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Abstract. A large variety of computing systems, such as compilers, in-
terpreters, static analyzers, and theorem provers, need to manipulate
syntactic objects like programs, types, formulas, and proofs. A com-
mon characteristic of these syntactic objects is that they contain variable
binders, such as quantifiers, formal parameters, and blocks. It is a com-
mon observation that representing such binders using only first-order
expressions is problematic since the notions of bound variable names,
free and bound occurrences, equality up to alpha-conversion, substitu-
tion, etc., are not addressed naturally by the structure of first-order
terms (labeled trees). This overview describes a higher-level and more
declarative approach to representing syntax within such computational
systems. In particular, we shall focus on a representation of syntax called
higher-order abstract syntax and on a more primitive version of that rep-
resentation called λ-tree syntax.

1 How abstract is your syntax?

Consider writing programs in which the data objects to be computed are syntac-
tic structures, such as programs, formulas, types, and proofs, all of which gener-
ally involve notions of abstractions, scope, bound and free variables, substitution
instances, and equality up to renaming of bound variables. Although the data
types available in most computer programming languages are rich enough to rep-
resent all these kinds of structures, such data types do not have direct support
for these common characteristics. Instead, “packages” need to be implemented
to support such data structures. For example, although it is trivial to represent
first-order formulas in Lisp, it is a more complex matter to write Lisp code to
test for the equality of formulas up to renaming of variables, to determine if a
certain variable’s occurrence is free or bound, and to correctly substitute a term
into a formula (being careful not to capture bound variables). This situation is
the same when structures like programs or (natural deduction) proofs are to be
manipulated and if other programming languages, such as Pascal, Prolog, and
ML, replace Lisp.

Generally, syntax is classified into concrete and abstract syntax. The first is
the textual form of syntax that is readable and typable by a human. This repre-
sentation of syntax is implemented using strings (arrays or lists of characters).



The advantages of this kind of syntax representation are that it can be easily
read by humans and involves a simple computational model based on strings.
The disadvantages of this style of representation are, however, numerous and
serious. Concrete syntax contains too much information not important for many
manipulations, such as white space, infix/prefix notation, and keywords; and im-
portant computational information is not represented explicitly, such as recursive
structure, function–argument relationship, and the term–subterm relationship.

The costs of computing on concrete syntax can be overcome by parsing con-
crete syntax into parse trees (often also called abstract syntax). This representa-
tion of syntax is implemented using first-order terms, labeled trees, or linked lists,
and it is processed using constructors and destructors (such as car/cdr/cons in
Lisp) or using first-order unification (Prolog) or matching (ML). The advantages
to this representation are clear: the recursive structure of syntax is immediate,
recursion over syntax is easily accommodated by recursion in most programming
languages, and the term-subterm relationship is identified with the tree-subtree
relationship. Also, there are various semantics approaches, such as algebra, that
provide mathematical models for many operations on syntax. One should realize,
however, that there are costs associated with using this more abstract represen-
tation. For example, when moving to greater abstraction, some information is
lost: for example, spacing and indenting of the concrete syntax is (generally)
discarded in the parse tree syntax. Also, implementation support is needed to
provide recursion and linked lists. These costs assocated with using parse tree
synatx are generally accepted since one generally does not mind the loss of pag-
ination in the original syntax and since a few decades of programming language
research has yielded workable and effective runtime environments that support
the required dynamic memory demands required to process parse trees.

When representing syntax containing bound variables, there are, however,
significant costs involved in not using a representation that is even more ab-
stract than parse trees since otherwise the constellation of concepts surround-
ing bindings needs to be implemented by the programmer. There are generally
two approaches to providing such implementations. The first approach treats
bound variables as global objects and programs are then written to determine
which of these global objects are to be considered free (global) and which are
to be considered scoped. This approach is quite natural and seems the simplest
to deploy. It requires no special meta-level support (all support must be pro-
vided explicitly by the programmer) and is the approach commonly used in text
books on logic. A second approach uses the nameless dummies of de Bruijn [2].
Here, first-order terms containing natural numbers are used to describe alpha-
equivalence classes of λ-terms: syntax is abstracted by removing bound variable
names entirely. There has been a lot of success in using nameless dummies in
low-level compilation of automated deduction systems and type systems. Con-
sider, for instance, the work on explicit substitutions of Nadathur [25, 28] and
Abadi, Cardelli, Curien, and Lévy [1]. Nadathur, for example, has recently built
a compiler and abstract machine that exploits this representation of syntax [27].



While successful at implementing bound variables in syntax, nameless dummies,
however do not provide a high-level and declarative treatment of binding.

We will trace the development of the ideas behind a third, more abstract
form of syntactic representation, called λ-tree syntax [23] and the closely related
notion of higher-order abstract syntax [36].

Logic embraces and explains elegantly the nature of bound variables and
substitution. These are part of the very fabric of logic. So it is not surprising
that our story starts and mostly stays within the area of logic.

2 Church’s use of λ-terms within logic

In [3], Church presented a higher-order logic, called the Simple Theory of Types
(STT), as a foundation for mathematics. In STT, the syntax of formulas and
terms is built on simply typed λ-terms. The axioms for STT include those gov-
erning the logical connectives and quantifiers as well as the more mathemati-
cal axioms for infinity, choice, and extensionality. The λ-terms of STT are also
equated using the following equations of α, β, and η-conversion.

(α) λx.M = λy.M [y/x], provided y is not free in M
(β) (λx.M) N = M [N/x]
(η) λx.(M x) = M, provided x is not free in M

Here, the expression M [t/x] denotes the substitution of t for the variable x in M
in which bound variables are systematically changed to avoid variable capture.

Church made use of the single binding operation of λ-abstraction to encode
all of the other binding operators present in STT: universal and existential quan-
tification as well as the definite description and choice operators. This reuse of
the λ-binder in these other situations allows the notions of bound and free vari-
ables occurrences and of substitution to be solved once with respect to λ-binding
and then be used to solve the associated problems with these other binding op-
erations. In recent years, this same economy has been employed in a number of
logical and computational systems.

Church used the λ-binder to introduce a new syntactic type, that of an
abstraction of one syntactic type over another. For example, Church encoded
the universal quantifier using a constant Π that instead of taking two augments,
say, the name of a bound variable and the body of the quantifier, took one
argument, namely, the abstraction of the variable over the body. That is, instead
of representing universal quantification as, say, Π(x,B) where Π has the type
τ ∗o → o (here, o is the type of formulas and τ is a type variable), it is represented
as Π(λx.B), where Π has the type (τ → o) → o. (This latter expression can
be abbreviated using more familiar syntax as ∀x.B.) The λ-binder is used to
construct the arrow (→) type. Similarly, the existential quantifier used a constant
Σ of type (τ → o) → o and the choice operator ι had type (τ → o) → τ : both
take an abstraction as their argument.

Since Church was seeking to use this logic as a foundations for mathematics,
λ-terms were intended to encode rich collections of mathematical functions that



could be defined recursively and which were extensional. By adding higher-order
quantification and axioms for infinity, extensionality, and choice, the equality
of λ-term was governed by much more than simply the equations for α, β, and
η-conversion. Hence, λ-abstractions could no longer be taken for expressions
denoting abstractions of one syntactic types over another. For example, the
formula Π(λx.(p x)∧ q) would be equivalent and equal to the formula Π(λx.q∧
(p x)): there is no way in STT to separate these two formulas. Thus, the domain
o became associated to the denotation or extension of formulas and not with
their intension.

3 Equality modulo αβη-conversion

One way to maintain λ-abstraction as the builder of a syntactic type is to weaken
the theory of STT significantly, so that λ-terms no longer represent general func-
tional expressions. The resulting system may no longer be a general foundations
for mathematics but it may be useful for specifying computational processes.
The most common approach to doing this weakening is to drop the axioms of
infinity, extensionality, and choice. In the remaining theory, λ-terms are gov-
erned only by the rules of α, β, and η-conversion. The simply typed λ-calculus
with an equality theory of α, β, η is no longer a general framework for functional
computation although its is still rather rich [39].

The presence of β-conversion in the equality theory means that object-level
substitution can be specified simply by using the meta-level equality theory. For
example, consider the problem of instantiating the universal quantifier ∀x.B with
the term t to get B[t/x]. Using Church’s representation for universal quantifi-
cation, this operation can be represented simply as taking the expression (ΠR)
and the term t and returning the term (R t). Here, R denotes the abstraction
λx.B, so (R t) is a meta-level β-redex that is equal to B[t/x]. Thus, β-reduction
can encode object-level substitution elegantly and simply. For example, consider
the following signature for encoding terms and formulas in a small object-logic:

∀, ∃ : (term → formula) → formula a, b : term
⊃ : formula → formula → formula f : term → term → term

r, s : term → formula t : formula.

The λ-term ∀λx.∃λy. r (f x y) ⊃ s (f y x) is of type formula and is built by
applying the constant ∀ to the a λ-term of type term → formula, the syntactic
type of a term abstracted over a formula. This universally quantified object-level
formula can be instantiated with the term (f a b) by first matching it with the
expression (∀ R) and then considering the term (R (f a b)). Since R will be
bound to a λ-expression, this latter term will be a meta-level β-redex. If β is
part of our equality theory, then this term is equal to

∃λy.r (f (f a b) y) ⊃ s (f y (f a b)),

which is the result of instantiating the universal quantifier.



Huet and Lang [13] were probably the first people to use a simply typed λ-
calculus modulo α, β, η to express program analysis and program transformation
steps. They used second-order variables to range over program abstractions and
used second-order matching to bind such variables to such abstractions. The
reliance on β-conversion also meant that the matching procedure was accounting
for object-level substitution as well as abstractions. Second-order matching is
NP-complete, in part, because reversing object-level substitution is complicated.
There was no use of logic in this particular work, so its relationship to Church’s
system was rather minor.

In the mid-to-late 80’s, two computational systems, Isabelle [32] and λProlog
[26], were developed that both exploited the intuitionistic theory of implications,
conjunctions, and universal quantification at all non-predicate types. In Isabelle,
this logic was implemented in ML and search for proofs was governed by an ML
implementation of tactics and tacticals. This system was intended to provide sup-
port for interactive and automatic theorem proving. λProlog implemented this
logic (actually a extension of it called higher-order hereditary Harrop formulas
[22]) by using a generalization of Prolog’s depth-first search mechanism. Both
systems implemented versions of unification for simply typed λ-terms modulo
α, β, η conversion (often called higher-order unification). The general structuring
of those unification procedures was fashioned on the unification search processes
described by Huet in [12]. In λProlog, it was possible to generalize the work
of Huet and Lang from simple template matching to more general analysis of
program analysis and transformation [19–21].

The dependent typed λ-calculus LF [10] was developed to provide a high-
level specification language for logics. This system contained quantification at
higher-types and was based on an equality theory that incorporated α, β, and
η-conversion (of dependent typed λ-calculus). Pfenning implemented LF as the
Elf system [33] using a λProlog-style operational semantics. The earliest version
of Elf implemented unification modulo α, β, η.

It was clear that these computer systems provided new ways to compute on
the syntax of expressions with bound variables. The availability of unification
and substitution in implementations of these meta-logics immediately allowed
bound variable names to be ignored and substitutions for all data structures
that contain bound variables to be provided directly.

Pfenning and Elliott in [36] coined the term higher-order abstract syntax for
this new style of programming and specification. They also analyzed this style of
syntactic specification and concluded that it should be based on an enrichment of
the simply typed λ-calculus containing products and polymorphism, since they
found that these two extensions were essential features for practical applications.
To date, no computational system has been built to implement this particular
notion of higher-order abstract syntax. It appears that in general, most practical
applications can be accommodated in a type system without polymorphism or
products. In practice, higher-order abstract syntax has generally come to refer
to the encoding and manipulating of syntax using either simply or dependently
typed λ-calculus modulo α, β, and η-conversion.



4 A weaker form of β-conversion

Unification modulo α, β, and η conversion of λ-terms, either simply typed or
dependently typed, is undecidable, even when restricted to second-order. Com-
plexity results for matching are not fully know, although restricting to second-
order matching is known to be NP-complete. Thus, the equalities implemented
by these computer systems (Isabelle, λProlog, and Elf) are quite complex. This
complexity suggests that we should find a simpler approach to using the λ-binder
as a constructor for a syntactic type of abstraction. The presence of bound vari-
ables in syntax is a complication, but it should not make computations on syntax
overly costly. We had some progress towards this goal when we weaken Church’s
STT so that λ-abstractions are not general functions. But since the equality and
unification remains complex, it seems that we have not weakened that theory
enough.

We can consider, for example, getting rid of β-conversion entirely and only
consider equality modulo α, η-conversion. However, this seems to leave the equal-
ity system too weak. To illustrate that weakness, consider solving the following
match, where capital letters denote the match variables:

∀λx(P ∧Q) = ∀λy((ry ⊃ sy) ∧ t).

There is no substitution for P and Q that will make these two expressions equal
modulo α and η-conversion: recall that we intend our meta-level to be a logic and
that the proper logical reading of substitution does not permit variable capturing
substitutions. Hence, the substitution

{P 7→ (rx ⊃ sx), Q 7→ t}

does not equate these two expressions: substituting into the first of these two
terms produces a term equal to ∀λz((rx ⊃ sx)∧ t) and not equal to the intended
term ∀λy((ry ⊃ sy)∧ t). If we leave things here, it seems impossible to do inter-
esting pattern matching that can explore structure underneath a λ-abstraction.

If we change this match problem, however, by raising the type of P from
formula to term → formula and consider the following matching problem instead,

∀λx(Px ∧Q) = ∀λy((ry ⊃ sy) ∧ t)

then this match problem does, in fact, have one unifier, namely,

{P 7→ λw(rw ⊃ sw), Q 7→ t}.

For this to be a unifier, however, the equality theory we use must allow ((λw.rw ⊃
sw) x) to be rewritten to (rx ⊃ sx). Clearly β will allow this, but we have really
only motivated a much weaker version of β-conversion, in particular, the case
when a λ-abstraction is applied to a bound variable that is not free in the
abstraction. The restriction of β to the rule (λx.B)y = B[y/x], provided y is not
free in (λx.B), is called β0-conversion [15]. In the presence of α-conversion, this



rule can be written more simply and without a proviso as (λx.B)x = B. Our
example can now be completed by allowing the equality theory to be based on
α, β0, and η-conversion. In such a theory, we have

∀λx((λw(rw ⊃ sw)x) ∧ t) = ∀λy((ry ⊃ sy) ∧ t).

If the λ-binder can be viewed as introducing a syntactic domain representing the
abstraction of a bound variable from a term, then we can view β0 as the rule
that allows destructing a λ-binder by replacing it with a bound variable.

It is easy to imagine generalizing the example above to cases where match
variables have occurrences in the scope of more than one abstraction, where
different syntax is being represented, and where unification and not matching is
considered. In fact, when examining typical λProlog programs, it is clear that
most instances of β-conversion performed by the interpreter are, in fact, instances
of β0-conversion. Consider, for example, a term with a free occurrence of M of
the form

λx . . . λy . . . (M y x) . . .

Any substitution for M applied to such a term introduces β0 redexes only. For
example, if M above is instantiated with a λ-term, say λuλv.t, then the only new
β-redex formed is ((λuλv.t) y x). This term is reduced to normal form by simply
renaming in t the variables u and v to y and x — a very simple computation.
Notice that replacing a β0-redex (λx.B)y with B[y/x] makes the term strictly
smaller, which stands in striking contrast to β-reduction, where the size of terms
can grow explosively.

5 L�-Unification

In [15], Miller introduced a subset of hereditary Harrop formulas, called Lλ,
such that the equality theory of α, β, η only involved α, β0, η rewritings. In that
setting, Miller showed that unification of λ-terms is decidable and unary (most
general unifiers exist when unifiers exist).

When Lλ is restricted to simply comparing two atomic formula or two terms,
it is generally referred to as Lλ-unification or as higher-order pattern unification.
More precisely, in this setting a unification problem a set of ordered pairs

{(t1, s1), . . . , (tn, sn)},
where for i = 1, . . . , n and where ti and si are simply typed λ-terms of the
same type. Such a unification problem is an Lλ-unification problem if every
free variable occurrence in that problem is applied to at most distinct bound
variables. This severe restriction on the applications of variables of higher-type
is the key restriction of Lλ.

This kind of unification can be seen both as a generalization of first-order
unification and as a simplification of the unification process of Huet [12]. Any β-
normal λ-term has the top-level structure λx1 . . . λxp(h t1 . . . tq) where p, q ≥ 0,
the binder x1, . . . , xp is a list of distinct bound variables, the arguments t1, . . . , tq



are β-normal terms, and the head h is either a constant, a bound variable (i.e.,
a member of {x1, . . . , xp}), or a free variable. (We shall sometimes write x̄ to
denote a list of variables x1, . . . , xn, for some n.) If the head is a free variable,
the term is called flexible; otherwise, it is called rigid. Notice that if a term in
Lλ is flexible, then it is of the form λx1 . . . λxn.V y1 . . . yp where each list
x1, . . . , xn and y1, . . . , yp contain distinct occurrences of variables and where the
the set {y1, . . . , yp} is a subset of {x1, . . . , xn}. Pairs in unification problems will
be classified as either rigid-rigid, rigid-flexible, flexible-rigid, or flexible-flexible
depending on the status of the two terms forming that pair. We can always
assume that the two terms in a pair have the same binder: if not, use η to make
the shorter binder longer and α to get them to have the same names.

We present the main steps of the unification algorithm (see for [15] for a fuller
description). Select a pair in the given unification and choose the appropriate
steps from the following steps.

Rigid-rigid step. If the pair is rigid-rigid and both terms have the same head
symbol, say, 〈λx̄.ht1 . . . tn, λx̄.hs1 . . . sn〉, then replace that pair with the pairs
〈λx̄.t1, λx̄.s1〉, . . . , 〈λx̄.tn, λx̄.sn〉 and continue processing pairs. If the pair has
different heads, then there is no unifier for this unification problem.

Flexible-flexible step. If the pair is flexible-flexible, then it is of the form
〈λx̄.V y1 . . . yn, λx̄.Uz1 . . . zp〉 where n, p ≥ 0 and where the lists y1, . . . , yn and
z1 . . . zp are both lists of distinct variables and are both subsets of the binder x̄.
There are two cases to consider.

Case 1. If V and U are different, then this pair is solved by the substitution
[V 7→ λȳ.Ww̄, U 7→ λz̄.Ww̄], where W is a new free variable and w̄ is a list
enumerating the variables that are in both the list ȳ and the list z̄.

Case 2. If V and U are equal, then, given the typing of λ-terms, p and n must
also be equal. Let w̄ be an enumeration of the set {yi | yi = zi, i ∈ {1, . . . , n}}.
We solve this pair with the substitution [V 7→ λȳ.Ww̄] (notice that this is the
same via α-conversion to [V 7→ λz̄.Ww̄]), where W is a new free variable.

Flexible-rigid step. If the pair is flexible-rigid, then that pair is of the form
〈λx̄.V y1 . . . yn, r〉. If V has a free occurrence in r then this unification has no
solution. Otherwise, this pair is solved using the substitution [V 7→ λy1 . . . λyn.r].

Rigid-flexible step. If the pair is rigid-flexible, then switch the order of the
pair and do the flexible-rigid step.

Huet’s process [12], when applied to such unification problems, produces the
same reduction except for the flexible-flexible steps. Huet’s procedure actually
does pre-unification, leaving flexible-flexible pairs as constraints for future uni-
fications since general (non-Lλ) flexible-flexible pairs have too many solutions
to actually enumerate effectively. Given the restrictions in Lλ, flexible-flexible
pairs can be solved simply and do not need to be suspended.

Qian has shown that Lλ-unification can be done in linear time and space
[38] (using a much more sophisticated algorithm than the one hinted at above).
Nipkow has written a simple functional implementation of Lλ-unification [30] and
has also showed that results concerning first-order critical pairs lift naturally to
the Lλ setting [29].



It was also shown in [15] that Lλ-unification can be modified to work with
untyped λ-terms. This observation means, for example, that the results about Lλ

can be lifted to other type systems, not just the simple theory of types. Pfenning
has done such a generalization to a dependent typed system [34]. Pfenning has
also modified Elf so that pre-unification essentially corresponds to Lλ-unification:
unification constraints that do not satisfy the Lλ restriction on free variables are
delayed. The equality theory of Elf, however, is still based on full β-conversion.

Notice that unification in Lλ is unification modulo α, β0, and η but unifica-
tion modulo α, β0, and η on unrestricted terms is a more general problem. For
example, if g is a constant of type i → i and F is a variable of type i → i → i,
the equation λx.F x x = λy.g y has two solutions modulo α, β0, η, namely,
F 7→ λuλv.g u and F 7→ λuλv.g v. Notice that this unification problem is not in
Lλ since the variable F is applied to the bound variable x twice. As this example
shows, unification modulo α, β0, η is not necessarily unary.

6 Logic programming in L�

Successful manipulation of syntax containing bound variables is not completely
achieved by picking a suitable unification and equality theory for terms. In order
to compute with λ-trees, it must be possible to define recursion over them. This
requires understanding how one “descends” into a λ-abstraction λx.t in a way
that is independent from the choice of the name x. A key observation made with
respect to the design of such systems as Isabelle, λProlog, and Elf is that such
a declarative treatment of bound variables requires the generic and hypothetical
judgments that are found in intuitionistic logic (via implication and universal
quantification) and associated dependent typed λ-calculi. The need to support
universal quantification explicitly forces one to consider unification with both
free (existentially quantified) variables and universally quantified variables. To
handle unification with both kinds of variables present, Paulson developed ∀-
lifting [31] and Miller developed raising [18] (∀-lifting can be seen as backchaining
followed by raising).

The name Lλ is actually the name of a subset of the hereditary Harrop for-
mula used as a logical foundation for λProlog, except for restrictions on quan-
tified variables made to ensure that only Lλ-unification occurs in interpreting
the language. (Lλ is generally also restricted so as not to have the predicate
quantification that is allowed in λProlog.) While we do not have adequate space
here to present the full definition of the Lλ logic programming language (for
that, see [15]) we shall illustrate the logic via a couple of examples.

We shall use inference figures to denote logic programming clauses in such a
way that the conclusion and the premise of a rule corresponds to the head and
body of the clause, respectively. For example, if A0, A1, and A2 are syntactic
variables for atomic formulas, then the two inference figures

A1 A2

A0

∀x(A1 ⊃ A2)
A0

,



denote the two formulas

∀ȳ(A1 ∧A2 ⊃ A0) and ∀ȳ(∀x(A1 ⊃ A2) ⊃ A0)

The list of variables ȳ is generally determined by collecting together the free
variables of the premise and conclusion. In the inference figures, the correspond-
ing free variables will be denoted by capital letters. The first of these inference
rules denotes a simple Horn clause while the second inference rule is an example
of a hereditary Harrop formula. The theory of higher-order hereditary Harrop
formulas [22] provides an adequate operational and proof theoretical semantics
for these kinds of clauses. The central restriction taken from Lλ-unification must
be generalized to this setting. Note that in our examples this restriction implies
that a variable in the list ȳ can be applied to at most distinct variables that are
either λ-bound or universally bound in the body of the clause.

Consider, for example, representing untyped λ-terms and simple types. Let
tm and ty be two types for these two domains, respectively. The following four
constants can be used to build objects in these two domains.

app : tm → tm → tm arr : ty → ty → ty
abs : (tm → tm) → tm i : ty

The constants app and abs are constructors for applications and abstractions,
while the constants arr and i are used to denote functional (arrow) types and a
primitive type.

To capture the judgment that an untyped λ-term has a certain simple type,
we introduce the atomic judgment (predicate) typeof that asserts that its first
argument (a term of type tm) has its second argument (a term of type ty) as a
simple type. The following two inference rules specify the typeof judgment.

typeof M (arr A B) typeof N A

typeof (app M N) B

∀x(typeof x A ⊃ typeof (R x) B)
typeof (abs R) (arr A B)

Notice that the variable R is used in a higher-order fashion since it has an
occurrence where it is an argument and an occurrence where it has an argument.

The conventional approach to specifying such a typing judgment would in-
volve an explicit context of typing assumptions and an explicit treatment of
bound variables names, either as names or as de Bruijn numbers. In this spec-
ification of the typeof judgment, the hypothetical judgment (the intuitionistic
implication) implicitly handles the typing context, and the generic judgment
(the universal quantifier) implicitly handles the bound variable names via the
use of eigenvariables.

Since the application of variables is restricted greatly in Lλ, object-level
substitution cannot be handled simply by the equality theory of Lλ. For example,
the clause

bredex (app (abs R) N) (R N)

defines a predicate that relates the encoding of an untyped λ-term that represents
a top-level β-redex to the result of reducing that redex. The formula that encodes



this inference rule does not satisfy the Lλ restriction since the variable R is not
applied to a λ-bound variable: notice that instances of (R N) might produce
(meta-level) β-redexes that are not β0-redexes. Instead, object-level substitution
can be implemented as a simple logic program. To illustrate this, consider the
following two classes for specifying equality for untyped λ-terms.

copy M M ′ copy N N ′

copy (app M N) (app M ′ N ′)
∀x ∀y (copy x y ⊃ copy (R x) (S y))

copy (abs R) (abs S)

Clearly, the atom copy t t′ is provable from these two clauses if and only if t and
t′ denote the same untyped λ-term. Given this specification of equality, we can
now specify object-level substitution with the following simple clause:

∀x (copy x N ⊃ copy (R x) M)
subst R N M

which axiomatizes a three place relation, where the type of the first argument
is i → i and the type of the other two arguments is i. We can now finally
re-implement bredex so that it is now an Lλ program:

subst R N M

bredex (app (abs R) N) M

The entire specification bredex is now an Lλ logic program. For a general ap-
proach to accounting for object-level substitution in Lλ, see [16].

For a specific illustration that classical logic does not support the notion of
syntax when higher-orders are involved, consider the following signature.

p, q, r : term → o g : (term → term) → term f : term → term

and the two clauses

p X

r (f X)
∀x (p x ⊃ q (U x))

r (g U)

Using the familiar “propositions-as-types” paradigm, the three atomic formulas
p t1, q t2, and r t3 can be seen as specifying subtypes of the type term, that
is, they can be read as t1 : p, t2 : q, and t3 : r. Using this analogy, these two
clauses would then read as the type declarations f : p → r and g : (p → q) → r.
Now consider the question of whether or not there is a term of type r. Simple
inspection reveals that there is no term of type r built from these two constants.
Similarly, there is no intuitionistic proof of ∃X.r X from the two displayed
clauses. On the contrary, there is a classical logic proof of ∃X.r X from these
formulas. We leave it to the reader to ponder how classical logic can be so
liberal to allow such a conclusion. (Hint: consider the classical logic theorem
(∃w.p w) ∨ (∀w.¬p w).)



7 λ-tree syntax

In contrast to concrete syntax and parse tree syntax, a third level of syntax
representation, named λ-tree syntax was introduced in [23]. This approach to
syntactic representation uses λ-terms to encode data and Lλ-unification and
equality modulo α, β0, and η to construct and deconstruct syntax. There is no
commitment to any particular type discipline for terms nor is typing necessary.

As we have observed, a programming language or specification language that
incorporates λ-tree syntax must also provide an abstraction mechanism that
can be used to support recursion under term level abstractions. In logic or typed
languages, this is achieved using eigenvariables (a notion of bound variable within
a proof). Such a mechanism can be described in a logic programming setting,
like λProlog, as one where new, scoped constants are introduced to play the role
of bound variables.

While supporting λ-tree syntax is more demanding on the languages that
implements it, there has been a lot of work in making such implementations
feasible. Consider for example the work on explicit substitutions [1, 7, 25, 28]
and the abstract machine and compiler Teyjus [27] for λProlog. The Isabelle
theorem prover [32] implements Lλ and the Elf system [33] provides an effective
implementation of Lλ within a dependently typed λ-calculus.

Support for λ-term syntax does not necessarily need to reside only in logic
programming-like systems. In [14] Miller proposed an extension to ML in which
pattern matching supported Lλ matching and where data types allowed for the
scoped introduction of new constants (locally bound variables). A second type,
written a’ => b’, was introduced to represent the type of syntactically ab-
stracted variables: the usual function type, written a’ -> b’, was not used for
that purpose. It is possible, following the techniques we described for Lλ, to
implement in the resulting ML extension, a function subst that maps the first
domain into the second, that is, subst has type (a’ => b’) -> (a’ -> b’).
To our knowledge, this language has not been implemented.

The need for the new term λ-tree syntax instead of the more common term
higher-order abstract syntax can be justified for a couple of reasons. First, since
types are not necessary in this style of representation, the adjective “higher-
order”, which refers to the order of types for variables and constants, seems in-
appropriate. Second, higher-order abstract syntax generally denotes the stronger
notion of equality and unification that is based on full β-conversion. For example,
Pfenning in [35] states that “higher-order abstract syntax supports substitution
through λ-reduction in the meta-language”. Thus, the term higher-order ab-
stract syntax would not be appropriate for describing projects, such as Lλ and
the proposal mentioned above for extending ML, in which β-reduction is not
part of the meta-language.

8 Related work

As we have mentioned, Church intended the function space constructor to be
strong enough to model mathematical functions and not to support the weaker



notion of representing an abstraction over syntactic types. As a result, we argued
that Church’s system should be weakened by removing not only the axioms of
infinity, choice, and extensionality but also full β-conversion. On the other hand,
there has been work in trying to recover higher-order abstract syntax from rich
function spaces such as those found in Coq: the main issue there is to restrict
the function space constructor to exclude “exotic” terms, like those inhabiting
function spaces but which do not denote syntactic abstractions [4–6].

For conventional specifications using parse trees syntax, well understood se-
mantic tools are available, such as those of initial algebras and models for equal-
ity. Similar tools have not yet been developed to handle λ-tree syntax. Since the
logic that surrounds λ-tree syntax is that of intuitionistic logic, Kripke models
might be useful: a simple step in this direction was taken in [17] by recasting the
cut-elimination theorem for intuitionistic logic as a kind of initial model. Simi-
larly, the notion of Kripke λ-models due to Mitchell and Moggi [24] could also be
quite useful. The LICS 1999 proceedings contained three papers [9, 8, 11] that
proposed semantics for abstract syntax containing bound variables that were
based (roughly) on using initial models based on certain categories of sheaves.
Pitts and Gabbay have used their semantics to develop an extension to ML that
supports a notion of syntax somewhat similar to λ-tree syntax [37].

9 Conclusions

One might have some impatience with the idea of introducing a more high-
level form of abstract syntax: just implement substitution and the associated
support for bound variables and move on! But what we are discussing here is
the foundations of syntax. The choices made here can impact much of what is
built on top.

There is also the simple observation that with, say, the parse tree representa-
tion of syntax, it is natural to use meta-level application to encode object-level
application. But application and abstraction are not two features that acciden-
tally appear in the same logic: they are two sides of the same phenomenon, just
as introduction and elimination rules in proof theory are two sides of a connec-
tive, and they need to be treated together. It should be just as natural to use
meta-level abstractions to encode object-level abstractions, and indeed, this is
what λ-tree syntax attempts to make possible.
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