorem 11. Let E be an expansion proof containing at least one expansion term. Then, one of
the topmost occurrences of expansion terms of E is <E -minimal.

Proof. Let S be the set of topmost occurrences of expansion terms of E and suppose that none
of them is <E -minimal. That is, for every s ∈ S, there is an occurrence of an expansion term t
in E such that t <E s. Let s ∈ S be given and let t in E be such that t <E s. By definition 8,
every dominator t′ of t also satisfies t′ <E s. Since every occurrence of expansion terms in E is
either in S or is dominated by some term in S, it must follow that there is an s′ ∈ S such that
s′ <E s. Therefore, for every s ∈ S there is a s′ ∈ S such that s′ <E s, i.e., there is an infinite
<E -descending chain in S. But S is finite and <E is acyclic, so this is impossible.

One important property of expansion proofs is that there is a straightforward mapping from
LKN (or even LK) proofs to expansion proofs, defined by induction on the structure of LKN proofs.
For the contracted formulas in instances of contr and the side formulas in instances of binary rules
(i.e., ∧), it will be necessary to merge two expansion trees of the same formula. To define merging
formally, we slightly generalize the syntax of expansion trees to add a new kind of merging node.

Definition 12. An expansion tree with merges is defined by the same inductive definition as
expansion trees in definition 3 to which we add the following clause:

5. If E1 and E2 are expansion trees with merges that share no eigenvariables and have the
same shallow formula, then E1tE2 is an expansion tree with merges with top node t (called
a merge node), and Sh(E1 t E2) = Sh(E1).

Expansion sequents with merges are defined in the natural way.

We shall define a rewrite operation 7→ on expansion trees with merges that removes the merge
nodes. Some care has to be taken in its definition, as illustrated by the following example.

Example 13. Consider this expansion sequent with merges:

(∀xA+u E1) t (∀xA+v E2),∃xB +f(u) F1 +f(v) F2.
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When propagating the merge node into the subtrees of the two trees being merged, the two
eigenvariables u and v will need to be united, say to a new eigenvariable w. As eigenvariables are
global, the result of this union is that the two expansion terms f(u) and f(v) in the second element
of the sequent will also be identified, violating the set-nature of the expansions of an existential
formula. This will then require merging the two trees [w/u,w/v]F1 and [w/u,w/v]F2. Thus,
reducing a merge node might cause new merge nodes to appear in other parts of the expansion
tree or expansion sequent.

This example shows that not only do merges require changing eigenvariables, but also that
performing such changes might induce new merges. Thus, the rewrite 7→ that removes merges
will generally need to traverse the tree several times before normalizing.

Definition 14 (Eigenvariable Substitution). Let E be an expansion tree with merges. The
expansion tree 〈w/u〉E stands for that tree with merges that results from replacing the eigenvariable
u with w. It is defined by structural induction on expansion trees with merges as follows.

1. If E ∈ {>,⊥} or if E is a literal, then 〈w/u〉E = [w/u]E (ordinary substitution).

2. For ◦ ∈ {∧,∨,t}, 〈w/u〉(E1 ◦ E2) = 〈w/u〉E1 ◦ 〈w/u〉E2

3. Let {s1, . . . , sk} be {[w/u]t1, . . . , [w/u]tn}. Then,

〈w/u〉
(
∃x.A+t1 E1 · · ·+tn En

)
=

∃x. 〈w/u〉A +s1
⊔

i∈1..n
[w/u]ti=s1

〈w/u〉Ei · · · +sk
⊔

i∈1..n
[w/u]ti=sk

〈w/u〉Ei.

4. 〈w/u〉(∀x.A+v E) = ∀x. [w/u]A+[w/u]v 〈w/u〉E.

The merge operation is then defined in terms of the following rewrite on expansion trees (or
expansion sequents) with merges.

Definition 15 (Expansion Contexts). An expansion context, written as E [·], denotes an expansion
tree or an expansion sequent with merges containing a single occurrence of a hole ·. If E is an
expansion tree with merges that does not share any eigenvariables with E [·], then E [E] stands for
that expansion tree or expansion sequent with merges where the hole is replaced by E.

Definition 16. The merge rewrite operation 7→ is generated from the following cases.

1. If E ∈ {>,⊥} or if E is a literal, then E [E t E] 7→ E [E].

2. E [(E1 ◦ E2) t (E′1 ◦ E′2)] 7→ E [(E1 t E′1) ◦ (E2 t E′2)] for ◦ ∈ {∧,∨}.
3. E [(∀x.A+u E) t (∀x.A+w E′)] 7→ 〈w/u〉E [∀x.A+w (E t E′)].
4. Suppose {s1, . . . , sm} ∩ {t1, . . . , tn} = ∅. Then,

E
[

(∃x.A+r1 E1 · · ·+rl El +s1 F1 · · ·+sm Fm)
t (∃x.A+r1 E′1 · · ·+rl E′l +t1 G1 · · ·+tn Gn)

]
7→

E
[
∃x.A+r1 (E1 t E′1) · · ·+rl (El t E′l) +s1 F1 · · ·+sm Fm +t1 G1 · · ·+tn Gn

]
.

This definition is extended to expansion sequents with merges in the natural way.

Theorem 17. The reduction system 7→ on expansion trees or sequents with merges is confluent
and strongly normalizing. Its normal forms have no merge nodes.
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Proof. There are no critical pairs, so the reduction system is locally confluent. The system
is strongly normalizing because every rewrite either reduces the number of eigenvariables or
reduces a merge node to a finite number of simpler merge nodes for strict sub-trees. Finally, it is
immediate by inspection that all subtrees rooted at merge nodes can be reduced.

Definition 18 (Substitution and Merging). If E1 and E2 are expansion trees that have the same
shallow formula and that share no eigenvariables, then their merge, written E1∪E2, is the unique
(up to renaming of eigenvariables) normal form of E1 t E2 under 7→. If E is an expansion tree,
then [w/u]E is defined to be the unique normal form of 〈w/u〉E under 7→. These constructions
are lifted to expansion sequents in the natural way.

We can now use merges to define an explicit function from LKN proofs to expansion proofs.

Definition 19. The expansion sequent of an LKN proof π, written Exp(π), is given by induction
on the structure of π. It has the following cases.

1. If π is a proof of `Γ by init or >, then Exp(π) = Γ (using the trivial coercion of formulas
to expansion trees).

2. Suppose π =

πA
`Γ, A

πB
`Γ, B

`Γ, A ∧B
∧, Exp(πA) = EA, EA, and Exp(πB) = EB , EB, where EA

(resp. EB) is the expansion tree corresponding to A (resp. EB to B), and EA (resp.
EB) is the expansion sequent corresponding to Γ in the left (resp. right) premise. Then,
Exp(π) = EA ∪ EB , EA ∧ EB.

3. Suppose π =

πA
`Γ, A

`Γ,∀x.A ∀,
Exp(πA) = E , E where E is the expansion tree corresponding to A

and E is the expansion sequent corresponding to Γ in the premise. Let y be an eigenvariable
that does not occur in E. Then, Exp(π) = E ,∀x.A+y [y/x]E.

4. Suppose π =

πA
`Γ, [t/x]A

`Γ,∃x.A ∃ and Exp(πA) = E , E where E is the expansion tree corresponding

to [t/x]A and E is the expansion sequent corresponding to Γ in the premise. Then, Exp(π) =
E ,∃x.A+t E.

5. Suppose π =

π′

`A1, . . . , An,∆

`A1, . . . , An
contr where ∆ contains ki copies of Ai (for i ∈ 1..n). Fur-

ther suppose that Exp(π′) = E1, . . . , En, F1,1, . . . , F1,k1 , . . . , Fn,1, . . . , Fn,kn where Ei is the
expansion tree corresponding to Ai, and Fi,1, . . . , Fi,ki are the expansion trees corresponding
to the ki copies of Ai in ∆ (for i ∈ 1..n). Then,

Exp(π) = E1 ∪
⋃

j∈1..k1

F1,j , . . . , En ∪
⋃

j∈1..kn

Fn,j .

6. If π ends with a ∨ or a ⊥ introduction rule, then Exp(π) is defined in the obvious way.

The expansion sequents constructed in this fashion have no merge nodes. We can extend this
definition to LKF by setting E(π) = E([π]) (definition 1) for any LKF-proof π.

Theorem 20. If π is an LKN or an LKF proof, then Exp(π) is an expansion proof.

Proof. That Dp(Exp(π)) is a tautology can be shown by structural induction on π and following
definition 19. Acyclicity of <Exp(π) follows from the side condition of the ∀-rule in LKN (or LKF)
and the appropriate choice of variable names in definition 19.
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3 Representing Expansion Proofs: LKE

The previous section ended with a mapping Exp from any sequent proof, focused or not, to
expansion proofs. There is a dual operation, called sequentialization, that produces a sequent
proof from an expansion proof. Expansion trees contain only the quantifier instances, so an
expansion proof might be sequentialized to many different proofs that are all themselves mapped
back to that proof by Exp. Indeed, the merge operation used to define Exp combines duplicated
subproofs which can cause an exponential decrease in the size of the smallest proof [4].

The multi-focused LKF proof system has nearly all the ingredients for defining such a sequen-
tialization operation. Because expansion trees elide the propositional structure, the corresponding
sequent proofs cannot allow choice in the inference rules used to introduce the propositional
connectives. In terms of LKF this means that all but the existential connectives must be treated
as negative (i.e., invertible). The phases of the LKF proofs would then be an alternation of
existential instantiations, which correspond to the expansions, and of a pure reduction of the
sequent based on the other logical connectives which corresponds to the non-expansion arcs in
the expansion tree.

Although this intuition is simple, it has some issues that break the isomorphism between
expansion proofs and arbitrary LKF proofs restricted to negative connectives.

(A) In LKF there is only a single proof of ` · ⇑ ¬p(a),∃x. p(x):

`¬p(a),∃x. p(x) ⇓ p(a)
init

`¬p(a),∃x. p(x) ⇓ ∃x. p(x)
∃

`¬p(a),∃x. p(x) ⇑ · decide

` · ⇑ ¬p(a),∃x. p(x)
store× 2

All the steps in the proof are forced; in particular, the proof must finish with an init
after applying decide, which prevents all but the single instance of the existential formula.
However, there are infinitely many expansion proofs of ¬p(a) ∨ ∃x. p(x) that simply differ
in their expansions of the existential formula.

(B) Similarly, in LKF there is only (essentially) a single proof of ` · ⇑ t,∃x.¬p(x), which does
not instantiate the existential formula, but there are infinitely many expansion proofs of
> ∨ ∃x.¬p(x) with different instances of the existential.

(C) In every expansion proof of p(a) ∨ ∃x.¬p(x), the existential is expanded by a set of
witnesses, i.e., each of its expansions corresponds to a different witness term. On the
other hand, in an LKF proof of ` · ⇑ p(a) ∨ ∃x.¬p(x) it is possible to have the intermediate
sequent ` p(a),∃x.¬p(x),¬p(b),¬p(b) ⇑ · which corresponds to expanding the existential
by the same witness term b twice:

` p(a),∃x.¬p(x),¬p(b),¬p(b) ⇑ ·
` p(a),∃x.¬p(x) ⇑ ¬p(b),¬p(b) store× 2

` p(a),∃x.¬p(x) ⇓ ¬p(b),¬p(b) release

` p(a),∃x.¬p(x) ⇓ ∃x.¬p(x),∃x.¬p(x)
∃ × 2

` p(a),∃x.¬p(x) ⇑ · decide

` · ⇑ p(a),∃x.¬p(x)
store× 2

11



In other words, issues (A) and (B) indicate that expansion proofs can contain more irrelevant
“junk” than the LKF proofs, while issue (C) illustrates that LKF proofs inherently treat the
expansions as a multi-set rather than as a set.

Focusing in LKF is aggressive by design. Issues (A) and (B) demonstrate that we need to
dampen the effects of focusing in LKF somewhat: in particular, the init and t introduction rules
finish the proof too early, before the existentials in the context can be instantiated. To relax these
rules, we use the standard mechanism of delaying connectives that end the phase instead of the
proof (by release or store, as appropriate) so that the formulas in the context can be focused on.

Definition 21 (Delays). The unary connectives

∂

(−) or ∂(−), standing for positive delays or
negative delays respectively, are defined as follows

∂

(A) = ∃x.A ∂(A) = ∀x.A

where x is selected in some systematic fashion to be not free in A.

All subformulas of A are also subformulas of

∂

(A) or ∂(A); moreover,

∂

(A) and ∂(A) are
equi-provable and [

∂

(A)] ≡ [∂(A)] (definition 1). If ∂(A) is present in the focus of a positive
sequent, then no further positive rules are applicable to it; eventually, after release is applied, the
vacuous universal quantifier will be removed before further negative processing of A. Likewise, if

∂

(A) is present to the right of ⇑ in a negative sequent, then the only rule applicable to it is store,
after which a subsequent decide on it will copy

∂

(A) before instantiating the vacuous existential
quantifier and further positive processing of A. Observe that ∂(A) where A is already negative
has essentially the same behavior as A; likewise for

∂

(A) where A is already positive.
We will only use ∂(−) for our purposes. Formally we define a pair of encodings from unpolarized

(LKN) formulas to polarized (LKF) formulas that track where in the sequent the formula would
end up in an LKF proof.

Definition 22. The pair of maps (−)l and (−)r from unpolarized to polarized formulas are
recursively defined as follows.

(A ∨B)l = (A)l

&

(B)l (A ∨B)r = (A)r

&

(B)r

(⊥)l = f (⊥)r = f

(A ∧B)l = (A)l & (B)l (A ∧B)r = (A)r & (B)r

(>)l = 1 (>)r = ∂(1)

(∀x.A)l = ∀x. (A)l (∀x.A)r = ∀x. (A)r

(∃x.A)l = ∃x. (A)r (∃x.A)r = ∃x. (A)r

(a)l = a (a)r = ∂(a)

(¬a)l = ¬a (¬a)r = ¬a

These maps are naturally lifted to multi-sets of formulas.

These definitions are based on the intuition that LKF proofs of sequents of the form ` (Γ)l m (∆)r

will correspond to expansion proofs. Existential formulas, atoms, and > are the only formulas that
are translated to positive formulas, and the latter two are only positive in the (−)l translation,
i.e., to the left of m. Because (a)r = ∂(a), whenever (a)r occurs among the foci, the init rule of
LKF is prevented and it will eventually have to be released (after removing the ∂) and then the
atom a (which is the same as (a)l) is stored. This solves issue (A), because, in the example above,
the ∃ introduction rule is now followed by release instead of init, which enables future decides on
the existential formula. Issue (B) is solved similarly by preventing t from occurring in the image
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of the translation; whenever ∂(1) appears on the right in a negative sequent, it will need to be
stored (after stripping the ∂).

This leaves just issue (C). In the unfocused calculus LKN, where contraction is freely available,
it is never necessary to instantiate an existential formula the same way twice, as one can simply
contract the instantiated version instead. Expansion trees therefore treat the expansions (i.e.,
instantiations) of existential formulas as a set rather than as a multi-set. It is a simple matter to
add a restriction to the ∃ introduction rule of LKN that prevents duplicated copies:

[t/x]A /∈ Γ `Γ, [t/x]A

`Γ,∃x.A

In the focused setting, such a restriction would break completeness because the foci themselves
are not necessarily contractible. Consider, for instance, the formula ∃x. ∃y.¬p(x, y). In LKN, one
could instantiate the outer existential with a to get ∃y.¬p(a, y) which is then contracted and
instantiated with b and c to get ¬p(a, b) and ¬p(a, c). In LKF, we would instead have to contract
the outermost existential formula twice and instantiate the vector (x, y) with (a, b) and (a, c),
which repeats the instantiation of x by a.

Nevertheless, it is possible to recover a kind of non-redundant instantiation of existentials in
LKF if we restrict the release rule to check that a block of existentials from a formula that was
decided on have not been instantiated in the same way more than once, either in the same or in
an earlier positive phase. To make this restriction formal we would require naming and tracking
subformula relationships in the proof system, which is tedious but straightforward. Instead of
taking this formal approach, we simply stipulate that all LKF proofs mentioned in the rest of
the paper implicitly have this restriction on the release rules. (We state this restriction as a side
condition to the release rule in the LKF-related proof system LKE in Figure 3.) As with LKN, this
restriction does not break completeness: contraction is available for the context Γ in `Γ m∆, so
one can always reuse the instances.

The reader may wonder why issue (C) is not dealt with by using a variant definition of
expansion trees that uses multisets or lists of expansions as in [29]. We use sets for the following
reason: we heavily rely on theorem 27 (proved in the next section) which states that rule
permutations do not change the associated expansion proof. This result would not be true in a
setting of expansion trees based on multisets or lists. Consider the following rule permutation:

π1
`Γ, A, [t/x]C

π2
`Γ, B, [t/x]C

`Γ, A ∧B, [t/x]C
∧

`Γ, A ∧B, ∃x.C ∃ ∼

π1
`Γ, A, [t/x]C

`Γ, A,∃x.C ∃

π2
`Γ, B, [t/x]C

`Γ, B,∃x.C ∃

`Γ, A ∧B, ∃x.C ∧

In the proof on the left, there is only one instance of ∃x.C, but there are two in the proof on the
right. Because we want to admit this permutation, the common expansion tree representing both
proofs must ignore the order and the multiplicity of the expansions.

While we can in principle continue using LKF and this encoding as our proof system, it will
serve our purposes better to define a version of LKF, which we call LKE, specialized for the above
encodings (−)r and (−)l. The rules of LKE are displayed in figure 3. Like LKF, the rules of LKE

can be divided into three classes. The propositional rules contain almost all the negative rules of
LKF, except for t (which does not exist in the image of the encodings). Every propositional rule
has at least one premise, and no atomic sub-formulas are lost when moving from conclusion to
premises.

The positive phase of LKF is present in LKE in only a degenerate existential phase consisting
of a single rule. The remaining connectives, viz. positive atoms and 1, have specialized rules
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Propositional

`Γ ⇑∆, A `Γ ⇑∆, B

`Γ ⇑∆, A ∧B ∧
`Γ ⇑∆, A,B

`Γ ⇑∆, A ∨B ∨
`Γ ⇑∆

`Γ ⇑∆,⊥ ⊥
`Γ ⇑∆, A

`Γ ⇑∆,∀x.A ∀

Existential

`Γ ⇓∆, [t/x]A

`Γ ⇓∆, ∃x.A ∃

Structural

`Γ,> ⇑ · > `Γ,¬a, a ⇑ · init

`Γ, L ⇑∆

`Γ ⇑∆, L
store

`Γ ⇓∆

`Γ ⇑ · decide
`Γ ⇑∆

`Γ ⇓∆
release

Notes:

1. In the ∀ rule, the principal formula is implicitly α-converted so x is not free in the conclusion.

2. In the store rule, L is >, a literal, or an existential formula.

3. In the decide rule, ∆ contains only existential formulas and ∅ 6= ∆ ⊆set Γ.

4. In the release rule, ∆ contains no existential formulas. Moreover, every formula in ∆ corresponds
to a unique block of existential instantiations of a subformula of the end-sequent in all the
existential phases below.

Figure 3: Rules of LKE.

incorporating their focused LKF behavior; in either case, the formula must be the sole principal
formula of an LKF decide instance, after which the proof branch must immediately terminate
with init or the 1 (i.e., (>)l) introduction rule, respectively. These derived positive LKF phases
are added as new structural rules to LKE. The decide rule in LKE therefore only copies existential
formulas into the foci, possibly more than once. The remaining structural rules of store and
release are the same as in LKF.

Theorem 23. The LKE sequent `Γ m∆ is derivable in LKE iff the LKF sequent ` (Γ)l m (∆)r is
derivable in LKF.

Proof. A simple induction on the structure of proofs in LKE of the sequent `Γ m∆ yields a proof
in LKF of the sequent ` (Γ)l m (∆)r. The converse is similarly proved by an induction on the
structure of LKF proofs of sequents of the form ` (Γ)l m (∆)r.

Definition 24. For any LKE proof π, we write [π] for that LKN proof that:

• replaces all sequents of the form `Γ m∆ with `Γ,∆;

• removes all instances of the rules store and release; and

• renames decide to contr in π.

Theorem 25 (LKE vs. LKN).

1. If π is an LKE proof of `Γ m∆, then [π] is an LKN proof of `Γ,∆ (soundness).

2. If `∆ is provable in LKN, then ` · ⇑∆ is provable in LKE (completeness).

Proof. A corollary of theorems 2 and 23.
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4 Permutations, Maximality, and Sequentialization

4.1 Permutations

Because expansion proofs record only the quantifier instances, they are more syntactically
canonical than LKN proofs: two LKN proofs that only differ in a trivial order of inference rules are
mapped by Exp to the same expansion tree. The pre-image of Exp defines an equivalence class
of LKN proofs that are all represented by the same expansion proof. These equivalence classes
correspond to a phenomenon that is well studied in the literature on the sequent calculus, that of
permutations of inference rules in a sequent proof.

Definition 26 (Permutations in LKN). Two proofs π and π′ of the same LKN sequent are
permutatively equivalent, written π ∼ π′, if the equivalence can be established as the reflexive-
transitive-symmetric-congruence closure of the following local rule permutations.

1. Permutations of introduction rules: these are permutations where the order of two neighbor-
ing introduction rules can be locally switched. The following is a characteristic example,
where an ∃ following a ∧ introduction can be rewritten to an ∧ introduction following two ∃
introductions.

π1
`Γ, A, [t/x]C

π2
`Γ, B, [t/x]C

`Γ, A ∧B, [t/x]C
∧

`Γ, A ∧B, ∃x.C ∃ ∼

π1
`Γ, A, [t/x]C

`Γ, A,∃x.C ∃

π2
`Γ, B, [t/x]C

`Γ, B,∃x.C ∃

`Γ, A ∧B, ∃x.C ∧

2. Permutations of structural rules: the contr rule permutes with other contr rules and can
also be used to merge two neighboring instances into one common instance:

`Γ,∆,Θ

`Γ,∆
contr

`Γ
contr ∼ `Γ,∆,Θ

`Γ
contr ∼

`Γ,∆,Θ

`Γ,Θ
contr

`Γ
contr

As a restriction, we prevent the init and contr rules from permuting, i.e.,

`Γ,∆, a,¬a init

`Γ, a,¬a contr 6∼
`Γ, a,¬a init

3. Permutations of introduction and structural rules: when an introduction rule switches places
with a contraction, the contraction may need to be duplicated.

π1
`Γ,∆, A

π2
`Γ,∆, B

`Γ,∆, A ∧B ∧

`Γ, A ∧B contr ∼

π1
`Γ,∆, A

`Γ, A
contr

π2
`Γ,∆, B

`Γ, B
contr

`Γ, A ∧B ∧

Note that in the instance of contr in the left derivation, ∆ ⊆set Γ, A ∧B, while in those of
the right derivations, ∆ ⊆set (Γ, A) and ∆ ⊆set (Γ, B). So, in general only ∆ ⊆set Γ.

As a restriction, we prevent > introduction from permuting with contr, i.e.,

`Γ,∆,> >

`Γ,> contr 6∼
`Γ,> >

15



Observe that the two restricted permutations, init/contr and >/contr, would otherwise be the
only permutations that could delete a contracted copy of a formula (and its associated subproof)
from an LKN proof. As contractions are used to implement decides in LKF and LKE, which are in
turn the representatives of expansions, allowing permutations to delete contractions would break
the following important theorem.

Theorem 27. If π1 ∼ π2, then Exp(π1) = Exp(π2).

Proof. By inspection of definitions 19 and 26, each local permutation preserves Exp. We give
here a representative case of ∧/∃ permutations, with:

π1 =

πA
`Γ, A, [t/x]C

πB
`Γ, B, [t/x]C

`Γ, A ∧B, [t/x]C
∧

`Γ, A ∧B, ∃x.C ∃ and π2 =

πA
`Γ, A, [t/x]C

`Γ, A,∃x.C ∃

πB
`Γ, B, [t/x]C

`Γ, B,∃x.C ∃

`Γ, A ∧B, ∃x.C ∧

We have, by the inductive hypotheses, that Exp(πA) = E , EA, E[t/x]C and Exp(πB) = F , FB , F[t/x]C

where EA is an expansion tree for A; EB is an expansion tree for B; E[t/x]C and F[t/x]C

are expansion trees for [t/x]C; and E and F are expansion sequents for Γ. We then have
Exp(π1) = E ∪ F , EA ∧ FB ,∃x.C +t (E[t/x]C ∪ F[t/x]C) = Exp(π2).

The converse is not true. For example, consider these two LKN proofs.

` p(a),¬p(a)
init

`∃x. p(x),¬p(a)
∃

` p(b),¬p(b) init

`∃x. p(x),¬p(b) ∃

`∃x. p(x),¬p(a) ∧ ¬p(b) ∧

` p(a), p(b),¬p(a)
init ` p(a), p(b),¬p(b) init

` p(a), p(b),¬p(a) ∧ ¬p(b) ∧

`∃x. p(x),∃x. p(x),¬p(a) ∧ ¬p(b) ∃ × 2

`∃x. p(x),¬p(a) ∧ ¬p(b) contr

Exp maps both proofs to the same expansion sequent (∃x. p(x) +a p(a) +b p(b)),¬p(a) ∧ ¬p(b).
However, the proofs are not permutatively equivalent because there is no local permutation that
can change the order of the ∃ and ∧ rules in the left derivation. Indeed, the numbers of contracted
formulas are different in the two proofs, but none of our permutations can delete contracted copies.
It is fairly obvious, therefore, that LKN simply has too many proofs if we want the permutative
equivalence to characterize the identifications made by Exp.

We can also define an equivalence over LKF and LKE proofs in terms of rule permutations.
Defining local permutations directly in the focused setting is difficult because cases such as
decide/store are simply impossible, so the permutations will have to be written in a so called
synthetic form [7, 6]. This would be a technical and unilluminating detour for this paper, so we
just exploit definition 1 to bootstrap the LKF and LKE permutative equivalence.

Definition 28. Two LKF or LKE proofs π1 and π2 of the same sequent are permutatively
equivalent, written π1 ∼ π2, iff [π1] ∼ [π2] (see definitions 1, 24 and 26).

This is not the only equivalence on focused proofs: there is at least one other equivalence that
we can define based on just the phase structure of a focused proof. To motivate this definition,
consider an LKE proof of `Γ ⇑ ·. Assuming the sequent is not proved by init or > introduction,
it must be proved by a decide, which will enter the existential phase, then (after release) the
propositional phase, and finally be back to sequents of the form `Γ′ ⇑ · after a number of stores.
We can view this as an action (sometimes also called a synthetic rule or bipole) between LKE

sequents of the form `Γ ⇑ ·, where we simply ignore all the rules except decide, init and >. Two
LKE proofs that have the same action structure should be considered action equivalent.
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Definition 29. Two LKE proofs π1 and π2 of the same sequent are action equivalent, written
π1 ∼= π2, iff they are tree-isomorphic for the instances of the decide, init, and > rules.

Action equivalence gives us a different notion of the essence of an LKE proof that is independent
of expansion trees and permutations. Because two action equivalent proofs have the same decide
rules, one can reason about such proofs by induction on the decision depth—i.e., the nesting
depth of the decide rules—in the LKE proof. If from a proof we simply elide all but the decide
rules, and record the existential witnesses along with these instances of decide, we would obtain a
so called synthetic proof using synthetic rules [6].

4.2 Maximality

How are these two notions of equivalence related? One direction is obvious.

Theorem 30. If π1 and π2 are LKE proofs of the same sequent, then π1 ∼= π2 implies π1 ∼ π2.

Proof. Up to local permutations, there is only a single way to derive an action. As π1 and π2
have the same actions, they must be permutatively equivalent.

In the other direction, two permutatively equivalent LKE proofs need not be action equivalent
as they may perform the decide steps in a different order or with different foci. To illustrate,
here are two permutatively equivalent LKE proofs that are not action equivalent (where Γ =
∃x. p(x),∃y.¬p(f(y))):

`Γ, p(f(c)),¬p(f(c)) ⇑ · init

`Γ, p(f(c)) ⇓ ∃y.¬p(f(y))
∃,release,

store

`Γ, p(f(c)) ⇑ · decide

`Γ ⇓ ∃x. p(x)
∃,release,

store

`Γ ⇑ · decide

`Γ, p(f(c)),¬p(f(c)) ⇑ · init

`Γ ⇓ ∃x. p(x),∃y.¬p(f(y))
∃×2,release,

store×2

`Γ ⇑ · decide

However, each permutative equivalence class of LKE proofs does have a canonical (i.e., up to
action equivalence) form where, intuitively, the foci of each decide rule are selected to be as
numerous as possible. The proof on the right above, for example, has an instance of decide with
more foci than the one on the left.

Definition 31 (Maximality). Given an LKE proof π that ends in an instance of decide, let foci (π)
stand for the multiset of foci in the premise of that instance of decide. We say that this instance
of decide is maximal iff for every π′ ∼ π, it is the case that foci (π′) ⊆multiset foci (π). An LKE

proof is maximal iff every instance of decide in it is maximal.

It follows directly from the definition that maximality is preserved by action equivalence. The
two main properties of maximal proofs are that permutatively equivalent maximal proofs are also
action equivalent, and that for every proof there is a permutatively equivalent maximal proof.
Thus, the maximal proofs are canonical (action equivalent) representatives of their permutative
equivalence classes.

Theorem 32 (Canonicity).

1. Every LKE proof has a permutatively equivalent maximal proof.

2. Two permutatively equivalent maximal LKE proofs are action equivalent.
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Proof. Because init/contr and >/contr permutations are disallowed in LKN, equivalent proofs
have the same multiset union of all the foci of their decide rules. Using contr/contr permutations,
the foci of the instances of decide can be divided or combined as needed. Therefore, there is
a focus maximalization operation that, starting from the bottom of an LKE proof and going
upwards, permutes and merges foci into the lowermost decide instances by splitting them from
higher instances. This merge operation obviously terminates (by induction on the decision depth);
moreover, the result is maximal by definition 31.

To see that two given permutatively equivalent maximal proofs are action equivalent, suppose
the contrary. Then there is a lowermost instance of decide in the two proofs that have an
incomparable multiset of foci (if they were comparable, then either one of the proofs is not
maximal or they are action equivalent). Since the proofs are permutatively equivalent, these
two decide instances themselves permute; hence, their foci can be merged, contradicting our
assumption that they are maximal.

Similar theorems have appeared in [7, 6] for various fragments of multiplicative additive linear
logic. It is an important feature of this proof that its argument is generic. It holds for any
permutation system for a focused sequent calculus that can guarantee that foci are never deleted
as part of a permutation.

Definition 33. We write max(π) for the unique action equivalence class of maximal proofs that
are permutatively equivalent to π (which exists by theorem 32).

An example of the use of the canonicity theorem is Herbrand’s theorem [17] for existential
prenex formulas, which is a simple corollary of the completeness of LKE for classical first-order
logic:

Corollary 34. The formula ∃~x.A, where A is quantifier-free, is valid if and only if there is a
sequence of vectors of terms ~t1, . . . ,~tn such that the disjunction [~t1/~x]A ∨ · · · ∨ [~tn/~x]A is valid.

Proof. The if-direction is trivial. For proving the only if-direction, suppose ∃~x.A is valid, i.e., the
LKN sequent `∃~x.A is provable. By theorem 25 ` · ⇑ ∃~x.A is provable in LKE, i.e., `∃~x.A ⇑ · is
provable as only store applies to the former. Because A is quantifier-free, the decide rule can only
apply to ∃~x.A; thus, the equivalent maximal proof (which exists by theorem 32) performs only
(at most) a single decide at the bottom, producing a number of focused copies of ∃~x.A. In the
existential phase, the ∃s are removed from the foci to give the required term vectors.

4.3 Sequentialization

Thus far, we have shown that if π1 ∼ π2, then Exp(π1) = Exp(π2) (theorem 27) and max(π1) =
max(π2) (theorem 32). In fact, we can show more: Exp(π) and max(π) are isomorphic. To do this,
we will require a means of extracting LKE proofs from expansion proofs. We will directly extract
a maximal LKE proof from an expansion proof, a step we call sequentialization. The definition
consists of two phases: first we translate an expansion proof to a proof in an intermediate calculus
LKEE which has the structure of LKE but uses expansion sequents instead of ordinary sequents.
Secondly we map an LKEE proof π to an LKE proof Sh(π) which is defined by applying Sh to
every expansion tree appearing in the LKEE proof. This operation will yield a valid LKE proof as
the Sh image of an LKEE rule will be an LKE rule.

In slightly more detail, the sequents of LKEE are of the form `E m F where E ,F is an expansion
sequent. All the other rules of LKE except decide are adapted to expansion sequents in the natural
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way. To illustrate, here are the ∧ and ∃ introduction rules in LKEE:

`E ⇑ F , E `E ⇑ F , F
`E ⇑ F , E ∧ F ∧

`E ⇓ F , E
`E ⇓ F ,∃x.A+t E

∃

The init and > rule of LKEE are also restricted to:

`E , a,¬a ⇑ · init `E ,> ⇑ · >

where E contains only >s, literals, or trivial existential trees i.e., trees of the form ∃x.A. Finally,
for the decide rule for LKEE, we will use the following notational device.

Definition 35 (Expansion Vectors). The block notation ∃~x.A+~t1 E1 · · ·+~tn En (where A is not
an existential formula) is used to abbreviate those expansion trees where each ~ti is a vector of
expansion terms for ~x, and Ei is an expansion tree for [~ti/~x]A. For example, the expansion tree
∃x. ∃y. p(x, y) +t (∃y. p(t, y) +s1 p(t, s1) +s2 p(t, s2)) in the ordinary notation can be abbreviated

as ∃(x, y). p(x, y) +(t,s1) p(t, s1) +(t,s2) p(t, s2). Each ~ti in E = ∃~x.A+~t1 E1 · · ·+~tn En is said to
be an expansion vector of (the top node of) E. We say that an expansion vector (t1, . . . , tn) is
topmost in an expansion tree if t1 is a topmost expansion term of the tree.

Definition 36. The relation <E on occurrences of expansion terms (definition 8) is lifted to
occurrences of expansion vectors in the natural way, i.e., ~t <E ~s iff for every t ∈ ~t and s ∈ ~s it is
the case that t <E s.

Theorem 11 generalizes to occurrences of expansion vectors.

Theorem 37. Let E be an expansion proof containing at least one expansion term. Then, one of
the topmost occurrences of expansion vectors is <E -minimal.

Proof. Observe that the <E relation lifted to occurrences of expansion vectors remains acyclic.
Hence, the argument of theorem 11 is just as applicable to expansion vectors.

The decide rule of LKEE is modified to focus on as many foci as possible as determined by the
dependency relation on the expansion sequent in the conclusion. We will show below that this
corresponds to maximal LKE proofs. Formally, the decide rule of LKEE is the following:

`L,G ⇓ F
`L, E ⇑ · decide

where:

(i) L contains only >s and literals;

(ii) E = E1, . . . , En where for every i ∈ 1..n,

Ei = ∃~x.Ai +~si,1 Fi,1 · · ·+~si,di Fi,di +
~ti,1 Gi,1 · · ·+

~ti,ui Gi,ui

and Ai is not an existential formula;

(iii) F = F1, . . . ,Fn where for every i ∈ 1..n,

Fi =
(
∃~x.Ai +~si,1 Fi,1

)
, . . . ,

(
∃~x.Ai +~si,di Fi,di

)
;
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(iv) G = G1, . . . , Gn where for every i ∈ 1..n,

Gi = ∃~x.Ai +
~ti,1 Gi,1 · · ·+

~ti,ui Gi,ui ;

(v) and for each i ∈ 1..n, j ∈ 1..di, the expansion vector ~si,j is <L,E -minimal (definition 36).

Intuitively, the decide rule selects for focus those existential expansion trees from the conclusion
sequent that corresponds to the minimal expansion vector, and then removes these expansion
vectors from consideration in a subsequent decide above.

Theorem 38. If E = E1, . . . , En is an expansion proof, then:

1. ` · ⇑ E is derivable in LKEE, and

2. ` · ⇑ Sh(E1), . . . ,Sh(En) is derivable in LKE.

Proof. (2) follows from (1) as Sh maps LKEE proof rules to LKE proof rules. To show (1), we
observe that an LKEE proof can be reconstructed for the end-sequent ` · ⇑ E without any non-
deterministic choices. The instances of decide are determined by the dependency relation, and
the instantiations of the ∃-inferences of LKEE are determined by the expansion trees in their
respective conclusion sequents. As each rule of LKEE has the property that if the conclusion is
an expansion proof then so is each individual premise (which is easily shown by inspection of
the rules), since the end-sequent is an expansion proof it follows that every sequent in the LKEE

derivation will also be an expansion proof. When the proof being reconstructed has no expansion
terms, only the propositional phase applies which simply reduces the compound expansion trees to
literals and >; since these rules preserve the tautology of deep formulas, eventually each premise
must have a > or a dual pair of literals, which are the basic tautologies. These branches can then
be closed by > introduction or init.

Therefore, it suffices to show that we can always use a decide and the subsequent existential
phase to remove at least one expansion term (if one exists) from the conclusion of the form
`F ⇑ · of an LKEE proof, so that the reconstruction can make progress. But, decide will always
be applicable in this case by theorem 37, as there is always at least one topmost expansion
term that is <F -minimal. In our case, these topmost terms are the expansion terms of topmost
existential nodes in F .

Definition 39 (Sequentialization). Every expansion proof E has an LKEE proof πE of ` · ⇑ E by
theorem 38. The LKE proof π = Sh(πE) is called a sequentialization of E, written Seq(E , π).

Sequentialization is designed to produce only maximal proofs.

Theorem 40. For any expansion proof E, if Seq(E , π) then π is maximal.

Proof. Suppose Seq(E , π0) and π0 is not maximal. Then, π0 contains a subproof π ending with
an instance of decide that is not maximal, i.e., there exists a proof π′ ∼ π and foci (π) ⊂multiset

foci (π′). This must mean that there is an existential formula ∃x.A in foci (π′) \ foci (π) for which
there is an expansion term t in E . Since the instance of ∃ for this formula was permutable by
local permutations down to the instance of decide in π′, it must be that t does not mention any
of the eigenvariables in π introduced between this instance of decide and the instance of ∃ on
∃x.A. This in turn means that the term t is <F -minimal where F is the expansion sequent in
the conclusion of the LKEE proof that corresponds to π. Hence, it must have been one of the
expansion terms selected by decide in the LKEE proof, contradicting our assumption that the
corresponding ∃x.A /∈ foci (π).
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5 Equivalence

We have seen in the canonicity theorem that every LKE proof is permutatively equivalent to a
unique action equivalence class of maximal proofs. In this section we will show that these action
equivalence classes are isomorphic to expansion proofs. Hence maximality identifies the same
sequent proofs as are identified by expansion proofs, i.e., by the pre-image of Exp.

5.1 Proof Homomorphisms

First, let us make precise our notion of isomorphism. We will consider mappings of proofs to
proofs which are homomorphisms with respect to the rules of LKE. Note that this approach is
different from categorical semantics of proofs where the proofs are interpreted as morphisms. For
the purposes of this paper, proofs are considered as objects. If ϕ is a homomorphism from LKE

proofs to some data structure S, then for each rule of LKE, φ must map every instance of that
rule to an instance of an operation in S. For example, if we have this LKE proof:

π =

πA
`Γ ⇑∆, A

πB
`Γ ⇑∆, B

`Γ ⇑∆, A ∧B ∧

then there must be an operation ? in S such that ϕ(π) = ϕ(πA) ? ϕ(πB).
Concretely, we will consider Exp : LKE→ EP as our homomorphism where EP stands for the

set of all expansion proofs, and the operations on EP are those of definition 19.

Lemma 41. For all E ∈ EP, if Seq(E , π) then Exp(π) = E.

Proof. By a straightforward induction on E .

Thus, Exp has a right-inverse that, for every E ∈ EP, picks some π such that Seq(E , π) (which
is possible by theorem 30). Hence, Exp is a surjective homorphism.

5.2 Action Equivalence Classes

To establish the isomorphism between action equivalence classes of maximal proofs and expansion
proofs, we shall lift Exp, Seq and max to action equivalence classes by quotienting over ∼=.

(i) As permutations do not affect Exp (theorem 27) and action equivalence implies permutative
equivalence (theorem 30), it follows that the mapping Ẽxp : LKE�∼= → EP is well-defined.
The operations on LKE�∼= are the rules of LKE applied to permutative equivalence classes of
LKE. Ẽxp is a homomorphism with respect to these operations.

(ii) In the other direction, S̃eq : EP→ LKE�∼= is immediately defined by mapping E to the action
equivalence class of some π for which Seq(E , π).

(iii) Finally, we can lift max : LKE→ LKE to m̃ax : LKE�∼=→ LKE�∼= in the natural way, which
is possible by theorem 30. As maximality is preserved by action equivalence, it follows that
m̃ax is idempotent.

5.3 Maximal Proofs

Let LKEM stand for that fragment of LKE where every proof is maximal and whose end-sequent
is of the form `Γ ⇑ ·.

21



Lemma 42. If Π ∈ LKEM�∼=, then Π = S̃eq(Ẽxp(Π)).

Proof. Suppose π ∈ Π. We show that Seq(Exp(π), π) by induction on the decision depth of π.
The cases where π ends with > introduction or init are trivial. Otherwise, the bottom-most action
in π has this form:

π1
`Γ,∆1 ⇑ · · · ·

πm
`Γ,∆m ⇑ ·....

`Γ ⇑ [~t1/~x1]A1, . . . , [~tn/~xn]An

`Γ ⇓ [~t1/~x1]A1, . . . , [~tn/~xn]An
release

....
`Γ ⇓ ∃~x.A1, . . . ,∃~x.An

`Γ ⇑ · decide

where the Ai (for i ∈ 1..n) are non-existential formulas and Seq(Exp(πj), πj) (for j ∈ 1..m) by
the induction hypothesis. The expansion vectors ~ti are all <Exp(π)-minimal because π is the Sh
image of an LKEE proof (definition 39). Moreover, all the <Exp(π)-minimal topmost terms occur

among the ~ti, for otherwise there would be a permutatively equivalent LKE proof to π with more
foci, contradicting the assumption that π is maximal. Therefore, Seq(Exp(π), π).

Theorem 43. Ẽxp : LKEM�∼=→ EP is an isomorphism with inverse S̃eq.

Proof. We have already observed that Ẽxp is a homomorphism. By lemma 41 we have Ẽxp(S̃eq(E)) =
E for all E ∈ EP. Together with Lemma 42, this shows that Ẽxp has both a left and a right inverse,
both of which are S̃eq.

Let us consider some concrete consequences of this isomorphism. We have seen that a maximal
proof corresponding to π can be obtained via rule permutations as in the first part of theorem 32.
Reading off an expansion tree from π and then re-sequentializing this tree gives an alternative
way to compute a maximal proof as the following theorem shows.

Theorem 44. For any π ∈ LKE, S̃eq(Exp(π)) = max(π).

Proof. We have Exp(π) = Ẽxp(max(π)) by theorem 27. Therefore, by theorem 43, S̃eq(Exp(π)) =
S̃eq(Ẽxp(max(π))) = max(π).

Furthermore, the abstractions of LKE proofs provided by expansion trees and by maximal
multi-focusing are the same.

Theorem 45. For π1, π2 ∈ LKE, Exp(π1) = Exp(π2) iff max(π1) = max(π2).

Proof. For the left-to-right direction let E = Exp(π1) = Exp(π2). Theorem 44 then implies that
max(π1) = S̃eq(E) = max(π2). The right-to-left direction follows directly from theorem 27.

6 Related Work

It is generally believed that classical logic lacks a denotational semantics for proofs akin to
Cartesian-closed categories (CCC) for intuitionistic logic or ?-autonomous categories for linear
logic. For example, if one tries to enrich the usual CCC semantics for intuitionistic logic with
an involutive negation, then the CCC degenerates into a poset that equates all proofs of a
formula (Joyal’s paradox) [25]. In terms of the sequent calculus, this problem manifests as follows:
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cut-elimination using Gentzen’s cut-reduction rules is neither confluent nor strongly normalizing
for LK proofs [13, 3, 19]. To force confluence, for instance, one would have to equate all cut-free
proofs of a formula which again trivializes the semantics.

There have been both syntactic and semantic approaches to identifying classes of sequent
proofs where such collapses do not occur. Of the syntactic approaches, one can recover confluence
(up to a small equivalence relation) as well as strong normalization by fixing particular cut-
reduction strategies in the sequent calculus [8]. If one refrains from fixing a reduction strategy
one may still obtain a strongly normalizing though non-confluent system by using sufficiently
strong local reductions [38, 39]. Another approach is to carry out cut-elimination in a more
abstract formalism, similar to a proof-net, on the level of quantifiers [15, 28]. The reduction in
such a setting is typically not confluent and strong normalization is open [28] or known not to
hold [15]. Confluence (up to the equivalence relation of having the same expansion tree) as well
as normalization can be recovered for a class of proofs [20] by considering a maximal abstract
reduction based on tree grammars [18] which contains all concrete reductions. Extension of these
results to all proofs is open.

From the semantic end, briefly, there are two principal approaches. The first approach rejects
the involutive negation, which results in negation having a computational content that can be
reified in the λµ calculus with a semantics in terms of control categories (see [16] for a survey).
The second approach rejects the Cartesian structure for conjunctions, which requires a variant
of proof-nets called flow graphs for the proofs and a semantics in terms of enriched Boolean
categories [23, 37].

There are also a number of alternative answers to the question of when two cut-free sequent
proofs are identical. Generally speaking, such answers are limited to the propositional fragment,
and are primarily concerned with abstracting the propositional structure of sequent proofs [13,
35, 24, 22, 27, 33]. In the first-order case, it is more common to ignore the propositional structure
and instead consider only the first-order content of proofs. Expansion trees [29], which are a
generalization of Herbrand disjunctions, are perhaps the most minimalistic of such approaches as
they record only the quantifier instances in a tree structure. (Indeed, the notion of expansion
trees generalizes readily to even higher-order logic, which is the domain where it was initially
developed.) The correctness criterion for expansion trees—that the deep formula is a tautology—is
in co-NP. Specialized techniques such as the mating method [2] or the connection method [5]
have been developed to represent these tautological checks using graph structures, but the worst
case complexity of these techniques remains high.

To our knowledge, there has been only a single attempt to produce canonical proof structures
directly in the sequent calculus, in this case for propositional MALL (with a certain restriction on
>) [7, 36]. This attempt also used multi-focusing as its abstraction mechanism, and it is actually
the first place where the concept of maximal proofs appears in the literature. Multi-focusing was
first proposed in [31, 9] as a natural extension of Andreoli’s focusing system [1] for linear logic,
and a similar concept has been independently developed in game semantics [32]. Although we
have shown that maximal proofs are isomorphic to expansion proofs in this paper, they can be
exponentially larger than expansion proofs [4]. However, correctness of any sequent proof is easy
to check as one simply needs to check that every inference in the proof is an instance of a proper
rule schema. Indeed, even open (unfinished) sequent proofs can be seen to be correct, while the
correctness condition for expansion trees only makes sense for completed proofs.

It is important to note that the notion of maximal proof strictly generalizes existing canonical
forms in other contexts. For example, for intuitionistic logic, if one uses the focused sequent
calculus LJF [26] with just the two negative connectives of implication and universal quantification
and with negative atomic formulas, then maximal proofs are the same as singly focused proofs.
Moreover, they are isomorphic to the β-normal η-long forms of the typed λ-calculus [10].
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7 Conclusion

We have illustrated that, instead of discarding the sequent calculus in search of canonical proof
systems, sequent proofs can be systematically abstracted into more canonical forms. In this
paper, we have imposed a particular focusing discipline on classical sequent proofs—negatively
polarized propositional connectives with minor use of delays—and have then showed that maximal
multi-focusing in the sequent calculus yields the parallel and minimalistic notion of proofs based
on expansion trees.

We leave untouched the question of maximality for the unrestricted permutations, i.e., without
preventing >/contr or init/contr permutations. It is easy to show that, although maximal proofs
do exist in this larger setting, they are not unique, and therefore the natural notion of equality for
maximal proofs (action equivalence) does not provide canonical representatives for the permutative
equivalence classes of maximal proofs. It is worth investigating the properties of such non-canonical
maximal proofs. For example, are there natural geometric structures that correspond to maximal
proofs in more permutatively permissive systems? Similar questions can be asked about the
full LKF system, with both positive and negative propositional connectives, and for the related
focused sequent calculi for intuitionistic logic and linear logic.
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