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Abstract. Probably the most significant result concerning cut-free sequent cal-
culus proofs in linear logic is the completeness of focused proofs. This com-
pleteness theorem has a number of proof theoretic applications — e.g. in game
semantics, Ludics, and proof search — and more computer science applications
— e.g. logic programming, call-by-name/value evaluation. Andreoli proved this
theorem for first-order linear logic 15 years ago. In the present paper, we give
a new proof of the completeness of focused proofs in terms of proof transfor-
mation. The proof of this theorem is simple and modular: it is first proved for
MALL and then is extended to full linear logic. Given its modular structure, we
show how the proof can be extended to larger systems, such as logics with induc-
tion. Our analysis of focused proofs will employ a proof transformation method
that leads us to study how focusing and cut elimination interact. A key compo-
nent of our proof is the construction of a focalization graph which provides an
abstraction over how focusing can be organized within a given cut-free proof.
Using this graph abstraction allows us to provide a detailed study of atomic bias
assignment in a way more refined that is given in Andreoli’s original proof. Per-
mitting more flexible assignment of bias will allow this completeness theorem to
help establish the completeness of a number of other automated deduction proce-
dures. Focalization graphs can be used to justify the introduction of an inference
rule for multifocus derivation: a rule that should help us better understand the
relations between sequentiality and concurrency in linear logic.

1 Introduction

Linear Logic was introduced 20 years ago by Girard and since then it has led to many
developments in proof theory, computational logic, and programming language theory.
Much proof theoretic analyses and applications of linear logic have concentrated on
the nature and dynamics of cut-elimination via the geometry of interactions, game se-
mantics, interactions, etc. Less has been studied about the structure of cut-free proofs
themselves: the main result in that area is probably the completeness of focused proofs
due to Andreoli [3, 4]. This completeness theorem has a number of applications in com-
puter science: for example, focused proofs have been used to design and formalize logic
programming languages [2, 20], to formalize proof systems that allow for both forward-
chaining and backward-chaining [15, 19], and should be behind the dualities between
call-by-name and call-by-value evaluation in the λ-calculus [6]. The structure of fo-
cused proofs is also a key ingredient in the development of Polarized Logic [17, 18] and
Ludics [13].



Andreoli’s result, however, is wrapped up in one theorem about one logic. This
seems an unfortunate situation for a number of reasons.

– Various extensions to linear logic are known (based on higher-order quantification
[11], induction and co-induction [5], different kinds of exponentials [7, 12, 16], etc.)
and it is likely that one will want to know if focusing can be proved for them.

– When examining the issues behind the assignment of polarity to literals (a neces-
sary annotation step needed to define focused proofs), it is clear that there is a lot
of flexibility allowed in providing such annotations, certainly more than what is
technically allowed in Andreoli’s proof system.

– Other logics exhibit focusing behaviors. In particular, there are focused proof sys-
tems for classical logic, namely the LKQ/LKT [8] and LKηp [9], and for intuitionis-
tic logic, namely, the LJT [14], LJQ calculus [14, 10], and LJF [19].

– In [4], focusing is not seen as a process. There appears to be advantages to consider
the process of transforming proofs into focused proofs: mixing this process with
the process of doing cut-elimination should also be rather interesting.

These reasons suggest that the notions surrounding the “completeness of focused proofs”
is both more general and more flexible than what is captured in the original theorem and
its proof. Thus, we take on the task in this paper of attempting to develop an approach
to proving focusing results by getting after the essential conditions for “focalization”
to hold and by analyzing those conditions more broadly. By analogy, once the impor-
tance of cut-elimination was appreciated, Gentzen single cut-elimination theorem was
analyzed in ways to uncover the essentially features that now allow researchers to prove
cut-elimination for a number of logics.

This paper is organized as follows. In the next Section, we state some basic defini-
tions and results for linear logic, including the original focused proof system (Figure 3).
In Section 3, we present the key elements of our methodology, in particular, the focal-
ization graph and a flexible bias assignment scheme, on the multiplicative and additive
subset of linear logic (MALL). Section 4 considers how this methodology can account
for additional structure within linear logic, including the exponentials and quantifiers.
In Section 5, we briefly consider adding to the sequent calculus proofs the multifocus
inference rule. Finally, we conclude in Section 6.

2 Linear Logic Preliminaries

The formulas of LL are made from literals which are atoms (a, b, . . . ) or negations of
atoms (a⊥, b⊥, . . . ) and multiplicative (⊗,O, 1,⊥), additive (⊕,N, 0,>) and exponential
(!, ?) connectives as well as (first-order) quantifiers (∃,∀), following the grammar:

F ::= a | F ⊗ F | F ⊕ F | 1 | 0 | ∃x.F | ! F

a⊥ | F O F | F N F | ⊥ | > | ∀x.F | ? F

For notational convenience we will write A⊥ for the negation normal form of A (that is,
where negations have only atomic scope) and we will work with one-sided sequents. We
give in Figure 1 the inference rules for Linear Logic. The initial rule can be restricted to
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` A, A⊥
initial

` Γ, A ` ∆, A⊥

` Γ, ∆
cut

` 1 1
` Γ, A ` ∆, B
` Γ, ∆, A ⊗ B

⊗
` Γ, A1

` Γ, A1 ⊕ A2
⊕1

` Γ, A2

` Γ, A1 ⊕ A2
⊕2

` Γ, A[t/x]
` Γ,∃x.A ∃

` Γ
` Γ,⊥

⊥
` Γ, A, B
` Γ, A O B

O
` Γ, A ` Γ, B
` Γ, A N B

N
` Γ,>

>
` Γ, A[c/x]
` Γ,∀x.A ∀

` ?Γ, B
` ?Γ, ! B ! ` Γ

` Γ, ? B ? w
` Γ, ? B, ? B
` Γ, ? B ? c

` Γ, B
` Γ, ? B ? d provided c is new

Fig. 1. Inference rules for LL

literals without a loss of completeness. We shall assume this restriction to atomic initial
rules in the following. In Figure 2 we give an example of a sequent proof.

The logical connectives of linear logic can be divided into two sets: the asyn-
chronous connectives (>,⊥,N,O, ?,∀) and the synchronous connectives (1, 0,⊗,⊕, !,∃)
(they are de Morgan duals of the asynchronous connectives). Reading the rules bottom-
up, the rules for the asynchronous connectives are invertible (their application is inde-
pendent from the context) whereas the synchronous have rules for which application
depends on the surrounding context. Formulas built with a topmost asynchronous con-
nective are also called negative, the one built with synchronous connective are positive.

` q, q⊥
ini

` r, r⊥
ini

` q ⊗ r, q⊥, r⊥
⊗

` q ⊗ r, q⊥ O r⊥
O

` s, s⊥
ini

` q ⊗ r, s ⊗ (q⊥ O r⊥), s⊥
⊗

` p ⊕ (q ⊗ r), s ⊗ (q⊥ O r⊥), s⊥
⊕
` 1 1

` p ⊕ (q ⊗ r), s ⊗ (q⊥ O r⊥), s⊥ ⊗ 1
⊗

Fig. 2. Example of a LL proof

The search for a focused proof
can utilize this division of inference
rules. If we read inference rules from
conclusion to premiss, we can apply
invertible rules in any order (no the
need for backtracking) and when only
synchronous rules are available we
can focus on a certain formula and
its positive subformulas. Such a chain
of synchronous rules, usually called
a focused phase, terminates when it
reaches an asynchronous formula. Proof search can then alternate between applications
of asynchronous rules and chains of synchronous rules.

A second aspect of focused proofs is that the synchronous/asynchronous classi-
fication of non-atomic formulas must be extended to atomic formulas. The arbitrary
assignment of positive (synchronous) and negative (asynchronous) bias to atomic for-
mulas must be made before the notion of focused proof is complete. How this bias is
assigned does not affect the existence of a focused proof but does impact the size and
shape of the resulting focused proofs. We shall sometimes think of such an assignment
of bias to atomic formulas as an annotation of the atoms in the formula.

The focusing proof system for linear logic, presented in Figure 3, contains two
kinds of sequents. In the sequent Ψ : ∆ ⇑ L, the “zones” Ψ and ∆ are multisets and L is
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Ψ : ∆ ⇑ L
Ψ : ∆ ⇑ ⊥, L

⊥
Ψ : ∆ ⇑ F,G, L
Ψ : ∆ ⇑ F O G, L

O
Ψ, F : ∆ ⇑ L
Ψ : ∆ ⇑ ? F, L ?

Ψ : ∆ ⇑ >, L
>

Ψ : ∆ ⇑ F, L Ψ : ∆ ⇑ G, L
Ψ : ∆ ⇑ F N G, L

N
Ψ : ∆ ⇑ B[y/x], L
Ψ : ∆ ⇑ ∀x.B, L ∀

Ψ : · ⇓ 1 1
Ψ : ∆1 ⇓ F Ψ : ∆2 ⇓ G
Ψ : ∆1, ∆2 ⇓ F ⊗ G

⊗
Ψ : · ⇑ F
Ψ : · ⇓ ! F !

Ψ : ∆ ⇓ F1

Ψ : ∆ ⇓ F1 ⊕ F2
⊕1

Ψ : ∆ ⇓ F2

Ψ : ∆ ⇓ F1 ⊕ F2
⊕2

Ψ : ∆ ⇓ B[t/x]
Ψ : ∆ ⇓ ∃x.B ∃

Ψ : ∆, F ⇑ L
Ψ : ∆ ⇑ F, L

R ⇑
Ψ : K⊥ ⇓ K

I1
Ψ : ∆ ⇓ F
Ψ : ∆, F ⇑ ·

D1

Ψ : ∆ ⇑ F
Ψ : ∆ ⇓ F

R ⇓
Ψ,K⊥ : · ⇓ K

I2
Ψ, F : ∆ ⇓ F
Ψ, F : ∆ ⇑ ·

D2

Fig. 3. The Σ3 focused proof system of [4] for linear logic. The provisos on the rules are the
following: In ∀-rule variable y is not free in the conclusion. In R ⇑ F is not asynchronous while
in R ⇓ F is either asynchronous or a negative literal. In I1 and I2, K is a positive literal. In D1

and D2, F is not a negative literal.

a list. This sequent encodes the usual one-sided sequent ` ?Ψ, ∆, L (here, we assume the
natural coercion of lists into multisets). This sequent will also satisfy the invariant that
requires ∆ to contain only literals and synchronous formulas. In the sequent Ψ : ∆ ⇓ F,
the zone Ψ is a multiset of formulas and ∆ is a multiset of literals and synchronous
formulas, and F is a single formula.

The main result about focused proofs is that they are complete for all of linear logic.
The following theorem was proved in [4].

Theorem 1. Given Ψ a set of formulas, Γ a multiset of non-asynchronous formulas
and ∆ an arbitrary list of formulas, `?Ψ, Γ, ∆ is provable in LL if and only if the sequent
Ψ : Γ ⇑ ∆ is provable in Σ3 proof system (given in figure 3).

3 Focalization in MALL

In this part we will prove Focalization for MALL only in order to deal with a smaller
system when introducing our proof technique. We will later extend the result to full LL.
In doing so, we are driven by the will for simplicity but also by the particular interest
for focalization in MALL for it is the system on which are built the basic objects of
Ludics [13], the designs. It is actually the initial motivation of our work: finding a
simpler and shorter proof of Focalization for MALL for Ludics purpose.

But still, our main concern is simplicity and that is why we first consider cut-free
MALL proofs and we intend to demonstrate that Focalization is actually a fairly simple
result, although the size of Σ3 often makes it difficult to grasp.
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3.1 Permutation of rules in LL

The sequential structure of sequent calculus proofs records the precise ordering of the
application of inference rules, even when that ordering is not particularly important
or when other orders result in similar proofs. Such sequentialization is responsible for
not only an explosion in the space of proofs but also for the possibility of providing a
precise analysis of the relationship between proof rules. In other words, what makes it
difficult to determine if two sequent proofs are essentially the same or different is what
provides us with powerful analysis tools for developing an approach to “causation” a
la focalization. Systems like proof nets which get rid of the first difficulty have trouble
when it comes to checking whether a proof structure is a proof net or whether a link in
a proof net depends on another link.

Definition 1 (Permutation of inference rules). We define two notions of permutabil-
ity: (i) α/β-permutability: there is an α/β-permutability if, given a sequent S contain-
ing two formulas A and B, then for any proofΠ of S starting with the α rule (on formula
A) right before the β rule (on formula B) is applied, there exists a proof Π ′ of S where
the two rules have been exchanged: the β rule comes first, immediately followed by
the α rule (there is of course a degenerated case for rules with no premiss, like >). (ii)
α|β-permutability: we speak of α|β-permutability when there is both α/β-permutability
and β/α-permutability.

Given two sets of inference rules N and P, we say that, with respect to these two
sets, P has weak permutability if given two rules α, β of P we have α|β-permutability.
We say that N has full permutability when it has weak permutability and when in
addition for any pair of rules (α, β) ∈ P × N , we have α/β-permutability.

Proposition 1 (Permutabilities of linear logic inference rules). Let N be the set of
inference rules attached to the MALL asynchronous connectives and P be the set of
inference rules attached to the MALL synchronous connectives.N has full permutability
while P has weak permutability.

The proof is trivial either by introducing cuts and then reducing them or by do-
ing small steps permutations. Notice that the synchronous connectives do not have full
permutability: sequent ` a⊥ O b⊥, a ⊗ b has no cut-free proof that begins with a ⊗-rule.

3.2 Focalization Graph

The introduction of the Focalization Graph structure brings us to the heart of our result.
The acyclicity of the graph will be crucial in establishing focalization.

Definition 2. A MALL sequent containing at least a negative non-literal formula is
negative. It is positive when it contains no negative non-literal formula and at least
one positive non-literal formula. Otherwise it is atomic.

Definition 3 (Positive Trunks). Given a MALL proof Π of a positive sequent S we
define the Positive Trunk Π+ as the maximal prefix of the tree Π containing only pos-
itive rules, that is the tree starting at the root of Π and whose leaves are the bottom
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sequents of the first non-positive rules encountered on every branch of the tree, if such
a rule exists. The Border of a Positive Trunk is the set of its leaves. The border contains
only negative or atomic sequents. The Active Formulas of a Positive Trunk Π+ are the
formulas which are principal formulas of a rule occurring in Π+. They are the formulas
of the base that are decomposed into subformulas within the considered Trunk.

Remark 1. When addressing the case of the exponentials, we will see that we can add
a condition to shorten a branch in the positive trunk, this condition can also be regarded
as expressing the fact that the rule for ! is bipolarized, being both positive and negative.

` q ⊗ r, q⊥ O r⊥ ` s, s⊥

` q ⊗ r, s ⊗ (q⊥ O r⊥), s⊥
⊗

` p ⊕ (q ⊗ r), s ⊗ (q⊥ O r⊥), s⊥
⊕
` 1 1

` p ⊕ (q ⊗ r), s ⊗ (q⊥ O r⊥), s⊥ ⊗ 1
⊗

Fig. 4. Positive Trunk associated to figure 2

We now define a relation on oc-
currences of formulas involved in Π :
F ≺ G iff G is a subformula (or sub-
occurrence) of F in the precise sense
that occurrence G is obtained from the
decomposition of F along a branch of
Π .

Definition 4 (≺-relation). The suboccurrence relation (written ≺) on occurrences of
formulas appearing in Π is the reflexive and transitive closure of the binary relation ≺1

defined by F ≺1 G if there exists in Π a rule α with conclusion sequent S and premisses
(Si)i∈I such that F is the principal formula of S and G is a subformula of F produced
by the rule α in some of the Si.

If F ≺ G we will say that G is a ≺-subformula of F or a descendent of F.

The following lemma will help us proving our main result:

Lemma 1. Let Π+ be a Positive Trunk with root S and border B. For any S′ ∈ B the
relation ≺ defines a one-to-one function from S′ to S.

Proof. We actually prove a stronger result: the result holds for any sequent appearing
in the trunk, not only for sequents in B.

The result is proved by induction on the height of the considered sequent in Π+:
• The base case is trivial since the considered sequent is S itself (recall ≺ is reflexive).
• Suppose the result is true for a given height n ≤ h(Π+) and suppose n+1 ≤ h(Π+). Let
Sn+1 be a sequent of height n+1 and let α be the rule of which Sn+1 is a premiss and call
Sn its conclusion. By induction hypothesis Sn satisfies the condition. We can define a
one-to-one function ιn from Sn+1 (as set of occurences of formulas) to Sn as follows: let
G be a formula of Sn+1. if F ≺1 G for some F ∈ Sn then fix F to be the image of G by
ιn. If no such formula exists, then an occurrence of G is also present in Sn then associate
the two occurrences of G. The function built in this way is one-to-one thanks to the fact
that every MALL positive rule produce at most (and actually exactly) one subformula
of the principal formula in every premiss of the rule. Composing the function we just
defined with the one-to-one function provided by the induction hypothesis we see that
Sn+1 satisfies the condition.
By induction we get the result we expected. ut

6



Lemma 2. A formula which is not active in the Positive Trunk appears in exactly one
sequent of the border.

An active formula F to which no branching rule is applied in Π+ (speak of a non-
branching formula wrt. Π+) is such that there exists exactly one formula G in one of the
sequents of the border which is ≺-related with F: F ≺ G.

To a Positive Trunk we associate a graph as follows:

Definition 5 (Focalization graph). Given a Positive Trunk Π+ we define the Focal-
ization Graph G to be the graph whose vertices are the active formulas of the Trunk
and such that there is an edge from the F to G iff there is a sequent S′ in the border
containing a negative ≺-subformula F′ of F and a positive ≺-subformula G′ of G.

Example 1. The Focalization graph associated with our example proof is:

s⊥ ⊗ 1 s ⊗ (q⊥ O r⊥) −→ p ⊕ (q ⊗ r)

This graph is acyclic. In the follwing we will show that it is true in general and this will
be crucial for focalization.

Lemma 3. If S′ and S′′ are sequents occurring in different branches of Π+, then there
is at most one formula in the root of Π+ which has ≺-subformulas in both S′ and S′′.

Proof. If this was not the case, let S′ ∧S′′ be their highest predecessor in the tree. This
sequent would necessarily have at least two formulas that would be ≺-subformulas of
the same formula in the root which is impossible thanks to lemma 1. ut

Proposition 2. The Focalization Graphs are acyclic.

Proof. We prove the result by reductio ad absurdum.
Let S be a positive sequent with a proof Π . Let Π+ be the corresponding positive trunk
and G the associated Focalization Graph. Suppose that G has a cycle and consider such
a cycle of minimal length (F1 → F2 → · · · → Fn → F1) in G and let us consider
S1, . . . ,Sn sequents of the border justifying the arrows of the cycle.

Thanks to lemma 3 these sequents are actually uniquely defined. With the same idea
we can immediately notice that the cycle is necessarily of length n ≥ 2 since two ≺-
subformulas of the same formula can never be in the same sequent in the border of the
positive trunk, thanks to lemma 1.

Let S0 be
∧n

i=1 Si be the highest sequent in Π such that all the Si are leaves of the
tree rooted in S0. We will obtain the contradiction by studying S0 and we will reason
by case on the rule applied to this sequent S0:
• the rule cannot be a 1 rule since this rule produces no premiss and thus we would
have an empty cycle which is non-sens. Any rule with no premiss would lead to the
same contradiction.
• If the rule is one of the ⊕-rules, then the premiss S′0 of the rule would also satisfy the
condition required for S0 (all the Si would be part of the proof tree rooted in S′0) con-
tradicting the maximality of S0. If the rule is any other non-branching rule, maximality
of S0 would also be contradicted.
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• Thus the rule shall be branching: it shall be a ⊗-rule. Write SL and SR for the left and
right premisses of S0. Let G = GL ⊗ GR be the principal formula in S0 and let F be the
active formula of the Trunk such that F ≺ G. There are two possibilities:
(i) either F ∈ {F1, . . . , Fn} and F is the only formula of the cycle having at the same
time ≺-subformulas in the left premiss and in the right premiss,
(ii) or F < {F1, . . . , Fn} and no formula of the cycle has ≺-subformulas in both pre-
misses.

Let thus IL (resp. IR) be the sets of indices of the active formulas of the root S
having (≺-related) subfomulas only in the left (resp. right) premiss. Clearly neither IL

nor IR is empty since it would contradict the maximality of S0. Indeed if IL = ∅, then
SR satisfies the condition of being dominated by all the Si, 1 ≤ i ≤ n and S0 is not
maximal anymore. By definition of the two sets of indices we have of course IL∩ IR = ∅

and the only formula of the cycle possibly not in IL ∪ IR is F if we are in the case (i):
all other formulas in the cycle have their index either in IL or in IR.

As a consequence there must be an arrow in the cycle (and thus in the graph) from a
formula in IL to a formula in IR (or the opposite). Let i ∈ IL and j ∈ IR be such indexes
(say for instance Fi → F j in G) and let S′ be the sequent of the border responsible for
this edge. S′ contains F′i and F′j and by definition of the sets IL and IR, S′ cannot be in
the tree rooted in S0 which is in contradiction with the way we constructed S0.

Then there cannot be any cycle in the graph. ut

3.3 Pre-Focalization process

What the previous result actually tells us is that the Focalization Graph has a source,
a formula that is not pointed to by any other formula in the graph, that is a formula
such that whenever a sequent of the border contains one of its ≺-subformulas F, the
subformula is not positive or the sequent is positive. To put things in other terms, there
is a positive active formula in the root sequent whose positive layer of connective is
completely decomposed during the Positive Trunk, independentely of any focusing dis-
cipline. This can be regarded as a kind of implicit focusing result. In some sense that
tells us there is a formula which is already implicitely focused in the positive trunk.

Thanks to full permutability of the negatives, weak permutability of the positives and
the acyclicity of the focalization graphs we know that, given a MALL proof Π of a
sequent S, we can transform it to another proof satisfying the following conditions:

Pre-Focalization Process:

1. Asynchronous phase: thanks to full permutability of negatives, if S is negative
then we can permute down all the negative rules so that Π is transformed to a proof
Π ′ where the bottom part of the proof tree is made only of negative rules up to the
point where the branches of the tree reach positive or atomic sequents;

2. Synchronous phase: if S is positive, the associated Focalization Graph allows us
to select a source of the graph, let us say P, as a focus and thanks to weak per-
mutability, we can have the positive rules on ≺-subformulas of P permuted down
so thatΠ is transformed into a treeΠ ′ for which the maximal prefix containing only
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rules applied to P and its positive ≺-subformulas decomposes P up to its negative
or literal subformulas. We are thus left with negative or atomic sequents, or positive
sequents where the subformulas of P are literals.

3. if S is atomic, we can only apply an initial rule and thus close the tree.

This process is clearly terminating thanks to easy arguments on the complexity/size of
the considered sequents in terms of number of polarity layers, for instance.

3.4 Dealing with Bias Assignments.

The method described in the previous section shows a proof transformation technique
that results almost in focused proofs but not exactly. Indeed we will now see that An-
dreoli’s system forces more cosntraints on the proofs in that the use of the initial rule is
more constrained. We shall now generalize our technique to capture exactly Andreoli’s
focussing disciplin as well as a more general focusing disciplin with a different manage-
ment of the atoms. The freedom we get on Bias Assignment can be crucial for several
applications in proof search.

In Σ3, the initial rule has two versions, I1 and I2 (see figure 3). The initial rule can
be applied only during a focusing phase on positive literals. In particular, the sequent
` a⊥ ⊕ 0, a ⊕ 0 would have only one focused proof whereas the technique of the
Focalization Graph presented previously would have led to two different focused proofs.
Andreoli system adds more constraints to the proof search while remaining complete.
We now introduce Bias Assignments in order to treat this.

Definition 6. Given a provable sequent S, we call PS (for available positions for S)
the set containing all the branches of all possible proof trees for S. We write OS for the
set of occurrences of literal occurring in S.

Definition 7 (Bias assignment BS). A bias assignment for a provable sequent S, writ-
ten BS, is a partial function from PS × OS to {−;+}

Example 2. We give here some examples of typical bias assignments:
• The bias assignment which is defined nowhere corresponds to the previous situation.
• Andreoli’s bias assignment.BΣ3 is the function defined as: for any atom a,BΣ3 ( , a) =
+ and BΣ3 ( , a⊥) = −. More generally the bias assignments may not be sensitive to their
first component and give the same polarity to different occurrences of the same litteral.
In that case, we speak of an atom-based bias assignment.
•We can consider bias assignments which are sensitive to the position in the tree where
the considered literal is. For such assignments b, b(p, a) may be different from b(q, a). In
this case we speak of an occurrence-based bias assignment. We can consider coherence
conditions on the assignments. For instance, moving upwards on a branch, we may want
to ensure that the polarity won’t change once it is set: if p and q are two branches, p
being an extension of q and if b(q, a) ↘ then b(p, a) ↘ and b(p, a) = b(q, a). But on
the other hand we may also want to consider totally arbitrary assignments.

Definition 8 (B-Focalization Graphs). Given a positive sequent S, a proofΠ of S and
a bias assignment B for S, we define the B-Focalization Graph GB

S
as in the previous
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subsection but considering as negative formulas the literals which are assigned polarity
− in a sequent S′ of the border and as positive formulas the literals which are assigned
polarity +. The literals for which B is not defined in S′ are treated as before: they do
not contribute to the graph.

The bias assignment results in more arcs in the Focalization Graph. For instance,
with BΣ3 our example of figure 2 has the following focalization graph:

s⊥ ⊗ 1 −→ s ⊗ (q⊥ O r⊥) −→ p ⊕ (q ⊗ r)

This might also produce cycles. The following proposition ensures it does not:

Proposition 3. Given a positive sequent S and a proof Π of S, whatever bias assign-
ment B we choose, the B-Focalization Graph GB

S
is acyclic.

` q, q⊥
ini

` r, r⊥
ini

` q ⊗ r, q⊥, r⊥
⊗

` p ⊕ (q ⊗ r), q⊥, r⊥
⊕

` p ⊕ (q ⊗ r), q⊥ O r⊥
O
` s, s⊥

ini

` p ⊕ (q ⊗ r), s ⊗ (q⊥ O r⊥), s⊥
⊗

` 1 1

` p ⊕ (q ⊗ r), s ⊗ (q⊥ O r⊥), s⊥ ⊗ 1
⊗

Fig. 5. focalized proof of figure 2

It is essentially sufficient to no-
tice that adding these arcs will
have no effect on the arguments we
used previously since they were
only concerned with the splitting
structure of the branching rules.
We can now state our main results
concerning Focalization:

Theorem 2 (B-Focalization for MALL). Let S be a MALL sequent. To any proof Π
of S and bias assignment B, we can associate a new proof satisfying the following
constraints depending on the sequent S:
(i) if it is a negative sequent starts by decomposing negative formulas;
(ii) when a positive sequent is encountered, a positive formula is chosen as a focus
and is hereditarily decomposed until its negative or literal subformulas are found. if
the subformula is negative we use the previous item, if the formula is a litteral, the
behaviour depends on the bias which is assigned to the literal.

Theorem 3 (Andreoli’s Focalization for MALL). If we consider the bias assignment
BΣ3 , the focalization process produces proofs which are focused in Andreoli’s Σ3 sense.

4 Focalization for full LL and larger extensions

Our analysis was first restricted to the case of cut-free propositional MALL, mainly for
simplicity purposes. We now extend the result to richer fragments of Linear Logic and
present how to treat the cut, the exponentials and the quantifiers.

4.1 Quantifiers

The proof in the previous section can be directly adapted to the quantifiers: they are
connectives with non-branching rules and with the appropriate permutabilities (full-
permutabilities for the ∀ which is negative and weak-permutability for the ∃ which is
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positive). The first-order case is thus treated trivially. The higher-order case requires
some additional care for Bias Assignments in order to verify that bias assignments are
still meaningful in this case but our abstract definition of Bias Assignments allows us
to define the needed constraints on bias assignments. The details are beyond the scope
of this paper.

4.2 MALL with cut

Dealing with the cut-rule in an analysis of focusing is not critical when one is driven
by completeness purposes only. But since we want to study a dynamic process of focal-
ization, adressing the cut becomes important and even crucial. For instance, we may be
interested in studying how the cut-reduction and the focalization process interact.

Our solution is inspired by what Andreoli does [4] but is slightly simplified. The
basic idea is to notice that the cut-rule is very similar to a ⊗ rule: replacing a cut rule on
A in a proof Π of ` Γ results in an object which is almost1 a proof of ` Γ, A ⊗ A⊥.

In fact we do not even need to use the proof itself. We will simply use this analogy
in order to find how to adapt the Focalization graph to proofs with cuts. Our analogy
simply suggests to treat the cut rule as a positive and, as a consequence, positive trunks
may contain cut rules and the Focalization Graph will have new vertices of the form
Cut(A). The relation ≺ is extended in a straightforward way (A ≺ Cut(A) and A⊥ ≺
Cut(A)) and the edges are created with the same conditions as we did in the previous
section.

As before, we can prove that the Focalization graph is acyclic and then:

Theorem 4. The Focalization Graph method produces focused proofs from MALL proofs
with cuts.

Π - ΠCF

?
ΠFoc

CF-ΠFoc
?

Fig. 6.

We think that the difference between our approach and An-
dreoli’s starts really to make sense at this point: we always
stayed in the same proof system, LL, and we worked by proof
transformation. In our mind Focalization is really a process for
transforming proofs. The interaction between this process and
other transformation processes, like cut-reduction for instance
shall now be studied.

Pushing this discussion further would be beyond the scope
of this paper, but we would like to give an idea of the kind of question we can now try to
adress: Given a proof Π in MALL with cuts, two processes are available: focalization
and cut-reduction. Do the two processes commutes? Are we in the situation described
by figure 6 where vertical arrows correspond to Focalization process while horizontal
arrows correpond to the cut-reduction?

1 It is only almost a proof since the N-rule, the ! rule and the ∀-rule may cause trouble. Andreoli
fixes this by considering the formula ? A ⊗ A⊥ instead of A ⊗ A⊥ which is fine for N and ! but
inefficient for the ∀ quantifier...

In our setting, we will get a proof of ` Γ, A ⊗ A⊥: we are only interested in the cut rules
which are performed within the positive trunk. We can easily check that if Π+ is a positive
trunk for ` Γ containing a cut rule on A then replacing the cut rule with a tensor rule on
A ⊗ A⊥ leads straightforwardly to a positive trunk Π ′+ on ` Γ, A ⊗ A⊥.
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4.3 Exponentials

As it comes to exponentials we cannot carry our construction as straightforwardly as
we did for the cut since it is not possible to attribute a polarity to the exponentials in a
simple way: they do not have the right permutation rules in order to have full or weak
permutability. In order to extend our result we have to adapt the sequent calculus in a
way which is pretty similar to what is done by Andreoli with his dyadic sequents [4].
For this change not to seem too ad hoc we quickly justify this by considering the !-
rule (see figure 1). This rule has a peculiar shape because, contrarily to other inference
rules, it depends on the toplevel structure of every formula in the context: one formula
has to be banged while all the other shall be question-marked. This indicates a special
level of knowledge about the sequent structure which is not the usual one we use in
sequent calculus. This is reflected in the way the !-rule is implemented in linear logic
programming systems or by the boxing construction in Proof Nets.

We actually see two kinds of operations performed with the !-rule: (i) classifying
F as a question-marked formula on the one hand and removing the ! on ! G when ! G
is the only non-question-marked formula in the sequent. This can be reflected by the
paradoxical example following: considering ` ?Γ, F, ! G, can you apply the !-rule to
this sequent? There could be two answers: “it depends on F” or “no, at least not yet”.
Both answers carry the same idea that ! can be applied only if F is ? F′ but they are
different from the operational point of view: the second answer suggests that there is
some more work to do in order to apply the !-rule: F should first be recognized as ? F′.
This remark suggests to introduce a separate context that will store those formulas that
have been recognized as having a “?”: ` Γ | ∆. The two operations discussed earlier and
dereliction now become the following rules:

` Γ, A | ∆
` Γ | ? A, ∆ ?

` Γ | A
` Γ | ! A !

` Γ, A | A, ∆
` Γ, A | ∆ der

We then have to adapt all the usual MALL rules in the obvious way.
?-rule will be considered as negative whereas ! and dereliction will be considered

as positive. We can now extend the positive trunks to LL proofs with exponentials:

Definition 9 (Exponential Positive Trunk). Given a positive sequent S and a proof Π
of S, an exponential positive trunk (or positive trunk for short) for a positive sequent
is a maximal subtree of Π containing only positive rules and such that !-rules produce
leaves of the tree (the branches are cut as soon as a !-rule is applied).

The reader may be surprised by the fact that the branches of the positive trunk are
cut as soon as a ! rule is encoutered. This is reminiscent of the bipolar character of the
exponentials: the ? is decomposed into two rules (one negative, the other positive) and
for its dual connective, the !, the rule is positive but the focusing phase is stopped.

In order to build the Focalization graph, we first notice that each der-rule in the
positive trunk produces an occurrence of a formula, say A, that might be chosen as a
focus. We have to distinguish such occurrences and to do so we will index them as (A, i).
The index i will refer to the place in the tree where the dereliction rule has been applied.
Notice also the ≺-relation is straightforwardly extended to exponential sequents.
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Definition 10. Let ` Γ | ∆ be a positive sequent2, Π be a proof of the sequent and Π+

be the associated (Exponential) Positive Trunk. The Exponential Focalization Graph
extends the definition of standard Focalization graphs as follows:
(i) The vertices of the graph are the active formulas of ∆ and the active occurrence of
formulas in Γ, ie. of the form (A, i).
(ii) The arcs are given by the sequents of the border in the same way as usually (includ-
ing the bias assignment if any)3.

The following allows us to extend our Focalization result to the exponential setting:

Proposition 4. The Exponential Focalization Graphs are acyclic.

4.4 Further extensions.

The proof we presented is modular in the sense that it relies on a series of simple results
which can be adapted to richer settings. It is what is done in [5] in order to extend
Focalization to an extension to LL with Fixpoints. We shall consider in future works
other extensions. In particular, non-commutative logics and light logics should be good
candidates to test the methodology of this paper.

5 Multi-Focalization

The question of Multi-Focalization naturally arises from the structure of Focalization
Graphs. Indeed, the only two ingredients needed in our proof are (i) appropriate per-
mutability properties (full and weak permutabilities) and (ii) the acyclicity of the Fo-
calization Graph G which ensures us of the existence of a source which can be taken as
a focus in the proof we are building.

In this last section we consider briefly this question of multi-focalization although
most details on an analysis on Multi-Focalization are beyond the scope of this paper and
will be postponed to future work. We only intend to introduce this notion and outline
what could be the first step to a general theory of multifocalization.

We know that G has a source, but nothing forbids G to have multiple sources. In
such a case, we would have several formulas (say F1, . . . , Fk) for which the topmost
positive layer of connectives is totally decomposed within the positive trunk. Weak per-
mutability allows to conclude that the proof Π can be transformed to a proof where the
bottom part of the tree is made only of positive rules on the Fi’s and their subformulas
up to a point where all the Fi’s are turned to negative formulas (or literals).

This is enough to consider a notion of multifocalization and this leads us to asso-
ciated sequent rules that we are currently investigating with Kaustuv Chaudhuri and
which can be presented in a Σ3 inspired sequent presentation as

Ψ, F1, . . . Fk : ∆ ⇓ F i1
1 , . . . F

ik
k , F

′
1, . . . F

′
l

Ψ, F1, . . . Fk : ∆, F′1, . . . F
′
l ⇑ ·

MultiFoc

2 Straightforward extension of the one for MALL sequents.
3 We do not need to take care of the premisses of !-rules since these sequents contain exactly

one subformula of an active formula of the root: A is the only formula in the linear part of this
sequent of the border.
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with the proviso that during a multifocusing section, only positive rules can be applied:
the negative rules that could be present would be frozen until all the positive formulas
under focus have been decomposed.

There is much to do in order to understand precisely this notion of Multi-Focalization
but we can already draw some comments:

– completeness is not an issue for multi-focalization since it extends focalization;
– more interesting would be to understand how to obtain proofs which have been

multifocalized as much as possible. In particular, is there such an interesting notion
of maximality in the world of multi-focused proofs?

– clearly, multi-focused proofs have a taste of concurrency: having F and G as foci
actually means that we are focussing on the two formulas at the same time, even
though we keep the sequent syntax. It would thus be pretty interesting to compare
this with works on concurrent or asynchronous games [1];

– This notion of Multifocalization might have interesting consequences for proof
search allowing, for instance, to detect failures of the proof search earlier.

6 Conclusion and Future Works

We have presented a new proof of the completeness of focused proofs for linear logic.
We first focused on MALL fragment in which rather elementary considerations of the
permutability of inference rules allowed us to define a focalization graph. The fact that
such a graph is acyclic allows us to build sequent calculus proofs. There are many pos-
sibilities for building such proof: a flexible bias assignment mechanism allows edges to
be added to the focalization graph, which, in turn, constrains the space of sequent cal-
culus proofs that can be produced. The techniques developed for MALL can be lifted
directly to providing focusing results much stronger logics, in particular, full first-order
and higher-order linear logic and linear logic with fixed points. Given the centrality of
the focalization graph and since such graphs may have more than one source, we have
also considered adding to a focused proof system the multifocusing inference rule that
can capture such multiplicity of foci.

The structure of Focalization Graph we introduced in this paper and the consid-
eration of Focalization as a process for transforming proofs suggest we study several
developments for future works:

– The interaction between Focalization process and cut-reduction shall be made clear;
– We would like to extend our results to richer logics such as non-commutative logics

or light logics as a test for our methodology;
– We would be interested in adapting focalization result directly to logics such as LJ;
– The study of Multi-Focalization is a direction that seems to be fruitful and to relate

focalization with interesting topics of concurrent view of proofs;
– In a more applied setting, we should pursue the classification of Bias Assignments

since it seems to be meaningful for applications in proof search and other settings;
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