
Foundational proof certificates in first-order logic

Zakaria Chihani, Dale Miller, and Fabien Renaud

INRIA and LIX, Ecole Polytechnique, Palaiseau, France

Abstract. It is the exception that provers share and trust each oth-
ers proofs. One reason for this is that different provers structure their
proof evidence in remarkably different ways, including, for example, proof
scripts, resolution refutations, tableaux, Herbrand expansions, natural
deductions, etc. In this paper, we propose an approach to foundational
proof certificates as a means of flexibly presenting proof evidence so that
a relatively simple and universal proof checker can check that a certificate
does, indeed, elaborate to a formal proof. While we shall limit ourselves
to first-order logic in this paper, we shall not limit ourselves in many
other ways. Our framework for defining and checking proof certificates
will work with classical and intuitionistic logics and with proof structures
as diverse as resolution refutations, matings, and natural deduction.

1 Introduction

Consider a world where the multitude of computational logic systems—theorem
provers, model checkers, type checkers, static analyzers, etc.—can trust each
other’s proofs. Such a world can be constructed if computational logic systems
can output their proof evidence in documents with a clear semantics that can
be validated by a trusted checker. By the term proof certificate we shall mean
documents that contain the evidence of proof generated by a theorem prover.
In this paper, we propose a framework for defining the semantics of a wide
range of proof evidence using proof-theoretic concepts. As a result, we refer to
this approach to defining certificates as “foundational” since it is based not on
the technology used to construct a specific theorem prover but rather on basic
insights into the nature of proofs provided by the modern literature of proof
theory.

The key concept that we take from proof theory is that of focused proof
systems [1, 15, 16]. Such proof systems exist for classical, intuitionistic, and lin-
ear logics and they are composed of alternating asynchronous and synchronous
phases. These two phases allow for a natural interaction to be set up between
a process that is attempting to build a proof (the checker) and the information
contained in a certificate. During the asynchronous phase of proof construction,
the checker proceeds without reference to the actual certificate since this phase
consists of invertible inference rules. During the synchronous phase, information
from the certificate can be extracted to guide the construction of the focused
proof. The definition of how to check a proof certificate essentially boils down
to defining the details of this interaction.

The main structure for our framework contains the following components.

– The kernel of our checker is a logic program specification of the focusing
framework LKU proof system [16]. Since this implementation of LKU is high-
level and direct, we can have a high degree of confidence that the program
does, in fact, capture the LKU proof system.

– By restricting various structural rules, LKU can be made into a focused
proof system for classical logic, for intuitionistic logic, and for multiplicative-
additive linear logic. The specifications of these restrictions are contained in
separate small logic definition documents.

– The kernel implementation of LKU actually adds another premise to every
inference rule: in particular, the asynchronous rules get a premise involv-
ing a clerk predicate that simply manages some bookkeeping computations
while the synchronous rules get a premise involving an expert predicate that
extracts information from the certificate to provide to the inference rule.
A proof certificate definition is a document that defines these two kinds of
predicates as well as a translation function from theorems of the considered
system to equiprovable LKU formulas.

– A proof certificate is a document consisting of the structured object contain-
ing the proof evidence supporting theoremhood for a particular formula.

To illustrate this architecture, we present a number of different proof cer-
tificates. For example, a certificate for resolution refutations can be taken as
a list of clauses (including those arising from the original theorem and those
added during resolutions) and a list of triples that describes which two clauses
resolve to yield a third clause. Such an object should be easy to produce for any
theorem prover that uses binary resolution (with implicit factoring). By then
adding to the kernel the logic definition for classical logic (given in [16]) and the
definitions of the clerk and expert predicates (given in Section 4.3), resolution
refutations can be checked. The exact same kernel (this time restricted to intu-
itionistic logic) can be used to check natural deduction proofs (i.e., simply and
dependently typed λ-terms): all that needs to be changed is the definition of the
clerk and expert predicate definitions.

Before presenting specific examples of proof certificate definitions for first-
order classical logic in Section 4, we describe focused proof systems in the next
section and, in Section 3, we describe how we have augmented and implemented
that proof system within logic programming. The current implementation of our
proof checking system is available at https://team.inria.fr/parsifal/proofcert/.

2 Proof theory architecture

The sequent calculus of Gentzen [10] (which we assume is familiar to the reader)
is an appealing setting for starting a discussion of proof certificates. First of all,
sequent calculus is well studied and applicable to a wide range of logics. The in-
troduction rules, structural rules (weakening and contraction), and the identity
rules (initial and cut) provide a convincing collection of “atoms” of inference.
Additionally, cut-elimination theorems are deep results about sequent calculus
proof systems that not only prove them to be consistent but also offers cut-free

2

proofs as a normal form for proof. Girard’s invention of linear logic [11] provides
additional extensions to our understanding of the sequent calculus, including
such notions as additive and multiplicative connectives, exponentials, and polar-
ities. Finally, this foundation of Gentzen and Girard lifts naturally and modu-
larly to higher-order logic and to inductive and coinductive fixed points (such
as Baelde’s µMALL [4]). In this paper, we shall concentrate on first-order (and
propositional) logic: we leave the development of proof certificates for higher-
order quantification and fixed points for later work.

The sequent calculus has a serious downside, however: sequent proofs are far
too unstructured to directly support almost any application to computer science.
What one needs is a flexible way to organize the “atoms of inference” into much
larger and rigid “molecules of inference.” The hope would be, of course, that
these larger inference rules can be structured to mimic the notion of proof found
in computational logic systems. For example, early work on the proof-theoretic
foundations of logic programming [19] showed how sequent calculus proofs rep-
resenting logic programming executions could be built using two alternating
phases: the backchaining phase is a focused application of left-rules and the
goal-reduction phase is a collection of right-rules. Andreoli [1] generalized that
earlier work by introducing focused proofs for linear logic in which such phases
were directly captured and generalized. Subsequently, Liang & Miller presented
the LKF and LJF focused proof systems for classical and intuitionistic logics
[15] and later the LKU proof system [16] that unified LKF and LJF. While our
current approach to foundational proof certificates is based on LKU (allowing
the checking of proofs in classical as well as intuitionistic logic), we shall illus-
trate our approach by considering the simpler LKF subsystem of LKU. Before
presenting LKF in detail, we consider the following few elements of its design.

Additive vs multiplicative rules. We shall use t, f , ∧, ∨, ∀, and ∃ as the logical
connectives of first-order classical logic and sequents will be one-sided. As is
familiar to those working with the sequent calculus, there is a choice to make
between using the additive and multiplicative versions of the binary connective
∧ and ∨ (and their units t and f , respectively): the most striking difference
between these two versions is illustrated with ∨:

Additive:
` Θ,Bi

` Θ,B1 ∨B2
i ∈ {1, 2} Multiplicative:

` Θ,B1, B2

` Θ,B1 ∨B2

These two inference rules are inter-admissible in the presence of contraction and
weakening. For this reason, one usually selects one of these inference rules and
discards the other one. In isolation, however, these inference rules are strikingly
different: the multiplicative version is invertible while the additive version reveals
that one disjunct is not needed at this point of the proof. The LKF proof system
will contain the additive and multiplicative versions of disjunction, conjunction,
truth, and false: their presence will improve our flexibility for describing proofs.

Polarized connectives. We polarize the propositional connectives as follows: those
inference rules that are invertible introduce the negative version of the connec-
tive while those inference rules that are not necessarily invertible introduce the

3

` Θ ⇑ t−, Γ
` Θ ⇑A,Γ ` Θ ⇑B,Γ
` Θ ⇑A ∧− B,Γ

` Θ ⇑ Γ
` Θ ⇑ f−, Γ

` Θ ⇑A,B, Γ
` Θ ⇑A ∨− B,Γ

` Θ ⇓ [t/x]B

` Θ ⇓ ∃x.B

` Θ ⇓ t+
` Θ ⇓B1 ` Θ ⇓B2

` Θ ⇓B1 ∧+ B2

` Θ ⇓Bi i ∈ {1, 2}
` Θ ⇓B1 ∨+ B2

` Θ ⇑ [y/x]B,Γ y not free in Θ,Γ,B

` Θ ⇑ ∀x.B, Γ ` ¬Pa, Θ ⇓ Pa
init

` Θ ⇑B ` Θ ⇑ ¬B
` Θ ⇑ · cut

` Θ,C ⇑ Γ
` Θ ⇑ C, Γ store

` Θ ⇑N
` Θ ⇓N release

` P,Θ ⇓ P
` P,Θ ⇑ · decide

Here, P is a positive formula; N a negative formula; Pa a positive literal; C a positive
formula or negative literal; and ¬B is the negation normal form of the negation of B.

Fig. 1. LKF: a focused proof systems for classical logic

positive version of the connective. Thus the additive rule above for the disjunc-
tion introduces ∨+ while the multiplicative rule introduces ∨−. The universal
quantifier is obviously polarized negatively while the existential quantifier is po-
larized positively. Literals must also be polarized: these can be polarized in an
arbitrary fashion as long as complementing a literal also flips its polarity. We say
that a non-literal formula is positive or negative depending only on the polarity
of its top-level connective.

Phases organize groups of inference rules. The inference rules for LKF are given
in Figure 1. Notice that these inference rules involve sequents of the form ` Θ⇑Γ
and ` Θ ⇓B where Θ is a multiset of formulas, Γ is a list of formulas, and B is
a formula. Such sequents can be approximated as the one-sided sequents ` Θ,Γ
and ` Θ,B, respectively. Furthermore, introduction rules are applied to either
the first element of the list Γ in the ⇑ sequent or the formula B in the ⇓ sequent.
This occurrence of the formula B is called the focus of that sequent. Proofs in
LKF are built using two kinds of alternating phases. The asynchronous phase is
composed of invertible inference rules and only involves ⇑-sequents in the con-
clusion and premise. The other kind of phase is the synchronous phase: here, rule
applications of such inference rules often require choices. In particular, the intro-
duction rule for the disjunction requires selecting either the left or right disjunct
and the introduction rule for the existential quantifier requires selecting a term
for instantiating the quantifier. The initial rule can terminate a synchronous
phase and the cut rule can restart an asynchronous phase. Finally, there are
three structural rules in LKF. The store rule recognizes that the first formula to
the right of the ⇑ is either a negative atom or a positive formula: such a formula
does not have an invertible inference rule and, hence, its treatment is delayed
by storing it on the left. The release rule is used when the formula under focus
(i.e., the formula to the right of the ⇓) is no longer positive: at such a moment,
the phase changes to the asynchronous phase. Finally, the decide rule is used at
the end of the asynchronous phase to start a synchronous phase by selecting a
previously stored positive formula as the new focus.

4

Impact of the polarity assignment. Let B be a first-order formula and let B̂ re-
sult from B by placing either + or − on occurrences of t, f , ∧, and ∨ (there are
exponentially many such placements). It is proved in [15] that B is a classical
theorem if and only if ` ·⇑ B̂ has an LKF proof. Thus the different polarizations
do not change provability but can radically change the structure of proofs. A
simple induction on the structure of an LKF proof of ` ·⇑B (for some polarized
formula B) reveals that every formula that occurs to the left of ⇑ or ⇓ in one
of its sequents is either a negative literal or a positive formula. Also, it is im-
mediate that the only occurrence of a contraction rule is within the decide rule:
thus, only the positive formulas are contracted. Since there is flexibility in how
formulas are polarized, the choice of polarization can, at times, lead to greatly
reduced opportunities for contraction. When one is able to eliminate or constrain
contractions, naive proof search can sometimes become a decision procedure.

3 Software architecture

Of the many qualities that we might want for a proof checker—universality,
flexibility, efficiency, etc.—the one quality on which no compromise is possible
is that of soundness. If we cannot prove or forcefully argue for the soundness of
our checkers, then this project is without raison d’être.

3.1 Programming language support

An early framework for building sound proof checkers was the “Logic of Com-
putable Functions” (LCF) system of Gordon, Milner, and Wadsworth [12]. In
that framework, the ML programming language was created in order to sup-
port the task of building and checking proofs in LCF with a computing facility
that provided strong typing and the abstractions associated to higher-order pro-
gramming and abstract datatypes. Given the design of ML, it was possible to
declare a type of theorems, say, thm, and to admit certain functions that are
allowed to build elements of type thm (these encode axioms and inference rules).
These latter functions could then be bundled into an abstract datatype and the
programming language would enforce that the only items that eventually were
shown to have type thm were those that ultimately were constructed from the ax-
ioms and inference rules encoded into the theorem abstract datatype. Of course,
trusting that a checker written in this approach to LCF meant also trusting that
(1) ML had the type preservation property and (2) the language implementation
was, in fact, correct for the intended semantics (i.e., that the addition function
translated to the intended addition function, etc.).

This ML/LCF approach to proof checking is based on the most simple notion
of proof (variously named after Hilbert or Frege) as a linear sequence of formulas
arising from axioms and applications of inference rules.

The material in Section 2 illustrates that there can be a great deal more to
the structure of proof than is available in such linear proof structures. We are
fortunate that in order to take advantage of that rich structure, we do not need

5

∀Θ∀Γ. async(Θ, [t−|Γ]).

∀Θ∀Γ∀A∀B. async(Θ, [(A ∧− B)|Γ]) :- async(Θ, [A|Γ]), async(Θ, [B|Γ]).

∀Θ∀Γ∀A∀B. sync(Θ,A ∨+ B) :- sync(Θ,A); sync(Θ,B).

∀Θ∀Γ∀P. async(Θ, []) :- memb(P,Θ), pos(P), sync(Θ,P).

∀Θ∀B∀C. async(Θ, []) :- negate(B,C), async(Θ,B), async(Θ,C).

Fig. 2. Five logic programming clauses specifying LKF inference rules

to invent a meta-language (in the sense that ML was invented to support LCF):
an appropriate meta-language already exists in the λProlog programming lan-
guage [18]. In contrast to the functional programming language ML, λProlog is
a logic programming language. Like ML, λProlog is also strongly typed and has
both higher-order programming and abstract datatypes. λProlog has a number
of features that should make it a superior proof checker when compared with
ML. In particular, λProlog’s operational semantics is based on search and back-
tracking: this is in contrast to the notion of exception handling that is part of
the non-functional side of ML. Furthermore, λProlog comes with much more of
logic built into the language: in particular, it contains a logically sound notion
of unification and substitution for expressions involving bindings (these latter
features of λProlog are not generally provided by Prolog).

Although we shall not assume that the reader is familiar with λProlog, famil-
iarity with the general notions of logic programming is particularly relevant to
proof checking. Notice that it is nearly immediate to write a logic program that
captures the LKF proof system in Figure 1. First select two binary predicates,
say async(·, ·) and sync(·, ·), denoting the ⇑ and ⇓ judgments. Second write one
Horn clause for each inference rule: here the conclusion and the premises of a
rule correspond to the head and the body of such a clause. (The declarative
treatment of the inference rules involving the quantifiers is provided directly by
λProlog.) Of the fourteen Horn clauses that correspond to the fourteen inference
rules in Figure 1, five are illustrated in Figure 2: these clauses correspond to the
introduction rules for t−, ∧−, and ∨+ as well as the decide and cut rules. Some
additional predicates have been introduced to specify membership in a multiset,
the negation of a formula, and determining if a given formula is positive or not.

The full program can easily be seen to be sound in the sense that the sequent
` · ⇑ B has an LKF proof if the atom async([], B) has a proof using this logic
program. Using standard depth-first search strategies would result, however,
in surprisingly few proofs of the atom async([], B): the clauses specifying the
cut rule and the decide rule would immediately result in looping computations.
We present this logic program not to suggest that it is appropriate for proving
theorems but to show how to modify it to make it into a flexible proof checker.

6

te(Ξ)

Ξ ` Θ ⇓ t+
Ξ1 ` Θ ⇓B1 Ξ2 ` Θ ⇓B2 ∧e(Ξ,Ξ1, Ξ2)

Ξ ` Θ ⇓B1 ∧+ B2

Ξ ′ ` Θ ⇓Bi i ∈ {1, 2} ∨e(Ξ,Ξ ′, i)

Ξ ` Θ ⇓B1 ∨+ B2

Ξ ′ ` Θ ⇓ [t/x]B ∃e(Ξ,Ξ ′, t)

Ξ ` Θ ⇓ ∃x.B
Ξ1 ` Θ ⇑B Ξ2 ` Θ ⇑ ¬B cute(Ξ,Θ,Ξ1, Ξ2, B)

Ξ ` Θ ⇑ · cut

Ξ ′ ` Θ ⇑N releasee(Ξ,Ξ ′)

Ξ ` Θ ⇓N release
inite(Ξ,Θ, l) 〈l,¬Pa〉 ∈ Θ

Ξ ` Θ ⇓ Pa
init

Ξ ′ ` Θ ⇓ P decidee(Ξ,Θ,Ξ ′, l) 〈l,P 〉 ∈ Θ positive(P)

Ξ ` Θ ⇑ · decide

Ξ ′ ` Θ ⇑ Γ fc(Ξ,Ξ
′)

Ξ ` Θ ⇑ f−, Γ
Ξ1 ` Θ ⇑A,Γ Ξ2 ` Θ ⇑B,Γ ∧c(Ξ,Ξ1, Ξ2)

Ξ ` Θ ⇑A ∧− B,Γ
Ξ ′ ` Θ ⇑A,B, Γ ∨c(Ξ,Ξ

′)

Ξ ` Θ ⇑A ∨− B,Γ
Ξ ′ ` Θ ⇑ [y/x]B,Γ ∀c(Ξ,Ξ ′) y not free in Ξ,Θ, Γ,B

Ξ ` Θ ⇑ ∀x.B, Γ

Ξ ` Θ ⇑ t−, Γ
Ξ ′ ` Θ, 〈l,C〉 ⇑ Γ storec(Ξ,C,Ξ

′, l)

Ξ ` Θ ⇑ C, Γ store

Fig. 3. The augmented LKF proof system LKFa.

3.2 Clerks and experts

Consider being in possession of a proof certificate of a theorem and being asked to
build an LKF proof of that theorem. The construction of the asynchronous phase
is independent of any proof evidence you have (hence the name “asynchronous”
for this phase). At the end of the asynchronous phase, the construction of the
LKF proof can proceed with either the cut rule or the decide rule: in both cases,
genuine information (a cut formula or a focus formula) must be communicated
to the checker. Furthermore, the synchronous phase needs to determine which
disjunct to discard in the ∨+ rule and which term to use in the ∃ rule. To capture
this sense of information flowing between a checker and a certificate, we present
in Figure 3 an augmented version of LKF, called LKF a. The augmentations to
the LKF inference rules is done in three simple steps: (i) a proof certificate term,
denoted by the syntactic variable Ξ is added to every sequent; (ii) every inference
rule of LKF is given an additional premise using either an expert predicate or a
clerk predicate; and (iii) the multiset of formulas to the left of the arrows ⇑ and
⇓ are extended to be a multiset of pairs of an index and a formula. Thus, the
LKF proof system can be recovered from LKF a by removing all occurrences of
the syntactic variable Ξ and by removing all premises with a subscripted e or c
as well as replacing all occurrences of tuples such as 〈l, B〉 with just B.

The expert predicates are used to mediate between the needs for information
of the cut rule and the synchronous phase and the information that is present
in a proof certificate. All of them examine the certificate Ξ and returns the in-
formation needed to continue with as many certificates as there are premises in
the rules. For example, the disjunction expert returns either 1 or 2 depending

7

on which disjunct this introduction rule should select. The intension of the ex-
istential quantifier expert is that it returns a term t that is to be used in this
introduction rule. Notice that the conjunction expert does nothing more than
determine the proof certificates to be used in its two premises. The expert for
the t+ determines whether or not it should allow the proof checking process to
end with this inference rule. The cut expert examines both the proof certificate
and the context Θ and extracts the necessary cut formula for that inference
rule. Notice that if this predicate is defined to always fail (i.e., it is the empty
relation), then checking this certificate will involve only cut-free LKF proofs.
Finally, the decide expert gives the positive formula with which to start the new
asynchronous phase.

The introduction rules of the asynchronous phase are given an additional
premise that involves a clerk predicate: these new premises do not extract any
information from the certificate but rather they take care of bookkeeping cal-
culations involving the progress of the asynchronous phase. For example, the
∧c(Ξ,Ξ1, Ξ2) judgment can be used to record in Ξ1 the fact that proof checking
is on the left branch of this conjunction as opposed to the right branch.

One of the strengths of our approach to proof certificates is that experts can
be non-deterministic since this allows a trade-off between the size of a certificate
and proof-reconstruction time. For example, let Ξ be a particular certificate and
consider using it to introduce an existential quantifier. This introduction rule
queries the expert ∃e(Ξ,Ξ ′, t). If the Ξ certificate explicitly contains the term
t, the expert can extract it for use in this inference rules. If the certificate does
not contain this term then the judgment ∃e(Ξ,Ξ ′, t) could succeed for every
term t (and for some Ξ ′). In this case, the expert provides no information as
to which substitution term to use and, therefore, the certificate can be smaller
since it does not need to contain the (potentially large) term t. On the other
hand, the checker will need to reconstruct an appropriate such term during the
checking process (using, for example, the underlying logic programming mech-
anism of unification). When experts are queried during the synchronous phase,
their answers may be specific, partial, or completely unconstrained.

The three remaining rules (store, init, decide) of LKF a reveal the structure
of the collection of formulas we have been designating with the syntactic variable
Θ. In our presentation of the LKF proof system, this structure has been taken
to be a multiset of formulas. In our augmented proof system, we shall take this
sequent context to be a multiset of pairs 〈I, C〉 where C is a formula and I is
an index. When we need to refer to a specific occurrence of a formula in Θ (in,
say, the decide rule), an index is used for this purpose. It is the clerk predicate
associated to the store inference rule that is responsible for computing the index
of the formula when it is moved from the right to the left of the ⇑. When the
expert predicate in the decide rule describes the formula on which to focus, it
does so by returning that formula’s index. Finally, the initial expert determines
which stored negative literal should be the complement of the focused literal.
In the augmented form of both the decide and initial rules, additional premises
have been added to check that the indexes returned by the expert predicates

8

are, indeed, indexes for the correct kind of formula: in this way, a badly defined
expert cannot lead to the construction of an illegal LKF proof.

The structure of the indexing scheme is left open for the certificate definition
to describe. As we shall illustrate later, indexes can be based on, for example, de
Bruijn numbers, path addresses within a formula, or formulas themselves. It is
possible for a formula to occur twice in the context Θ with two different indexes.
We shall generally assume, however, that the indexes functionally determine
formulas: if 〈l, C1〉 ∈ Θ and 〈l, C2〉 ∈ Θ then C1 and C2 are equal.

Assume that we have a logic programming system that provides a sound
implementation of Horn clauses (for example, unification contains the occurs-
check). A proof of Ξ ` ·⇑B within a logic programming implementation of LKF a

(along with the programs defining the experts and clerks) immediately yields an
LKF proof of ` · ⇑ B. This follows easily since the logic programming proof of
this goal can be mapped to an LKF proof directly: the only subtlety being that
the mapping from indexes to formulas must be functional so that the indexes
returned by the decide and initial rules are given a unique interpretation in the
LKF proof. Notice that no such LKF proof is actually constructed: rather, it is
performed. Notice also that this soundness guarantee holds with no restrictions
placed on the implementation of the clerk and expert predicates.

3.3 Defining a proof certificate definition

In order to define a proof certificate for a particular format, we first need to
translate theorems into LKU formulas. This operation stays outside the kernel
and its correctness has to be proved. Furthermore we need to define the specific
items that are used to augment LKF. In particular, the constructors for proof
certificate terms and for indexes must be provided: this is done in λProlog by
declaring constructors of the types cert and index. In addition, the definition
must supply the logic program defining the clerk predicates and the expert pred-
icates. Writing no specification for a given predicate defines that predicate to
hold for no list of arguments. Figures 4, 5, and 6 are examples of such proof
certificate definitions.

4 Some certificate definitions for classical logic

We now present some proof certificate definitions for classical logic: the first
two deal with propositional logic while the third additionally treats first-order
quantification. The first step is to define a translation function from classical
formulas to LKF formulas. In this case, this boils down to choosing a polarization
of the logical connectives and atomic formulas. Our first two examples of proof
certificates are based on assigning negative polarizations to all atoms and to all
connectives: i.e., we only use ∧−, ∨−, t−, and f−. A useful measurement of an
LKF proof is its decide depth, i.e., the maximum number of instances of the
decide rule along any path from the proof’s root to one of its leaves.

9

cnf : cert idx : form -> index

∀C. storec(cnf, C, cnf, idx(C)). ∧c(cnf, cnf, cnf).

∀Θ∀l. inite(cnf, Θ, l). ∨c(cnf, cnf).

∀Θ∀l. decidee(cnf, Θ, cnf, l). fc(cnf, cnf).

releasee(cnf, cnf).

Fig. 4. A checker based on a simple decision procedure

4.1 A decision procedure

There is a simple decision procedure for checking whether or not a classical
propositional formula is a tautology and we can design a proof certificate def-
inition that implements such a decision procedure. This example illustrates an
extreme trade-off between certificate size (here, constant-size) and proof recon-
struction time (exponential time). In particular, notice that there is an LKF
proof of a propositional formula if and only if that proof has decide depth 1
(possibly 0 if the formula contains no literals). The structure of an LKF proof of
a tautology first builds the asynchronous phase, which ends with several premises
all of the form ` L ⇑ · for some multiset of literals L. Such a sequent is prov-
able if and only if L has complementary literals: in that case, the LKF proof is
composed of a decide rule (selecting a positive literal) and initial (matching that
atom with a negative literal).

This decision procedure can be specified as the proof certificate definition
in Figure 4. The single constant cnf is used for the certificate and formulas
are used to denote indexes (thereby trivializing the notion of indexes) so we
need a constructor to coerce formulas into indexes. Figure 4 also contains the
specifications of the clerk and expert predicates. Notice that the initial expert
does not behave expertly: it relates the cnf certificate to all indexes l and all
contexts Θ. Our definition of this predicate here can be unconstrained since the
index that it returns is not trusted: that is, the initial rule in LKF a will check
that l is the index of the complement of the focus formula. In the usual logic
programming sense, the check in the premise is all that is necessary to select
the correct index. A similar statement holds for the decide expert predicate
definition.

4.2 Matings

Let B be a classical propositional formula in negation normal form. Andrews
defined a matingM for B as a set of complementary pairs of literal occurrences
in B [2]. A mating denotes a proof if every vertical path in B (read: clause in the
conjunctive normal form of B) contains a pair of literal occurrences given by set
M. A certificate definition for proof matings is given in Figure 5. Indexes are, in
fact, paths in a formula since they form a series of instructions to move left or
right through the binary connectives or to stop (presumably at a literal). There
are two constructors for the cert type: aphase is applied to a list of indexes and
sphase is applied to a single index. These two constructors are used to mimic

10

root : index left, right : index -> index

aphase : list index -> cert sphase : index -> cert

∀I∀Is. ∨c(aphase([I|Is]), aphase([left(I), right(I)|Is])).
∀I∀Is. ∧c(aphase([I|Is]), aphase([left(I)|Is]), aphase([right(I)|Is])).
∀I∀Is. fc(aphase([I|Is]), aphase(Is)).

∀C∀I∀Is. storec(aphase([I|Is]), C, aphase(Is), I).

∀I. releasee(sphase(I), aphase([I])).

∀Θ∀l. decidee(aphase([]), Θ, sphase(l), l)

∀Θ∀k∀l. inite(sphase(k), Θ, l) :- 〈k, l〉 ∈ M.

Fig. 5. Mating certificate definition

the two kinds of sequents in LKU: aphase and sphase denote the formulas in
the right-hand side of asynchronous and synchronous sequents by their paths
from the root. The initial expert will only select index l if it is M-mated to the
focused formula (with path address k). Here, we have assumed thatM contains
ordered pairs of occurrences in which the first occurrence names a positive literal
and the second occurrence names a negative literal. Thus, in order to determine
ifM is a proof mating for the formula B, set B̂ to be the polarization of B using
only negative connectives and check that the certificate aphase([root]) can lead
the clerks and experts in Figure 5 to a successful execution with B̂.

4.3 Resolution refutations

A (resolution) clause is a closed formula that is the universal closure of a dis-
junction of literals (the empty disjunction is false). When we polarize, we use
the negative versions of these connectives and we assign negative polarity to
atomic formulas. We assume that a certificate for resolution contains the fol-
lowing items: a list of all clauses C1, . . . , Cp (p ≥ 0); the number n ≥ 0 which
selects the last clause that is part of the original problem (i.e., this certificate is
claiming that ¬C1 ∨ · · · ∨ ¬Cn is provable and that Cn+1...Cp are intermediate
clauses used to derive the empty one); and a list of triples 〈i, j, k〉 where each
such triple claims that Ck is a binary resolution (with factoring) of Ci and Cj .
If the implementer of a resolution prover wished to output refutations, this kind
of document should be easy to accommodate.

Checking this structure is done in two steps. First, we check that a particular
binary resolution is sound and then we check that the list of resolvents leads to
an empty clause. It is a simple matter to prove the following: if clauses C1 and
C2 yield resolvent C0 as a binary resolvent (allowing also factoring), then the
focused sequent ` ¬C1,¬C2 ⇑ C0 has a proof of decide depth 3 or less. We
can also restrict such a proof so that along any path from the root sequent to
its leaves, the same clause is not decided on more than once. The first part of
Figure 6 contains the ingredients of a checker for the claim ` ¬C1,¬C2 ⇑ C0.
This checking uses two constructors for indexes. The first is used to reference
clauses (i.e., the expression idx(i) denotes ¬Ci) and the second constructor is

11

idx : int -> index lit : form -> index

dl : list int -> cert ddone : cert

∀L. ∨c(dl(L), dl(L)). ∀L. te(dl(L)).

∀L. fc(dl(L), dl(L)). ∀L. ∀c(dl(L), dl(L)).

∀C∀L. storec(dl(L), C, dl(L), lit(C)). ∀L. ∃e(dl(L), dl(L), T).

∀L∀P∀Θ. decidee(dl(L), Θ, ddone, lit(P)). ∀L. ∧e(dl(L), dl(L), dl(L)).

∀I∀Θ. decidee(dl([I]), Θ, dl([]), idx(I)). ∀l∀Θ. inite(ddone, Θ, l).

∀I∀J∀Θ. decidee(dl([I, J]), Θ, dl([J]), idx(I)). ∀l∀L∀Θ. inite(dl(L), Θ, l).

∀I∀J∀Θ. decidee(dl([J, I]), Θ, dl([J]), idx(I)). ∀L. releasee(dl(L), dl(L)).

rdone : cert rlist : list (int * int * int) -> cert

rlisti : int -> list (int * int * int) -> cert

∀R. fc(rlist(R), rlist(R)).

∀C∀l∀R. storec(rlisti(l, R), C, rlist(R), idx(l)).

te(rdone).

∀I∀Θ. decidee(rlist([]), Θ, rdone, idx(I)) :- 〈idx(I), t〉 ∈ Θ.
∀I, J,K,R,C,N,Θ. cute(rlist([〈I, J,K〉|R]), Θ, dl([I, J]), rlisti(K,R), N) :-

〈idx(K), C〉 ∈ Θ, negate(C,N).

Fig. 6. Resolution certificate definition in two parts

used to index literals that need to be stored: here the literal is used to provide
its own index. The first two cert constructors in that figure are used to control
the sequencing of decide rules involving two (negated) clauses. The first of these
constructors provides the sequent of clause indexes (at most 2) used to build a
proof and the second constructor is used to signal that the proof should finish
with the selection of stored literals and not with additional clauses.

The clerks for this part of the checking process do essentially no computation
and just move certificates around unchanged: the exception is the store clerk
that provides the trivial index lit(C) for the literal C. The only expert that
provides information to guide proof reconstruction is the decide expert which
transforms the choice of clauses to consider from two to one to none. Given
these clerks and experts, it is now the case that if Ci and Cj resolve to yield
Ck then dl([i, j]) ` ¬C1, . . . ,¬Cm ⇑ Ck is provable. With only small changes,
the binary resolution checker can be extended to hyperresolution: in this case,
the experts will need to attempt to find a proof of decide depth n + 1 when
attempting to resolve together n ≥ 2 clauses.

To describe a checker for a complete certificate, we use three additional con-
structors for certificates as well as the additional clauses in the second part of
Figure 6. Notice that the decide expert only proposes a focus at the end of the
checking process when the list of triples (resolvents) is empty: this expert only
succeeds if one of the clauses is t (the negation of the empty clause). It is the
cut expert that is responsible for looping over all the triples encoding resolvents.
Notice that the cut-formula is the clause Ck and that the left premise invokes

12

the resolvent checking mechanism described above. The right premise of the cut
carries with it an index (in this case, k) so that the next step in the proof check-
ing knows which index to use to correctly store that formula. The LKF proof
that is implicitly built during the checking of a resolution contains one cut rule
for every resolvent triple in the certificate.

4.4 Capturing general computation within proofs

The line between computation and deduction is certainly movable and one that
a flexibly designed proof certificate definition should allow to be moved. As
we saw in Section 4.1, we can use naive proof reconstruction to compute, for
example, the conjunctive normal form of a propositional formula. We can go
further, however, and allow for arbitrary Horn clause programs to be computed
on first-order terms during proof reconstruction. For example, if one needs to
check a proof rule that involves a premise that requires one number to divide
another number, it is an easy matter to write a (pure) Prolog program that
computes this binary relationship on numbers. Such Horn clauses can be added
to the sequent context and a proof certificate could easily guide the construction
of a proof of that premise from such clauses.

5 Adequacy of encoding

Our use of the augmented LKF proof system as our kernel guarantees soundness
no matter how the clerk and expert predicates are defined. On the other hand,
one might want to know if the checker is really checking the proof intended in the
certificate. A checker for a mating could, in fact, ignore the mating and run the
decision procedure from Section 4.1 instead. The kernel itself cannot guarantee
the adequacy of the checking: knowledge of the certificate definition is necessary
to ensure that. As our examples show, however, the semantics of the clerk and
expert predicates is clearly given by the LKF a proof system and certificate
definitions are compact: thus, verifying certificates should be straightforward.

Some aspects of a proof certificate are not possible to check using our kernel.
Consider defining a minimal proof mating to be a proof mating for which no
mated pairs can be removed and still remain a proof mating. We see no way to
capture this minimality condition: that is, we see no way to write a certificate
definition that successfully approves a mating if and only if it is a minimal proof
mating. A similar observation can be made with resolution: if ` ¬C1,¬C2 ⇑ C0

has a proof (even a proof of decide depth 3) it is not necessarily the case that C0

is the resolvent of C1 and C2. For example, the resolution of ∀x[p(x) ∨ r(f(x))]
and ∀x[¬p(f(x))∨ q(x)] is ∀x[r(f(f(x)))∨ q(x)]. At the same time, it is possible
to prove the sequent

` ∃x[¬p(x)∧¬r(f(x))],∃x[p(f(x))∧¬q(x)]⇑∀x[r(f(f(f(x))))∨q(f(x))∨s(f(x))].

This formula is similar to a resolvent except it uses a unifier that is not most
general and it has an additional literal. Thus, when this check succeeds, what is
checked is its soundness and not its technical status of being a resolvent.

13

6 The more general kernel

As we have mentioned, a more general kernel for proof checking is based not on
LKF but the LKU proof system [16]. Instead of the two polarities in LKF, there
are four polarities in LKU: the polarities −1 and +1 denote positive and negative
polarities of linear logic while the polarities −2 and +2 denote the positive and
negative polarities of classical logic. Intuitionistic logic use formulas that have
subformulas of all four polarities. In order to restrict the LKU proof system to
emulate, say, LKF or LJF, one simply needs to describe certain restrictions to
the structural rules (store, decide, release, and init) of LKU. The logic definition
documents (see Section 1) declare these restrictions.

The LKU proof system makes it possible to use the vocabulary for structuring
checkers in LKF (clerks, experts, store, decide, release) to also design checkers in
the intuitionistic focused framework LJF. The main subtleties with using LKU
is that we must deal with a linear logic context: since such contexts must be split
into two contexts occasionally, some of the expert predicates need to describe
which splitting is required. We have defined certificate definitions for simple and
dependent typed λ-calculus: that is, the LKU kernel can check natural deduction
proofs in propositional and first-order intuitionistic logic (de Bruijn numerals
make a natural index for store/decide).

7 Related and future work

The first mechanical proof checker was de Bruijn’s Automath [8] which was able
to check significant mathematical proofs. As we have mentioned in Section 3,
another early proof checker was the ML implementation of LCF’s tactics and tac-
ticals [12] (for a λProlog implementation of these, see [18]). As the number and
scope of mechanical theorem proving systems has grown, so too has the need to
have one prover rely on other provers. For example, the OpenTheory project [14]
aims at having various HOL theorem provers share proofs. Still other projects
attempt to connect SAT/SMT systems with more general theorem provers, e.g.,
[3, 6, 9]. In order for prover A to not blindly trust proofs from prover B, prover
B may be required to generate a certificate that demonstrates that it has for-
mally found a proof. Prover A will then need to check the correctness of that
certificate. In this way, prover A only needs to check individual certificates and
not rely on trusting the whole of prover B. Of course, every pair of communicat-
ing provers could involve certificates of different formats and different certificate
checker. Our goal here is to base such certificates on foundational and proof-
theoretic principles and to describe programmable checkers that are guaranteed
to be sound. Also, since that checker is based on well understood and well ex-
plored declarative concepts (e.g., sequent calculus, unification, and backtracking
search), that checker can be given many different implementations.

The Dedukti proof checker [5] implements λΠ modulo, a dependently typed
λ-calculus with functional rewriting. Given a result of Cousineau & Dowek [7]
that any functional Pure Type System can be encoded into λΠ modulo, Dedukti

14

can check proofs in such type systems. As we have described above, the proof
certificate setting described here allows one to capture both dependently typed
λ-terms and computations (not just functional computations). As a result, we
should be able to design, following [7], proof certificates for pure type systems.
The dependently typed λ-calculus LF has recently been extended to LFSC [20]
and to LFP [13] so that various kinds of computations can be treated by the
type checker instead of being explicitly detailed within the typed λ-term itself.
Such proof objects should similarly be captured in our setting.

Getting provers to trust each other’s proofs using the techniques described in
this paper will require the development and acceptance of an infrastructure and
associated tools, something that can clearly take time. One area where proof
certificates can make an early impact is in theorem proving competitions. In
such competitions, theorem provers should not be trusted but rather the proof
certificates that they emit should be checked. In that case, our framework for
foundational proof certificates can provide a clear semantics for what constitutes
a proof certificate.

Besides the proof certificates definitions that we have described above, we
have designed other examples (including proof nets for multiplicative linear logic
and Frege proofs) and plan to develop more. This work on foundational proof
certificates is part of a more ambitious project to design proof certificates that
also allow for induction and coinduction: such certificates should allow model
checkers and inductive theorem provers to communicate with each other. We
also hope to eventually allow counterexamples to be checked and to interact
with (partial) proofs [17].

We have only considered the problem of communicating and checking formal
proofs between machines. Of course, proofs are important to humans as well.
Given the fact that proof certificates can be elaborated into a LKU sequent
proof, it might well be possible to use proof-theoretic results to construct tools
that allow humans to browse and interact with formal proofs in order to learn
from them. We leave such considerations for future work.

8 Conclusion

In a world where proof certificates can be designed flexibly and given precise
semantics and where proof checkers can be given a high degree of trust, the
sharing of proofs should become “feature zero” for all new theorem provers. That
is, implementers looking to get their provers accepted broadly will need to first
consider how to communicate their proof evidence as a checkable certificate. In
such a world, proofs can be liberated from the technologies that produced them
(e.g., Coq, Isabelle, and Mizar) and can be seen as the universal and eternal
objects logicians and proof theorists have long been working to place at the
foundations of mathematics and computer science.

Acknowledgments: We thank Jean Pichon, Thanos Tsouanas, and the reviewers
for their comments on an earlier draft of this paper. This work was funded by
the ERC Advanced Grant ProofCert.

15

References

1. J-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic
and Computation, 2(3):297–347, 1992.

2. P. B. Andrews. Theorem-proving via general matings. J. ACM, 28:193–214, 1981.
3. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular

integration of SAT/SMT solvers to Coq through proof witnesses. In Jouannaud
and Shao, eds, Certified Programs and Proofs, LNCS 7086, 135–150, 2011.

4. D. Baelde. Least and greatest fixed points in linear logic. ACM Trans. on Com-
putational Logic, 13(1), April 2012.

5. M. Boespflug, Q. Carbonneaux, and O. Hermant. The λΠ-calculus modulo as a
universal proof language. Proof Exchange for Theorem Proving, 28–43, 2012.

6. S. Böhme and T. Weber. Designing proof formats: A user’s perspective. Proof
eXchange for Theorem Proving, 27–32, August 2011.

7. D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-
calculus modulo. TLCA 2007, LNCS 4583, 102–117, Springer, 2007.

8. N. G. de Bruijn. Reflections on Automath. In R. P. Nederpelt, J. H. Geuvers, and
R. C. de Vrijer, editors, Selected Papers on Automath, volume 133 of Studies in
Logic and the Foundations of Mathematics, 201–228. North-Holland, 1994.

9. P. Fontaine, J-Y. Marion, S. Merz, L. P. Nieto, and A Tiu. Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. TACAS 2006, LNCS 3920, 167–181. Springer, 2006.

10. G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, 68–131. North-Holland, 1969.

11. J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
12. M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised

Logic of Computation, LNCS 79. Springer, 1979.
13. F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, and I. Scagnetto. LFP : a logical

framework with external predicates. In LFMTP’12: Proceedings of the seventh in-
ternational workshop on Logical frameworks and meta-languages, theory and prac-
tice, pages 13–22. ACM New York, 2012.

14. J. Hurd. The OpenTheory standard theory library. In Third International Sym-
posium on NASA Formal Methods, LNCS 6617, 177–191, 2011.

15. C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

16. C. Liang and D. Miller. A focused approach to combining logics. Annals of Pure
and Applied Logic, 162(9):679–697, 2011.

17. D. Miller. A proposal for broad spectrum proof certificates. CPP: First Interna-
tional Conference on Certified Programs and Proofs, LNCS 7086, 54–69, 2011.

18. D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, June 2012.

19. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

20. A. Stump. Proof checking technology for satisfiability modulo theories. Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP), 2008.

16

