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Abstract. The operational semantics and typing judgements of mod-
ern programming and specification languages are often defined using re-
lations and proof systems. In simple settings, logic programming lan-
guages can be used to provide rather direct and natural interpreters for
such operational semantics. More complex features of specifications such
as names and their bindings, proof rules with negative premises, and the
exhaustive enumeration of state spaces, all pose significant challenges
to conventional logic programming systems. In this paper, we describe
a simple architecture for the implementation of deduction systems that
allows a specification to interleave between finite success and finite fail-
ure. The implementation techniques for this prover are largely common
ones from higher-order logic programming, i.e., logic variables, (higher-
order pattern) unification, backtracking (using stream-based computa-
tion), and abstract syntax based on simply typed λ-terms. We present a
particular instance of this prover’s architecture and its prototype imple-
mentation, Level 0/1, based on the dual interpretation of (finite) success
and finite failure in proof search. We show how Level 0/1 provides a high-
level and declarative implementation of model checking and bisimulation
checking for the (finite) π-calculus.

1 Introduction

The operational semantics and typing judgements of modern programming and
specification languages are often defined using relations and proof systems, e.g.,
in the style of Plotkin’s structural operational semantics. In simple settings,
higher-order logic programming languages, such as λProlog and Twelf, can be
used to provide rather direct and natural interpreters for operational seman-
tics. However, such logic programming languages can provide little more than
animation of semantic descriptions: in particular, reasoning about specified lan-
guages has to be done outside the system. For instance, checking bisimulation
in process calculi needs analyzing all the transition paths a process can poten-
tially go through. To add to the complication, modern language specifications
often make use of complex features such as variable bindings and the notion
of names (as in the π-calculus [MPW92]), which interferes in a non-trivial way
with case analyses. These case analyses cannot be done directly inside the logic



programming system, not in a purely logical way at least, even though they are
simply enumerations of answer substitutions. In this paper, we describe an ex-
tension to logic programming with logically sound features which allow us to do
some modest automated reasoning about specifications of operational semantics.
This extension is more conceptual than technical, that is, the implementation of
the extended logic programming language uses only implementation techniques
that are common to logic programming, i.e., logic variables, higher-order pattern
unification, backtracking (using stream-based computation) and abstract syntax
based on typed λ-calculus.

The implementation described in this paper is based on the logic FOλ∆∇

[MT03], which is a logic based on a subset of Church’s Simple Theory of Types
but extended with fixed points and the ∇ quantifier. In FOλ∆∇ quantification
over propositions is not allowed but quantifiers can otherwises range over vari-
ables of higher-types. Thus the terms of the logic can be simply typed terms,
which can be used to encode the λ-tree syntax of encoded objects in an opera-
tional semantics specification. This style of encoding is a variant of higher-order
abstract syntax in which meta-level λ-abstractions are used to encode object-
level variable binding. The quantifier ∇ is first introduced in [MT03] to help
encode the notion of “generic judgment” that occurs commonly when reasoning
with λ-tree syntax.

The logical extension to allow fixed points is done through a proof theoretical
notion of definitions [SH93,Eri91,Gir92,Stä94,MM00]. In a logic with definitions,
an atomic proposition may be defined by another formula (which may contain
the atomic proposition itself). Proof search for a defined atomic formula is done
by unfolding the definition of the formula. A provable formula like ∀X.pX ⊃ qX ,
where p and q are some defined predicates, expresses the fact that for every term
t for which there is a successful computation (proof) of pt, there is a computation
(proof) of qt. Towards establishing the truth of this formula, if the computation
tree associated with p is finite, we can effectively enumerate all its computation
paths and check the provability of qt for each path. Note that if the computation
tree for p is empty (pt is not provable for any t) then ∀X.pX ⊃ qX is (vacuously)
true. In other words, failure in proof search for pX entails success in proof search
for pX ⊃ qX . The analogy with negation-as-failure in logic programming is
obvious: if we take qX to be ⊥ (false), then provability of pX ⊃ ⊥ corresponds to
success in proof search for not(pX) in logic programming. This relation between
negation-as-failure in logic programming and negation in logic with definitions
has been observed in [HSH91,Gir92]. In the implementation of FOλ∆∇, the
above observation leads to a neutral view on proof search: If proof search for a
goal A returns a non-empty set of answer substitutions, then we have found a
proof of A. On the other hand, if proof search for A returns an empty answer set,
then we have found a proof for ¬A. Answer substitutions can thus be interpreted
in a dual way depending on the context of proof search; see Section 3 for more
details.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the logic FOλ∆∇. Section 3 describes an implementation of a fragment of



FOλ∆∇, the Level-0/1 prover, which is based on a dual interpretation of fail-
ure/success in proof search. Section 4 discusses the treatment of variables in the
Level-0/1 prover, in particular, it discusses the issues concerning the interaction
between eigenvariables and logic variables. Section 5 specifically contrasts the
expressiveness of Level-0/1 over what is available in λProlog. Section 6 gives a
specification of the operational semantics for the π-calculus and shows how Level-
0/1 can turn that specification naturally into a checker for (open) bisimulation.
Section 7 provides a specification of modal logic for the π-calculus, which the
Level-0/1 prover can use to do model checking for that process calculus. These
two specifications involving the π-calculus illustrate the use of the ∇-quantifier
to help capture various restrictions of names in the π-calculus. Section 8 dis-
cusses the components of proof search implementation and outlines a general
implementation architecture for FOλ∆∇. Section 9 discusses future work. An
extended version of this paper is available on the web, containing more exam-
ples and more detailed comparison with logic programming.

2 Overview of the logic FOλ
∆∇

The logic FOλ∆∇ [MT03] (pronounced “fold-nabla”) is presented using a se-
quent calculus that is an extension of Gentzen’s system LJ [Gen69] for intuition-
istic logic. The first extension to LJ is to allow terms to be simply typed λ-terms
and to allow quantification to be over all types not involving the predicate type
(in Church’s notation [Chu40], the types of quantified variables do not contain
o). A sequent is an expression of the form B1, . . . , Bn − B0 where B0, . . . , Bn

are formulas and the elongated turnstile − is the sequent arrow. To the left of
the turnstile is a multiset: thus repeated occurrences of a formula are allowed. If
the formulas B0, . . . , Bn contain free variables, they are considered universally
quantified outside the sequent, in the sense that if the above sequent is prov-
able then every instance of it is also provable. In proof theoretical terms, such
free variables are called eigenvariables. Eigenvariable can be used to encode the
dynamics of abstraction in the operational semantics of various languages. How-
ever, for reasoning about certain uses of abstraction, notably the notion of name
restriction in π-calculus, eigenvariables do not capture faithfully the intended
meaning of such abstractions. To address this problem, in the logic FOλ∆∇ se-
quents are extended with a new notion of “local scope” for proof-level bound
variables (see [MT03] for motivations and examples). In particular, sequents in
FOλ∆∇ are of the form

Σ ; σ1 . B1, . . . , σn . Bn − σ0 . B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over
the whole sequent, and σi is a local signature, i.e., a list of variables scoped over
Bi. We shall consider sequents to be binding structures in the sense that the
signatures, both the global and local ones, are abstractions over their respective
scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope,



Σ, σ ` t : γ Σ ; σ . B[t/x], Γ − C

Σ ; σ . ∀γx.B, Γ − C
∀L

Σ, h ; Γ − σ . B[(h σ)/x]

Σ ; Γ − σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ − C

Σ ; σ . ∃x.B,Γ − C
∃L

Σ, σ ` t : γ Σ ; Γ − σ . B[t/x]

Σ ; Γ − σ . ∃γx.B
∃R

Σ ; (σ, y) . B[y/x], Γ − C

Σ ; σ . ∇x B, Γ − C
∇L

Σ ; Γ − (σ, y) . B[y/x]

Σ ; Γ − σ . ∇x B
∇R

Fig. 1. The introduction rules for quantifiers in FOλ∆∇.

following the usual convention of the λ-calculus. The meaning of eigenvariables
is as before, only that now instantiation of eigenvariables has to be capture-
avoiding, with respect to the local signatures. The variables in local signatures
act as locally scoped generic constants, that is, they do not vary in proofs since
they will not be instantiated. The expression σ . B is called a generic judgment
or simply a judgment. We use script letters A, B, etc., to denote judgments. We
write simply B instead of σ . B if the signature σ is empty.

The logical constants of FOλ∆∇ are ∀γ (universal quantifier), ∃γ (existen-
tial quantifier), ∇γ (nabla quantification), ∧ (conjunction), ∨ (disjunction), ⊃
(implication), > (true) and ⊥ (false). The subscript for the three quantifiers is
the type of the variable they are intended to bind: in particular, γ can range
over any type not containing the predicate type. Usually this type subscript is
suppressed. The inference rules for the three quantifiers of FOλ∆∇ are given in
Figure 1. The introduction rules for propositional connectives are straightfor-
ward generalization of LJ: in particular, local signatures are distributed over the
subformulas of the main formula (reading the rules bottom-up). The complete
set of rules for FOλ∆∇ is given in Figure 10 at the end of this paper.

During the search for proofs (reading rules bottom up), the right-introduction
rule for ∀ and the left-introduction rule for ∃ place new variables into the global
signature: the left and right introduction rules for ∇ place new variables into the
local signature. In the ∀R and ∃L rules, raising [Mil92] is used when replacing
the bound variable x, which can range over the variables in both the global
signature and the local signature σ, with the variable h that can only range
over variables in the global signature: so as not to miss substitution terms, the
variable x is replaced by the term (h x1 . . . xn), which we shall write simply as
(h σ), where σ is the list x1, . . . , xn (h must not be free in the lower sequent of
these rules). In ∀L and ∃R, the term t can have free variables from both Σ and
σ. This is presented in the rule by the typing judgment Σ, σ ` t : γ. The ∇L
and ∇R rules have the proviso that y is not free in ∇x B.

Besides these introduction rules for logical constants, FOλ∆∇ additionally
allows the introduction of atomic judgments, that is, judgments of the form
σ . A where A is an atomic formula. To each atomic judgment, A, we associate
a judgment B called the definition of A. The introduction rule for the judgment
A is in effect done by replacing A with B during proof search. This notion of



definitions is an extension of work by Schroeder-Heister [SH93], Eriksson [Eri91],
Girard [Gir92], Stärk [Stä94] and McDowell and Miller [MM00] and allows for
modest reasoning about the fixed points of definitions.

Definition 1. A definition clause is written ∀x̄[p t̄
4
= B], where p is a predicate

constant, every free variable of the formula B is also free in at least one term
in the list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of
variables. The atomic formula p t̄ is called the head of the clause, and the formula

B is called the body. The symbol
4
= is used simply to indicate a definitional

clause: it is not a logical connective.

Let ∀γ1
x1 . . .∀γn

xn.H
4
= B be a definition clause. Let y1, . . . , ym be a list of

variables of types α1, . . . , αm, respectively. The raised definition clause of H with
respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . . ∀hn.ȳ . Hθ
4
= ȳ . Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi is of type α1 →
. . . → αm → γi. A definition is a set of definition clauses together with their
raised clauses.

The introduction rules for a defined judgment are displayed below. When
applying the introduction rules, we shall omit the outer quantifiers in a definition
clause and assume implicitly that the free variables in the definition clause are
distinct from other variables in the sequent.

{Σθ ; Bθ, Γ θ − Cθ | θ ∈ CSU(A,H) for some clause H
4
= B}

Σ ; A, Γ − C
defL

Σ ; Γ − Bθ

Σ ; Γ − A def R, where H
4
= B is a definition clause and Hθ = A

In the above rules, we apply substitutions to judgments. The result of applying
a substitution θ to a generic judgment x1, . . . , xn . B, written as (x1, . . . , xn .
B)θ, is y1, . . . , yn . B′, if (λx1 . . . λxn.B)θ is equal (modulo λ-conversion) to
λy1 . . . λyn.B′. If Γ is a multiset of generic judgments, then Γθ is the multiset
{Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers
(CSU) [Hue75]. We denote by CSU(A,H) a complete set of unifiers for the pair
(A,H), that is, for any unifier θ of A and H, there is a unifier ρ ∈ CSU(A,H)
such that θ = ρ ◦ θ′ for some substitution θ′. Since we allow higher-order terms
in definitions, in certain cases there are no finite CSU’s for a given unification
problem. Thus, in the fully general case, defL may have an infinite number of
premises [MM00]. In all the applications of defL in this paper, however, the
terms involved in unification are those of higher-order patterns [Mil91,Nip93],
that is, terms in which variables are applied only to distinct bound variables.
Since higher-order pattern unification is decidable and unary (i.e., the most
general unifiers exist if the unification is solvable), the set CSU(A,H) in this



case can be treated as being either empty or containing a single substitution
which is the most general unifier. In this restricted setting, defL will have a
finite number of premises (assuming as we shall that definitions are based on
the raising of only a finite number of clauses). The signature Σθ in defL denotes
the signature obtained from Σ by removing the variables in the domain of θ
and adding the variables in the range of θ. In the defL rule, reading the rule
bottom-up, eigenvariables can be instantiated in the premise, while in the def R

rule, eigenvariables are not instantiated. The set that is the premise of the defL
rule means that that rule instance has a premise for every member of that set:
if that set is empty, then the premise is considered proved.

One might find the following analogy with logic programming helpful: if a
definition is viewed as a logic program, then the def R rule captures backchaining
and the defL rule corresponds to case analysis on all possible ways an atomic
judgment could be proved. The latter is a distinguishing feature between the
implementation of FOλ∆∇ discussed in Section 3 and logic programming. For
instance, given the definition

{pa
4
= >, pb

4
= >, qa

4
= >, qb

4
= >, qc

4
= >},

one can prove ∀x.px ⊃ qx: for all successful “computation” of p, there is a
successful computation for q. Notice that by encoding logic programs as defini-
tions, one can effectively encode negation-as-failure in logic programming using
defL [HSH91], e.g., for the above program (definition), the goal not(pc) in logic
programming is encoded as the formula pc ⊃ ⊥.

Two properties of FOλ∆∇ are particularly important to note here. First, if
a certain stratification of predicates within definitions is made (so that there
is no circularity in defining predicates through negations) then cut-elimination
and consistency can be proved [MT05,Tiu04]. Second, many inference rules are
known to be invertible, in the sense that they can always be applied without
the need for backtracking. Those rules include defL, ∇L, ∇R, ∃L, ∀R, the right
introduction rules for ∧ and ⊃, and the left introduction rules for ∧ and ∨
[Tiu04]. The invertibility of these rules motivates the choice of the fragment of
FOλ∆∇ on which the Level-0/1 prover works.

3 Mixing success and failure in a prover

We now give an overview of an implementation of proof search for a fragment
of FOλ∆∇. This implementation, called Level 0/1 prover, is based on the dual
interpretation of finite success and finite failure in proof search. In particular,
the finite failure in proving a goal ∃x.G should give us a proof of ¬(∃x.G) and
vice versa. We experiment with a simple class of formulas which exhibits this
duality. We first assume that all predicate symbols are classified as belonging to
either level-0 or level-1 (via some mapping of predicates to {0, 1}). Next consider



the following classes of formulas:

Level 0: G := > | ⊥ | A | G ∧ G | G ∨ G | ∃x.G | ∇x.G
Level 1: D := > | ⊥ | A | D ∧ D | D ∨ D | ∃x.D | ∇x.D | ∀x.D | G ⊃ D
atomic: A := p t1 . . . tn

Here, atomic formulas A in level 0 formulas must have predicates that have been
assigned to level 0. Atomic formulas in level 1 formulas can have predicates of

either level 0 and 1. Each definition clause pt̄
4
= B must be stratified, i.e., if p

is a level-0 predicate then B should belong to the class level-0, otherwise if p
is a level-1 predicate then B can be a level-0 or level-1 formula. In the current
implementation, stratification checking and type checking are not implemented,
so that we can experiment with a wider range of definitions than those for which
the meta-theory is fully developed.

Notice that in the Level-1 formula, the use of implication is restricted to the
form G ⊃ D where G is a Level-0 formula. Therefore, nested implication like
(A ⊃ B) ⊃ C is not allowed. The Level-0/1 prover actually consists of two sepa-
rate subprovers, one for each class of formulas. Implementation of proof search for
level-0 formula follows the standard logic-programming implementation for Horn
clauses: it is actually the subset of λProlog based on Horn clauses but allowing
also ∇ quantification in the body of clauses. In this prover, existential quantifiers
are instantiated with logic variables, ∇-quantifiers are instantiated with scoped
(local) constants (which have to be distinguished from eigenvariables), and def R

is implemented via backchaining. For level-1 formulas, the non-standard case is
when the goal is an implication, e.g., G ⊃ D. Proof search strategy for this case
derives from the following observation: the left-introduction rules for level-0 for-
mulas are all invertible rules, and hence can always be applied first. Proof search
for an implicational goal G ⊃ D therefore proceeds as follows:

Step 1 Run the level-0 prover with the goal G, treating any level-1 eigenvari-
ables as level-0 logic variables.

Step 2 Collect all answer substitutions produced by Step 1 into a lazy stream
of substitutions and for each substitution θ in this stream, proceed with
proving Dθ. For example, if Step 1 fails, then this stream is empty and this
step succeeds immediately.

In Step 1, we impose a restriction: the formula G must not contain any occur-
rences of level-1 logic variables. If this restriction is violated, a runtime exception
is returned and proof search is aborted. We shall return to this technical restric-
tion in Section 4. This restriction on the occurrence of logic variable has not
posed a problem for a number of applications, e.g., checking bisimulation and
satisfiability of modal logic formulas for the π-calculus.

We claim the following soundness theorem for the provers architecture above:
If Level-0/1 is given a definition and a goal formula and it successfully claims
to have a proof of that goal (that is, the system terminates without a runtime
error), then that goal follows from the definition also in the FOλ∆∇ logic.



Concrete syntax The concrete syntax for Level 0/1 prover follows the syntax of
λProlog. The concrete syntax for logical connectives are as follows:

> true ⊥ false

∧ & (ampersand) or , (comma) ∨ ; (semi-colon)
∀ pi ∃ sigma

∇ nabla ⊃ =>

The λ-abstraction is represented in the concrete syntax using an infix back-
slash, with the body of a λ-abstraction is goes as far to the right as possible,
consistent with the existing parentheses: for example, λxλf.fx can be written
as (x\f\ f x). The order of precedence for the connectives is as follows (in
decreasing order): ∧, ∨, ⊃, {∀, ∃,∇}. Follow the convention started by Church
[Chu40], the bound variable associated to a quantifier is actually a λ-abstraction:
for example, the logical expression ∀x[p(x) ⊃ q(x)]∧ p(a) can be encoded as the
(pi x\ p x => q x) & (p a). Non-logical constants, such as ‘not’ (negation-
as-failure) and ‘!’ (Prolog cut), are not implemented, while we do allow the
non-logical constant print for printing terms. Finally, we note that the percent
sign % starts a comment line.

The symbol
4
= separating the head and the body of a definition clause is writ-

ten as ‘:=’ in the concrete syntax. For example, the familiar ‘append’ predicate
for lists can be represented as the following definition.

append nil L L.

append (cons X L1) L2 (cons X L3) := append L1 L2 L3.

As in λProlog, we use ‘.’ (dot) to indicate the end of a formula. Identifiers
starting with a capital letter denote variables and those starting with lower-case
letter denote constants. Variables in a definition clause are implicitly quantified
outside the clause (the scope of such quantification is over the clause, so there
is no accidental mixing of variables across different clauses). A definition clause
with the body ‘true’ is abbreviated with the ‘true’ removed, e.g., the first clause
of append above is actually an abbreviation of append nil L L := true.

4 Eigenvariables, logic variables and ∇

The three quantifiers, ∀, ∃ and ∇, give rise to three kinds of variables dur-
ing proof search: eigenvariables, logic variables and “variables” generated by ∇.
Their characteristics are as follows: logic variables are genuine variables, in that
they can be instantiated during proof search. Eigenvariables are subject to in-
stantiation only in proving negative goals, while in positive goals they are treated
as scoped constants. Variables generated by ∇ are never instantiated and are
usually represented by λ-abstractions. Eigenvariables and logic variables share
similar data structures, and explicit raising is used to encode their dependency
on ∇-variables. The interaction between eigenvariables and logic variables is



more subtle. Consider the case where both eigenvariables and logic variables are
present in a negative goal, for example, consider proving the goal

∀x.∃y.(px ∧ py ∧ x = y ⊃ ⊥),

where p is defined as {pa
4
= >, pb

4
= >, pc

4
= >}. In proof search for this formula,

we are asked to produce for each x, a y such that x and y are distinct. This is no
longer a unification problem in the usual sense, since we seek to cause a failure
in unification, instead of success. This type of problem is generally referred to as
complement problems or disunification [LC89], and its solution is not unique in
general, even for the first-order case, e.g., in the above disunification problem, if
x is instantiated to a then y can be instantiated with either b or c. In the higher-
order case [MP03] the problem is considerably more difficult, and, hence, in the
current implementation, we disallow occurrences of logic variables in negative
goals.

In Figure 2, we show a sample session in Level 0/1 prover which highlights
the differences between eigenvariables, logic variables, and ∇-variables. The uni-
fication problem in the first two goals can be seen as the unification problem
λx.x = λx.(Mx). Notice that there is no difference between ∀ and ∇ if the goal
is level-0 (i.e., there is no implication in the goal). A non-level 0 goal is given in
the third example. Here the unification fails (hence the goal succeeds) because
x is bound in the scope of where M is bound. It is similar to the unification
problem λx.x = λx.M. Here substitution must be capture-avoiding, therefore
M cannot be instantiated with x. However, if we switch the order of quantifier
or using application-term (as in (fx) in the fourth goal) the unification succeeds.
In the last goal, we are trying to prove implicational goal with logic variables,
and the system returns an exception.

5 Comparison with λProlog

Setting aside the ∇ quantifier, one might think that the proof search behavior for
∀ and ⊃ connectives in FOλ∆∇ can be approximated in λProlog with negation-
as-failure. As we outline below, only in some weak settings can λProlog naturally
capture the deduction intended in FOλ∆∇.

The ⊃ connective, for instance, might be defined in λProlog as

imp A B :- not(A, not(B)).

If proof search for A terminates with failure, then the goal imp A B succeeds.
Otherwise, for each answer substitution for A, if B fails then the whole goal fail,
otherwise the not(B) fails and hence imp A B succeeds. For ground terms A and B

(thus, containing no eigenvariables), this coincides with the operational reading
of A => B in Level 0/1 prover. The story is not so simple, however, if there are
occurrences of eigenvariables in A or B.

One can sort of see intuitively why the inclusion of eigenvariables in A or B

would cause problem: the eigenvariables in λProlog play a single role as scoped



?- nabla x\ x = (M x).

Yes

M = x1\x1

Find another? [y/n] y

No.

?- pi x\ x = (M x).

Yes

M = x1\x1

Find another? [y/n] y

No.

?- pi M\ nabla x\ x = M => false.

Yes

Find another? [y/n] y

No.

?- pi f\ nabla x\ x = f x => print "unification succeeded".

unification succeeded

Yes

?- nabla x\ pi y\ x = y => print "unification succeeded".

unification succeeded

Yes

?- nabla x\ x = (M x) => false.

Error: non-pure term found in implicational goal.

Fig. 2. A session in Level 0/1 prover.

constant, while in Level 0/1 they have dual roles, as constants and as variables
to be instantiated. However, there is one trick to deal with this, that is, suppose
we are to prove ∀x.Ax ⊃ Bx, instead of the straightforward encoding of ∀ as pi,
we may use sigma instead:

sigma x\ not (A x, not (B x)).

Here the execution of the goal forces the instantiation of the (supposed to be)
‘eigenvariable’. The real problem appears when eigenvariables may assume two
roles at the same time. Consider the goal

∀x∀y.x = a ⊃ y = b

where a and b are constants. Assuming nothing about the domain of quantifi-
cation, this goal is not provable. Now, the possible encodings into λProlog is to
use either sigma or pi to encode the quantifier. Using the former, we get

sigma x\ sigma y\ not (x = a, not(y = b)).

This goal is provable, hence it is not the right encoding. If instead we use pi to
encode ∀, we get

pi x\ pi y\ not (x = a, not (y = b)).



This goal also succeeds, since x here will become an eigenvariable and hence it
is not unifiable with a. Of course, one cannot rule out other more complicated
encodings, e.g., treating ∀ as pi in one place and as sigma in others, but it
is doubtful that there will be an encoding scheme which can be generalized to
arbitrary cases.

6 Example: the π-calculus and bisimulation

An implementation of one-step transitions and strong bisimulation for the π-
calculus [MPW92] are given in this section. More details on the adequacy of the
encodings presented in this section can be found in [TM04,Tiu04]. We consider
only finite π-calculus, that is, the fragment of π-calculus without recursion or
replication. The syntax of processes is defined as follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|Q | P + Q.

We use the notation P, Q, R, S and T to denote processes. Names are denoted
by lower case letters, e.g., a, b, c, d, x, y, z. The occurrence of y in the process
x(y).P and (y)P is a binding occurrence, with P as its scope. The set of free
names in P is denoted by fn(P), the set of bound names is denoted by bn(P). We
write n(P) for the set fn(P) ∪ bn(P). We consider processes to be syntactically
equivalent up to renaming of bound names. The operator + denotes the choice
operator: a process P +Q can behave either like P or Q. The operator | denotes
parallel composition: the process P |Q consists of subprocesses P and Q running
in parallel. The process [x = y]P behaves like P if x is equal to y. The process
x(y).P can input a name through x, which is then bound to y. The process
x̄y.P can output the name y through the channel x. Communication takes place
between two processes running in parallel through the exchanges of messages
(names) on the same channel (another name). The restriction operator (), e.g.,
in (x)P , restricts the scope of the name x to P .

One-step transition in the π-calculus is denoted by P
α

−−→ Q, where P and Q

are processes and α is an action. The kinds of actions are the silent action τ ,
the free input action xy, the free output action x̄y, the bound input action x(y)
and the bound output action x̄(y). Since we are working with the late transition
semantics [MPW92], we shall not be concerned with the free input action. The
name y in x(y) and x̄(y) is a binding occurrence. Just like we did with processes,
we use fn(α), bn(α) and n(α) to denote free names, bound names, and names in
α. An action with a binding occurrences of a name is a bound action, otherwise
it is a free action.

We encode the syntax of process expressions using λ-tree syntax as follows.
We shall require three primitive syntactic categories: n for names, p for processes,
and a for actions, and the constructors corresponding to the operators in π-
calculus. The translation from π-calculus processes and transition judgments to
λ-tree syntax is given in Figure 3. Figure 4 shows some example processes in λ-
tree syntax. The definition clauses corresponding to the operational semantics of



z : p in : n → (n → p) → p out, match : n → n → p → p

plus : p → p → p par : p → p → p taup : p → p

nu : (n → p) → p tau : a up : n → n → a

dn : n → n → a one : p → a → p → o onep : p → (n → a) → (n → p) → o

[[0]] = z [[[x = y]P]] = match x y [[P]]
[[x̄y.P]] = out x y [[P]] [[x(y).P]] = in x λy.[[P]]
[[P + Q]] = plus [[P]] [[Q]] [[P|Q]] = par [[P]] [[Q]]
[[τ.P]] = taup [[P]] [[(x)P]] = nu λx.[[P]]

[[P
τ

−−→ Q]] = one [[P]] tau [[Q]] [[P
x̄y

−−→ Q]] = one [[P]] (up x y) [[Q]]

[[P
x(y)

−−→ Q]] = onep [[P]] (dn x) (λy[[Q]]) [[P
x̄(y)

−−→ Q]] = onep [[P]] (up x) (λy[[Q]])

Fig. 3. Encoding the π-calculus syntax with λ-tree syntax.

example 0 (nu x\ match x a (taup z)).

example 1 (par (in x y\z) (out x a z)).

example 2 (in x u\ (plus (taup (taup z)) (taup z))).

example 3 (in x u\ (plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z)))))).

example 4 (taup z).

example 5 (nu x\ (par (in x y\z) (out x a z))).

example 6 (in x u\ nu y\ ((plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z))))))).

Fig. 4. Several examples processes written in Level-0/1 syntax.

π-calculus are given in Figure 5. The original specification of the late semantics
of π-calculus can be found in [MPW92]. We note that various side conditions on
names and their scopes in the inference rules in the original specification are not
present in the encoding in Figure 5 since these are handled directly by the use
of λ-tree syntax and the FOλ∆∇ logic.

We consider some simple examples involving one-step transitions, using the
example processes in Figure 4. We can, for instance, check whether a process is
stuck, i.e., no transition is possible from the given process. Consider example 0
in Figure 4 which corresponds to the process (x)[x = a]τ.0. This process clearly
cannot make any transition since the name x has to be distinct with respect to
the free names in the process. This is specified as follows

?- example 0 P, (pi A\pi Q\ one P A Q => false),

(pi A\pi Q\ onep P A Q => false).

Yes

Recall that we distinguish between bound-action transition and free-action tran-
sition, and hence there are two kinds of transitions to be verified.



onep (in X M) (dn X) M. % bound input

one (out X Y P) (up X Y) P. % free output

one (taup P) tau P. % tau

one (match X X P) A Q := one P A Q. % match prefix

onep (match X X P) A M := onep P A M.

one (plus P Q) A R := one P A R. % sum

one (plus P Q) A R := one Q A R.

onep (plus P Q) A M := onep P A M.

onep (plus P Q) A M := onep Q A M.

one (par P Q) A (par P1 Q) := one P A P1. % par

one (par P Q) A (par P Q1) := one Q A Q1.

onep (par P Q) A (x\par (M x) Q) := onep P A M.

onep (par P Q) A (x\par P (N x)) := onep Q A N.

% restriction

one (nu x\P x) A (nu x\Q x) := nabla x\ one (P x) A (Q x).

onep (nu x\P x) A (y\ nu x\Q x y) := nabla x\ onep (P x) A (y\ Q x y).

% open

onep (nu y\M y) (up X) N := nabla y\ one (M y) (up X y) (N y).

% close

one (par P Q) tau (nu y\ par (M y) (N y)) :=

sigma X\ onep P (dn X) M & onep Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :=

sigma X\ onep P (up X) M & onep Q (dn X) N.

% comm

one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\

onep P (dn X) M & one Q (up X Y) T & (R = (M Y)).

one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\

onep Q (dn X) M & one P (up X Y) R & (T = (M Y)).

Fig. 5. Definition of one-step transitions of finite late π-calculus

bisim P Q :=

(pi A\ pi P1\ one P A P1 => sigma Q1\ one Q A Q1 & bisim P1 Q1) &

(pi X\ pi M\ onep P (dn X) M => sigma N\ onep Q (dn X) N &

pi w\ bisim (M w) (N w)) &

(pi X\ pi M\ onep P (up X) M => sigma N\ onep Q (up X) N &

nabla w\ bisim (M w) (N w)) &

(pi A\ pi Q1\ one Q A Q1 => sigma P1\ one P A P1 & bisim Q1 P1) &

(pi X\ pi N\ onep Q (dn X) N => sigma M\ onep P (dn X) M &

pi w\ bisim (N w) (M w)) &

(pi X\ pi N\ onep Q (up X) N => sigma M\ onep P (up X) M &

nabla w\ bisim (N w) (M w)).

Fig. 6. Definition of open bisimulation



We now consider a notion of equivalence between processes, called bisimu-
lation. It is formally defined as follows: a relation R is a bisimulation, if it is a
symmetric relation such that for every (P, Q) ∈ R,

1. if P
α

−−→ P′ and α is a free action, then there is Q′ such that Q
α

−−→ Q′ and
(P′, Q′) ∈ R,

2. if P
x(z)
−−→ P′ and z 6∈ n(P, Q) then there is Q′ such that Q

x(z)
−−→ Q′ and for every

name y, (P′[y/z], Q′[y/z]) ∈ R,

3. if P
x̄(z)
−−→ P′ and z 6∈ n(P, Q) then there is Q′ such that Q

x̄(z)
−−→ Q′ and (P′, Q′) ∈

R.

Two processes P and Q are strongly bisimilar if there is a bisimulation R such that
(P, Q) ∈ R. The above definition is also called late bisimulation in the literature.

Consider the definition of the bisim predicate Figure 6 that is inspired by
the above definition. Notice that the difference between bound-input and bound-
output actions is captured by the use of ∀ and ∇ quantifiers. This definition
provides a sound encoding of late bisimulation, meaning that if bisim P Q is
provable then P and Q are late-bisimilar. This encoding turns out to sound
and complete for open bisimulation [San96], a finer bisimulation relation than
late bisimulation (see [TM04] for details of the encoding and adequacy results).
The following example, taken from [San96], illustrates the incompleteness with
respect to late bisimulation.

P = x(u).(τ.τ.0 + τ.0), Q = x(u).(τ.τ.0 + τ.0 + τ.[u = y]τ.0).

This example fails because to prove their bisimilarity, one needs to do case
analysis on the input name u above, i.e., whether it is equal to y or not, and
since our current prover implements intuitionistic logic, this case split based on
the excluded middle is not available. However, if we restrict the scope of y so
that it appears inside the scope of u, then [u = y] is trivially false. In this case,
the processes would be x(u).(τ.τ.0+ τ.0) and x(u).(y)(τ.τ.0+ τ.0+ τ.[u = y]τ.0),
which correspond to example 3 and 6 in Figure 4. They can be proved bisimilar.

?- example 2 P, example 6 Q, bisim P Q.

Yes

One should compare the above declarative specification and its implementation
of symbolic bisimulation checking with that found in, say, [BN96].

7 Example: modal logics for π-calculus

We now consider the modal logics for π-calculus introduced in [MPW93]. In order
not to confuse meta-level (FOλ∆∇) formulas (or connectives) with the formulas
(connectives) of modal logics under consideration, we shall refer to the latter
as object formulas (respectively, object connectives). We shall work only with
object formulas which are in negation normal form, i.e., negation appears only



top : o′, bot : o′, and : o′ → o′ → o′, or : o′ → o′ → o′

boxMatch : n → n → o′ → o′, diaMatch : n → n → o′ → o′,
boxAct : a → o′ → o′, diaAct : a → o′ → o′,
boxInL : n → (n → o′) → o′, diaInL : n → (n → o′) → o′

boxOut : n → (n → o′) → o′, diaOut : n → (n → o′) → o′

sat : p → o′ → o.

[[true]] = top [[false]] = bot
[[A ∧ B]] = and [[A]] [[B]] [[A ∨ B]] = or [[A]] [[B]]
[[[x = y]A]] = boxMatch x y [[A]] [[〈x = y〉A]] = diaMatch x y [[A]]
[[〈α〉A]] = diaAct α [[A]] [[[α]A]] = boxAct α [[A]]
[[〈x(y)〉LA]] = diaInL x (λy[[A]]) [[[x(y)]LA]] = boxInL x (λy[[A]])
[[〈x̄(y)〉A]] = diaOut x (λy[[A]]) [[[x̄(y)]A]] = boxOut x (λy[[A]])
[[P |= A]] = sat [[P]] [[A]]

Fig. 7. Translation from modal formula to λ-tree syntax.

at the level of atomic object formulas. As a consequence, we introduce explicitly
each dual pair of the object connectives. Note that since the only atomic object
formulas are either true or false, we will not need negation as a connective (since
¬true ≡ false and ¬false ≡ true). The syntax of the object formulas is given by

A ::= true | false | A ∧ A | A ∨ A | [x = z]A | 〈x = z〉A
| 〈α〉A | [α]A | 〈x̄(y)〉A | [x̄(y)]A | 〈x(y)〉LA | [x(y)]LA

Here, α denotes a free action, i.e., it is either τ or x̄y. The modalities [x(y)]L

and 〈x(y)〉L are the late bound-input modalities, and 〈x̄(y)〉 and [x̄(y)] are the
bound output modalities. There are other variants of input and output modal-
ities considered in [MPW93] which we do not represent here. For the complete
encoding of the modal logics, we refer the interested readers to [Tiu05]. In each
of the formulas (and their dual ‘boxed’-formulas) 〈x̄(y)〉A and 〈x(y)〉LA, the oc-
currence of y in parentheses is a binding occurrence whose scope is A. Object
formulas are considered equivalent up to renaming of bound variables. We shall
be concerned with checking whether a process P satisfies a given modal formula
A. This satisfiability judgment is written as P |= A. The translation from modal
formulas and judgments to λ-tree syntax is given in Figure 7.

The satisfiability relation for the modal logic is encoded as the definition
clauses in Figure 8. For the original specification, we refer the interested readers
to [MPW93]. The definition in Figure 8 is not complete, in the sense that there
are true assertion of the modal logic which are not provable using this definition
alone. For instance, the modal judgment

x(y).x(z).0 |= 〈x(y)〉L〈x(z)〉L(〈x = z〉true ∨ [x = z]false)

which basically says that two names are either equal or not equal, is valid, but
its encoding in FOλ∆∇ is not provable since the meta logic is intuitionistic. A
complete encoding of the modal logic is given in [Tiu05] by explicitly introducing
axioms for the excluded-middle on name equality, namely, ∀x∀y[x = y ∨ x 6= y].



sat P top.

sat P (and A B) := sat P A, sat P B.

sat P (or A B) := sat P A; sat P B.

sat P (boxMatch X Y A) := (X = Y) => sat P A.

sat P (diaMatch X Y A) := (X = Y), sat P A.

sat P (boxAct X A) := pi P1\ one P X P1 => sat P1 A.

sat P (diaAct X A) := sigma P1\ one P X P1, sat P1 A.

sat P (boxOut X A) := pi Q\ onep P (up X) Q => nabla y\ sat (Q y) (A y).

sat P (diaOut X A) := sigma Q\ onep P (up X) Q, nabla y\ sat (Q y)(A y).

sat P (boxInL X A) := pi Q\ onep P (dn X) Q => sigma y\ sat (Q y) (A y).

sat P (diaInL X A) := sigma Q\ onep P (dn X) Q, pi y\ sat (Q y) (A y).

Fig. 8. Specification of a modal logic for π-calculus.

The definition in Figure 8 serves also as a model checker for π-calculus. For
instance, consider the processes 2 and 6 given by in Figure 4. We have seen that
the two processes are bisimilar. A characterization theorem given in [MPW93]
states that (late) bisimilar processes satisfy the same set of modal formulas. We
consider a particular case here. The modal formula

〈x(y)〉L(〈τ〉〈τ〉true ∨ 〈τ〉true)

naturally corresponds to the process 2. In the concrete syntax, this formula is
written as follows

assert (diaInL x (y\ or (diaAct tau (diaAct tau top))

(diaAct tau top))).

We show that both processes 2 and 6 satisfy this formula.

?- assert A, example 2 P, example 6 Q, sat P A, sat Q A.

Yes

8 Components of proof search implementation

Implementation of proof search for FOλ∆∇ is based on a few simple key com-
ponents: λ-tree syntax, i.e., data structures for representing objects containing
binding, higher-order pattern unification, and stream-based computation. The
first two are implemented using the suspension calculus [NW98], an explicit
substitution notation that allows computations over λ-terms to be realized flex-
ibly and efficiently; further details of the implementation used may be found in
[NL05]. We explain the last component briefly. We use streams to store answer
substitutions, which are computed lazily, i.e., only when they are queried. The
data type for stream in the ML language is shown in Figure 9. Here the type
ustream is a polymorphic stream. The element of a stream is represented as the
data type cell, which can be a delayed cell or a forced cell. A delayed cell stores



an unevaluated expression, and its evaluation is triggered by the call to the func-
tion getcell. A forced cell is an element which is already a value. Elements of
a stream are initially created as delayed cells. Note that since an element of a
stream can also be a (cell of) stream, we can encode different computation paths
using streams of streams. This feature is used, in a particular case, to encode
the notion of backtracking in logic programming.

datatype ’a cell = delayedcell of unit -> ’a | forcedcell of ’a

type ’a elm = ’a cell

datatype ’a ustream = empty | ustream of ’a * (’a ustream elm ref)

fun getcell(t as ref(delayedcell t’)) =

let val v = t’() in (t := (forcedcell v); v) end

| getcell(ref (forcedcell v)) = v

fun mkcell t = ref(delayedcell t)

Fig. 9. The stream datatype in ML.

A stream of substitutions for a given goal stores all answer substitutions for
the goal. In logic programming, such answer substitutions can be queried one
by one by users. Often we are interested in properties that hold for all answer
substitutions. For instance, in bisimulation checking for transition systems, as
we have seen in the π-calculus example, one needs to enumerate all possible
successors of a process and check bisimilarity for each successor. In some other
examples, information on failed proof search attempts could be of interest as
well, e.g., generating counter-model in model checking. This motivates the choice
of implementation architecture for FOλ∆∇: various fragments of FOλ∆∇ are
implemented as (specialized) automated provers which interact with one another.
For the current implementation, interaction between provers are restricted to
exchanging streams of answer substitutions. A particular arrangement of the
interaction between provers that we found quite useful is what we call a ∀∃-
interaction. In its simplest form, this consists of two provers, as exemplified
in the Level-0/1 prover. Recall that in Level-0/1 prover, a proof search session
consists of Level-1 calling the Level-0 prover, extracting all answer substitutions,
and for each answer substitutions, repeating the calling cycle until the goals are
proved. At the implementation level, one can generalize the provers beyond two
levels using the same implementation architecture. For instance, one can imagine
implementing a “Level-2 prover” which extracts answers from a Level-1 prover
and perform some computations on them. Using the example of π-calculus, a
Level-2 prover would, for instance, allow for proving goals like “P and Q are not
bisimilar”. This would be implemented by simply calling Level-1 on this goal
and declare a success if Level-1 fails.



9 Future work

The current prover implements a fairly restricted fragment of the logic FOλ∆∇.
We consider extending it to richer fragments to include features like, among
others, induction and co-induction proof rules (see, e.g.,[Tiu04]) and arbitrary
stratified definition (i.e., to allow more nesting of implications in goals). Of
course, with induction and co-induction proofs, there is in general no complete
automated proof search. We are considering implementing a circular proof search
to automatically generates the (co)inductive invariants. Works along this line has
been studied in, e.g., [SD03]. This extended feature would allow us, for example,
to reason about bisimulation of non-terminating processes. Another possible
extension is inspired by an on going work on giving a game semantics for proof
search, based on the duality of success and failure in proof search. Our particular
proof search strategy for Level-0/1 prover turns out to correspond to certain ∀∃-
and ∃∀-strategies in the game semantics in [MS05]. The game semantics studied
there also applies to richer fragments of logics. It would be interesting to see if
these richer fragments can be implemented as well using a similar architecture
as in Level-0/1 prover.

We also plan to use more advance techniques to improve the current im-
plementation such as using tabling to store and reuse subproofs. The use of
tabled deduction in higher-order logic programming has been studied in [Pie03].
It seems that the techniques studied there are applicable to our implementation,
to the Level-0 prover at least, since it is a subset of λProlog. Another possi-
ble extension would be a more flexible restriction on the occurrence of logic
variables. The current prover cannot yet handle the case where there is a case
analysis involving both eigenvariables and logic variables. Study on a notion of
higher-order pattern disunification [MP03] would be needed to attack this prob-
lem at a general level. However, we are still exploring examples and applications
which would justify this additional complication to proof search. We also plan
to study more examples on encoding process calculi and the related notions of
bisimulations.
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