Bertinoro, 5 August 2005 1/22

A Proof Theoretic Approach to Operational
Semantics

(Focus on binders)

Dale Miller, INRIA-Futurs and LIX, Ecole Polytechnique

Based on technical results in:
e M & Tiu: “A Proof Theory for Generic Judgments”, LICS03

e Tiu & M: “A Proof Search Specification of the m-Calculus”,
FGUC04

e Tiu: “Model Checking for m-Calculus Using Proof Search”,
CONCURO5

e Ziegler, M, Palamidessi: “A congruence format for name-passing
calculi”, SOS05

Bertinoro, 5 August 2005 2/22

Two slogans about bindings

(I) From Alan Perlis’s Epigrams on Programming: As Will Rogers

would have said, “There is no such thing as a free variable.”

(IT) The names of binders are the same kind of fiction as white
space: they are artifacts of how we write expressions and have zero

semantic content.

To specity or implement a logic for dealing with bindings, one

must, of course, deal with the complexity of names.

Church provided a specification of such a logic in 1940 with his
paper on “A Formulation of the Simple Theory of Types.” We shall
work in this Paradise of (the) Church.

Bertinoro, 5 August 2005 3/22

Example: Binding a variable in a proof

When proving a universal quantifier, one uses a “new” or “fresh”

variable.
Bi,...,B, — Bv VR

Bl,...,Bn—>\V/£U7-.B£U ’

provided that v is a “new” variable (not free in the lower sequent).

Such new variables are called eigenvariables.
But this violates the “Perlis principle.” Instead, we write

,u:T: By,..., B, — Bv vR.
> : B4,...,B, — Vz,..Bzx

Here, we assume that the variables in the new context (signature)
are bindings over the sequent.

Eigenvariables are bound variables.

Bertinoro, 5 August 2005 4/22

Higher-Order Abstract Syntax

“If your object-level syntax contain binders, then map these

binders to binders in the meta-language.”
Functional Programming: binders describe function spaces.

Logic Programming (aka proof search; eg, AProlog): binder are

typed A-expressions modulo «a, 3, and 1 conversions.
These approaches are different. Consider Yw,;. \x.x # Az.w (%).

FP: (%) is not a theorem, since the identity and the constant valued

function coincide on singleton domains.
LP: (%) is a theorem since no instance of Ax.w can equal A\x.x.

M-tree syntax: HOAS in the proof search setting.

Bertinoro, 5 August 2005 5/22

Unification with binders

Binding is built into “higher-order unification” and “unification

under a mixed prefix.”

The following are equivalent and fail to unity.
Jw;. A\x.x = \r.w Jw;Vx. z = w

Quantifier scope matters. The unification problem

Va;df; ~;.(fa) = (gaa),

has four unifiers: f — Aw.gww, A\w.gaw, \w.gwa, or \w.gaa.

Switching around the binders yields

3fiia;.(fa) = (gaa)

with a unique unifier: f — Aw.gqww.

More generally VzdyVzdu. . ..

Bertinoro, 5 August 2005 6/22

Dynamics of binders during proof search

During computation, binders can be instantiated

Y : A, typeof ¢ (int — int) — C
Y A, Va(typeof ¢ (¢ —) — C

VL

or they can mowve.

¥, x: A, typeof x a« — typeof [B| (3
Y. : A — Va(typeof x a D typeof [B] (3)
Y. : A — typeof [\x.B| (a — ()

VR

In this case, the binder named x moves from term-level (Ax) to

formula-level (Vx) to proof-level (as an eigenvariable in 3, x).

Bertinoro, 5 August 2005 7/22

Example: encoding finite 7 calculus

Concrete syntax of m-calculus processes:
P=0|7.Pl|lxz(y).P|zy.P|(P|P)| (P+P)|(x)P|[z=y|P

Three syntactic types: n for names, a for actions, and p for

processes. The type n may or may not be inhabited.

Three constructors for actions: 7: a and | and T (for input and

output actions, resp), both of type n — n — a.

Abstract syntax for processes is the usual. Restriction: (y)Py is
coded using a constant nu : (n — p) — p as nu(Ay.Py) or as just
nu P. Input prefix x(y).Py is encoded using a constant

in:n— (n—p) —pasinz (Ay.Py) or just in z P. Other

constructors are done similarly.

Bertinoro, 5 August 2005 8/22

m-calculus: one step transitions

The “free action” arrow - —— - relates p and a and p.

The “bound action” arrow - —— - relates p and n — a and n — p.

A
P—— @ free actions, A:a (7, | zy, T zy)

lx

P —— M bound input action, | x :n —a, M :n —p
Tx

P —— M bound output action, Tx:n —a, M :n —p

Some SOS rules presented as quantified “reverse” implications.

Txy

OUTPUT-ACT: Va,y, P. gy P — P C T

lx
INPUT-ACT: Vo, M. z(y)My —M C T
MATCH: Vo, P,Q. [r=2P —Q C P—-Q
RES: VP,Q. (2)Pr — (z)Qz C Va(Pr — Qu)

Bertinoro, 5 August 2005 9/22

Proving positives but not negatives

The following can be proved.

Adequacy Theorem: The following are provable from the

specification of the m-calculus

A X IX
P— P P—M P—M

if and only if the “corresponding” transition holds in the m-calculus.

But: If you turn the specification into a “bi-conditional” in the
usual way, you still cannot prove interesting negations. For

example, there is no proof of

VAV AYP. —[(y)z = y].22.0 —— P]

Say good-bye to proving bisimulation.

The fault is in the use of eigenvariables at the meta-level.

Bertinoro, 5 August 2005 10/22

Problem: eigenvariables collapse

An attempt to prove VaVy.P x y first introduces two new and

different eigenvariables ¢ and d and then attempts to prove P cd.

Eigenvariables have been used to encode names in m-calculus
[Miller93], nonces in security protocols [Cervesato, et.al. 99|,

reference locations in imperative programming [Chirimar95], etc.

Since VaVy.P x y D Vz.P z z is provable, it follows that the
provability of VzVy.P x y implies the provability of Vz.P z z. That

is, there is also a proof where the eigenvariables ¢ and d are
identified.

Thus, eigenvariables are unlikely to capture the proper logic behind

things like nonces, references, names, etc.

Bertinoro, 5 August 2005 11/22

Generic judgments and a new quantifier

Gentzen’s introduction rule for V on the left is extensional: Vx

mean a (possibly infinite) conjunction indexed by terms.

The quantifier Vz.B x provides a more “intensional”, “internal”,

or “generic” reading. It uses a new local context in sequents.

ZZBl,...,Bn —>BQ
Y
Y:o1>By,...,0,> B, — oo > By
Y. is a list of distinct eigenvariables, scoped over the sequent and o;

is a list of distinct variables, locally scoped over the formula B,;.

The expression o; > B; is called a generic judgment. Equality
between judgments is defined up to renaming of local variables.

Bertinoro, 5 August 2005 12/22

The V-quantifier

The left and right introductions for V (nabla) are the same.

Yi(o,x:7)>B,I' —C :I'—(o,z:7)> B
Y:o>V,x.B,I' —C >:I'— o>V 2.B

Standard proof theory design: Enrich context and add connectives

dealing with these context.

Quantification Logic: Add the eigenvariable context; add V and 4.
Linear Logic: Add multiset context; add multiplicative connectives.
Also: hyper-sequents, calculus of structures, etc.

Such a design, augmented with cut-elimination, provides
modularity of the resulting logic.

Bertinoro, 5 August 2005 13/22

Properties of V

This quantifier moves through all propositional connectives:

Vr-Bx = -VzBx Vz(Bx D> Czx)=VzBzx D> VzCr
Ve, T=T Vz(Bx ANCx) =VzBx ANVzCx
V.l =1 Vz(Bx Vv Cx) =VzBr VvV VeCx

It moves through the quantifiers by raising them.

Vo Vysg.Bry = Vha—gVa,. Bx(he)
Vzo,3ys.Bry Jho—sVay.Bx(he)

Consequence: V can always be given atomic scope within formulas,
at the “cost” of raising quantifiers.

Bertinoro, 5 August 2005 14/22

Non-theorems

VaeVyBxy D VzBzz VaBz D JxBx!
VzBzz D VaVyBxy VeBz O VzBzx!

VyVxBxy D VaVyBzy dJrBx D VaxBzx

T These are theorems using the Pitts new quantifier. (More

comparisons later.)

Bertinoro, 5 August 2005 15/22

Meta theorems

Theorem: Cut-elimination. Given a fixed stratified definition, a
sequent has a proof if and only if it has a cut-free proof. (Tiu 2003:

also when induction and co-induction are added.)

Theorem: For a fixed formula B,

- VaVy.Bxy = VyVz.Bzxy.

Theorem: If we restrict to Horn specification (no implication or

negations in the body of the clauses) then

1. V and V are interchangeable in specifications.

2. For a fixed B, - Vax.Bx D Vx.Bz.

Bertinoro, 5 August 2005 16/22

Returning to the m-calculus

We can now prove

A
VwVAVP. —=.(z)|lw = x| ww.0 — P

This proof requires observing that the equation
AT W = A\T.T.

has no solution for any instance of w (unification failure).

Bertinoro, 5 August 2005 17/22

m-calculus: encoding (bi)simulation

A A
simP Q= VAVP [P —— P' >3Q.Q — Q Asim P’ Q']
1X 1 X
VXVP' [P — P'>3Q".Q — Q' ANVw.sim(P'w)(Q'w)] A

1X 1X
VXVP' [P — P' D 3Q".Q — Q' A Vw.sim(P'w)(Q'w)]

This definition clause is not Horn and helps to illustrate the

differences between V and V.
Bisimulation (bisim) is easy to write: it has 6 cases.

The early version of bisimulation is a change in quantifier scope.

Bertinoro, 5 August 2005 18/22

Learning something from our encoding

Theorem: For the finite m-calculus we have:
P is open bistmilar to @) if and only if 7 Vx.bisim P Q).
P is late bisimilar to @) if and only if

Vw,Vy,(w =1y V w # y) -y VZ.bisim P Q.

Should one assume this instance of excluded middle?

Alwen Tiu has built a prototype prover for this logic, restricted to
L-unification (higher-order pattern unification). When provided
with the above specification of bisim, it provides a symbolic open

bisimulation checker.

Bertinoro, 5 August 2005 19/22

Format rules

As Axelle Ziegler illustrated on Monday, specifications of bindings
in process calculus can be done declaratively enough to allow for
generalization of the tyft/tyxt format rule property.

Vup ... Vug[P =2 (Yug ... up)]

(f X1 ... X») 5 Q

Vup ... Vug[P -2 (Yug ... up)]
x40

That result is essentially the same as the first-order result except
that bindings are handled directly (A-tree syntax, V, and mixing of

quantifier scopes).

Nothing fundamentally “higher-order” is happening here.

Bertinoro, 5 August 2005 20/22

Modal logics

Alwen Tiu recently showed how to specify modal logics for the
m-calculus (CONCURO05).

X
C dP'(P — P'ANVy.P'y = Ay).

TX
C VP (P — P' > Vy.Ply = Ay).

1X

1P (P — P' AN 3Jy.P'y = Ay).
1X

1P (P — P' AVy.P'y = Ay).

1X
VydP' (P — P' A Py = Ay).

1X
VP (P — P' D Vy.P'y = Ay).
1X
VP (P — P' D dy.P'y = Ay).
1X
JyVP' (P — P’ O Py = Ay).

Bertinoro, 5 August 2005 21/22

Comparison with Pitts/Gabbay New Quantifier
Fresh Logic:
e Semantics is primary (FM set theory); classical logic basis
e designed for names: an infinite heap of names assumed

e Nx.Bx is analyzed by acquiring a “fresh” name n from the heap
and considering Bn.

“Stale” Logic:

e Proof theory is primary (sequent calculus); intuitionistic logic

basis (but classical and linear versions are immediate).

e V works for all types; types not assumed to be inhabited
e Vz..Bx is analyzed by hypothesizing a object ¢ of type 7 (as in a

stack) and considering Be.

Bertinoro, 5 August 2005 22/22

Future Work

Clearly, the m-calculus is just one application. Applied m-calculus?

spi-calculus?

Is there a “logical framework” for process calculus here? Do proof
search implementations provide means to animate such calculi?
Does the meta-theory of the meta-logic help in understanding

formal aspects of the calculi?

How to implement late bistmulation? How to automate effectively
the instances of the excluded middle for equality? Hint: unification
failures can tell us which instances we should use.

What is a good model theoretic semantics for V7 In classical

and /or intuitionistic logic?

