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Overview of high-level goals

I Design a logic for reasoning about computation: e.g., capture
I inductive and co-inductive reasoning,
I may and must judgments, and
I binding and substitution.

I Reason directly on logic specifications of computation.

I Formalize the reasoning logic as proof theory in the tradition
of Gentzen and Girard.

I Implement the proof theory and apply to examples.

This research effort spans the years 1997 to 2010 and has involved
about 6 researchers.
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A range of specification languages

For dynamic semantics:

I process calculus: CCS, CSP, π-calculus

I abstract machines: Krivine machine, SECD

I finite state machines

I Petri nets

For static semantics:

I typing judgments of many kinds

In recent years,

I operational semantics has become the standard for defining
dynamic semantics, while

I denotational semantics can sometimes capture deep results
about computation.



An example of operational semantics

Some operational semantic rules cut from Milner, Parrow, &
Walker, “A Calculus of Mobile Processes, Part II” (1989).



Logic programming specifications

Most operational semantics specifications can be encode within
first-order Horn clauses.

Prolog can animate such specifications.

The quality of such encodings is, however, extremely important
when attempting to reason about what is encoded.

A serious quality issue is the treatment of bindings in syntactic
expressions and computation traces.

I programming languages, type systems

I λ-calculus

I π-calculus



Abstract syntax

Approaches to encoding syntax have slowly grown more abstract
over the years.

Strings: Formulas-as-strings: “well-formed formulas (wff)”.
Church and Gödel did meta-logic with strings (!).

Parse trees: Removing white space, parenthesis, infix/prefix
operators, and keywords yields recursive term structures for syntax.

However: bindings are treated too concretely. One of the oldest of
the approaches to making bindings more abstract is:

λ-trees: Syntax is treated via α-conversion and weak forms of
β-reduction (eg, typed β-conversion or β0). Unification (modulo
αβ) is used to decompose syntax.

(Sometimes also called higher-order abstract syntax but that term
is also confused with another encoding technique.)
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An example: call-by-name evaluation

λx .R ⇓ λx .R

M ⇓ λx .R R[x/N] ⇓ V

(M N) ⇓ V

Application app : tm→ (tm→ tm).
Abstraction abs : (tm→ tm)→ tm.
Evaluation eval binary predicate over type tm.

∀R [eval (abs R) (abs R)]

∀M,N,V ,R [eval M (abs R) ∧ eval (R N) V ⊃ eval (app M N) V ]

The variable R is of higher-type tm→ tm and the application
(R U) is a “meta-level” β-redex.



An example: simple typing

Γ, x : α ` t : β

Γ ` λx .t : α→ β
†

Γ ` M : α→ β Γ ` N : α

Γ ` (M N) : β

Proviso †: x does not occur in Γ (x is “new”).

Arrow type constructor arr : ty→ ty→ ty.
Typing judgment of is a binary predicate between tm and ty.

∀R,A,B [ ∀x [of x A ⊃ of (R x) B] ⊃ of (abs R) (arr A B)]

∀M,N,A,B [of M (arr A B) ∧ of N A ⊃ of (app M N) B]

Where did the proviso † go?
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An example: simple typing (continued)

Consider building a proof of a universally quantified implications
(in Gentzen’s natural deduction proof system):

(of x A)
...

of (R x) B

∀x [of x A ⊃ of (R x) B]
†

of (abs R) (arr A B)

The proviso † requires that the eigenvariable x is not free in any
non-discharged assumption.

This proviso is pushed into the logic: specifications within the logic
do not need to deal with it directly.
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We need the open-world assumption

To prove ∀x [of x A ⊃ of (R x) B]

I generate a new “constant,” say c, and

I assume a new assumption about c and then

I prove of c A ` of (R c) B

Our logic must be willing to accept new constants and scoped
assumptions about them.

Thus, we need the open-world assumption in the specification logic
to support the λ-tree abstraction.



We need the closed-world assumption

Consider proving the theorem:

∀n[ fib(n) = n2 ⊃ n ≤ 20 ].

We do not want to assume the existence of a new natural number
n such that the nth Fibonacci number is n2.

Instead, we solve for n and get 0, 1, and 12, then show that

0 ≤ 20 ∧ 1 ≤ 20 ∧ 12 ≤ 20.

The set of natural numbers is a closed type.
Closedness is needed for induction.



How can we have both an open and closed world?

Our solution here:

Use two logics.

The specification logic is a restricted second-order intuitionistic
logic. Proofs are given by, say, Gentzen’s LJ.

The reasoning logic:

I Church’s Simple Theory of Types (intuitionistic or classical)

I (this includes induction and co-inductive proof rules)

I Provability of the specification logic is a predicate:
The binary predicate {Γ ` G} holds exactly when the sequent
Γ −→ G is provable in the specification logic.

I plus one more thing...
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Examples of reasoning logic theorems

The following should be theorems of the reasoning logic.

I ∀M,V ,A [{` eval M V } ∧ {` of M A} ⊃ {` of V A}]
I ∀A ¬{` of (abs λx .(app x x) A)}
I If Ω is the term

(app (abs λx .(app x x)) (abs λx .(app x x)))

then ∀V . ¬{` eval Ω V }.

The reasoning logic can quantify over the terms, formulas, and
contexts in the specification logic.
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Quiz

Let 〈x , y〉 be a pairing constructor. If the formula
∀u∀v [q 〈u, t1〉 〈v , t2〉 〈v , t3〉] follows from the assumptions

∆ = {∀x∀y [q x x y ], ∀x∀y [q x y x ], ∀x∀y [q y x x ]}

what can we say about the terms t1, t2, and t3?

Answer:

the terms t2 and t3 are equal.

The answer concerns proofs and not models: i.e., the domain of
the quantifiers ∀u∀v does not matter.

The following should be a theorem in the reasoning logic:

∀t1, t2, t3 [{∆ ` ∀u∀v [q 〈u, t1〉 〈v , t2〉 〈v , t3〉]} ⊃ t2 = t3]
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Another example

Let c be a constant. It is not possible to prove

∀w . w = c

in the open-world setting.
Thus, the following should be a theorem of the reasoning logic.

∀w .¬{` ∀x . x = w}

How do we capture the “intensional” aspects of the specification
logic universal quantifier in the reasoning logic?
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Still other examples

There are other examples in computer science (apart from logic)
where new names and scoping for them is needed.

I names in the π-calculus,

I nonces and session keys in security protocols, and

I reference locations in imperative programming.



Proof in the specification logic as an inductive definition

Object-logic provability can be defined inductively using the
following Prolog-like clauses.

{∆ ` >} :- >.
{∆ ` A} :- memb D ∆, instan D (G ⊃ A), {∆ ` G}.

{∆ ` G1 ∧ G2} :- {∆ ` G1}, {∆ ` G2}.
{∆ ` D ⊃ G} :- {D,∆ ` G}.
{∆ ` ∃x . G x} :- ∃x .{∆ ` G x}.

{∆ ` ∀x . G x} :- ∇x . {∆ ` G x}.

If ∇ (pronounced “nabla”) is replaced by ∀, then the previous
examples are not provable. But what is ∇?



∇-quantification

This is third quantifier along with ∀ and ∃.

It is used in the reasoning logic and not in the specification logic.

Seems to be of little interest if the specification logic does not
involve binding.



Logical aspects of the ∇-quantifier

Some theorems

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx

∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x∀y Bxy ≡ ∀h∇x Bx(hx) ∇x∃y Bxy ≡ ∃h∇x Bx(hx)

∇x > ≡ > ∇x ⊥ ≡ ⊥

Thus ∇ can always be given atomic scope within formulas.

Some non-theorems

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx

∇zBzz ⊃ ∇x∇yBxy ∀xBx ⊃ ∇xBx

∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx



Two structural rules for ∇-quantification

The following two equivalences are not forced.
The exchange principle

∇x∇y .B x y ≡ ∇y∇x .B x y

seems natural.

The following principle

(∇xτ .B) ≡ B (x is not free in B)

implies that there are an infinite number of members of the type τ .
This assumption is awkward in some settings but natural in others.

The Abella prover accepts both of these principles.



∇-quantification and equality

Notice (∀x .t = s) ≡ (λx .t = λx .s) fails in general. For example,

∀w .¬.(λx .x = λx .w)

is a desired theorem but ∀w .¬.∀x .(x = w) is not a theorem
since it is false in the singleton model.

The following is the equivalence we want:

(∇x .t = s) ≡ (λx .t = λx .s)

This equivalence also suggests how to implement ∇: if your system
has equality / unification on λ-terms, you are already close....
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An interactive theorem prover for the reasoning logic. Implemented
in OCaml. Written by Andrew Gacek as part of his PhD
(University of Minnesota) and postdoc (INRIA-Saclay).



π-calculus in Abella: syntax of processes and actions

kind name, proc type.

type null proc.

type taup proc -> proc.

type plus, par proc -> proc -> proc.

type match, out name -> name -> proc -> proc.

type in name -> (name -> proc) -> proc.

type nu (name -> proc) -> proc.

kind action type.

type tau action.

type up, dn name -> name -> action.

type one proc -> action -> proc -> o.

type oneb proc -> (name -> action) -> (name -> proc) -> o.

This is a λProlog signature file. The first lines are roughly
equivalent to:

P ::= 0 | x̄y .P | x(y).P | τ.P | (x)P | [x = y ]P | P|P | P + P.



π-calculus in Abella: one-step transitions

oneb (in X M) (dn X) M.

one (out X Y P) (up X Y) P.

one (taup P) tau P.

one (match X X P) A Q :- one P A Q.

oneb (match X X P) A M :- oneb P A M.

one (plus P Q) A R :- one P A R.

one (plus P Q) A R :- one Q A R.

oneb (plus P Q) A M :- oneb P A M.

oneb (plus P Q) A M :- oneb Q A M.

one (par P Q) A (par P1 Q) :- one P A P1.

one (par P Q) A (par P Q1) :- one Q A Q1.

oneb (par P Q) A (x\par (M x) Q) :- oneb P A M.

oneb (par P Q) A (x\par P (N x)) :- oneb Q A N.

one (nu P) A (nu Q) :- pi x\ one (P x) A (Q x).

oneb (nu P) A (y\ nu x\Q x y) :- pi x\ oneb (P x) A (y\ Q x y).

oneb (nu M) (up X) N :- pi y\ one (M y) (up X y) (N y).

one (par P Q) tau (nu y\ par (M y) (N y)) :- oneb P (dn X) M , oneb Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :- oneb P (up X) M , oneb Q (dn X) N.

one (par P Q) tau (par (M Y) T) :- oneb P (dn X) M, one Q (up X Y) T.

one (par P Q) tau (par R (M Y)) :- oneb Q (dn X) M, one P (up X Y) R.

This is a λProlog module file. This is roughly equivalent to a page
of SOS inference rules (but with no side conditions!)



The π-calculus in Abella: Theorems and proofs

CoDefine sim : proc -> proc -> prop by

sim P Q :=

(forall A P1, {one P A P1} -> exists Q1,{one Q A Q1} /\ sim P1 Q1) /\

(forall X M, {oneb P (dn X) M} -> exists N, {oneb Q (dn X) N} /\

forall W, sim (M W) (N W)) /\

(forall X M, {oneb P (up X) M} -> exists N, {oneb Q (up X) N} /\

nabla w, sim (M w) (N w)).

Theorem sim_refl : forall P, sim P P.

coinduction. intros. unfold.

intros. apply CH with P = P1. search.

intros. exists M. split. search.

intros. apply CH with P = M W. search.

intros. exists M. split. search.

intros. apply CH with P = M n1. search.

Theorem sim_trans : forall P Q R, sim P Q -> sim Q R -> sim P R.

coinduction. intros. case H1. case H2. unfold.

intros. apply H3 to H9. apply H6 to H10. apply CH to H11 H13. search.

intros. apply H4 to H9. apply H7 to H10.

exists N1. split. search.

intros. apply H11 with W = W. apply H13 with W = W.

apply CH to H14 H15. search.

intros. apply H5 to H9. apply H8 to H10.

apply CH to H11 H13. search.

Thus, simulation is a pre-order. The bisimulation corresponds to
open bisimulation.



A type preservation theorem

∀M,V ,A [{` eval M V } ∧ {` of M A} ⊃ {` of V A}]

Proof. By induction on {` eval M V }.

Base case: M = V = (abs R). The conclusion is trivial.

Inductive case: Here, M = (app M ′ N) and both
{` eval M ′ (abs R)} and {` eval (R N) V } have shorter proofs
(for some R : tm→ tm). From {` of (app M ′ N) A} we have
{` of M ′ (arr B A} and {` of N B} (for some B : ty). By
induction, we have {` of (abs R) (arr B A)} Thus,
{` ∀x . of x B ⊃ of (R x) A}. Since this is logic, we know

{of N B ⊃ of (R N) A} and {` of (R N) A}.

By induction again, we know that {` of V A}. QED.
A substitution theorem for free!



Other examples done in Abella

I Process calculi
I π-calculus

I Various examples of bisimulation (model checking)
I Meta-theorems: eg, bisim is a congruence

I Calculus of communicating systems

I λ-calculus
I Strong and weak normalization for simply-typed terms
I Church-Rosser
I Standardization
I Evaluation and typing
I Type uniqueness for simply-typed terms

I Programming languages
I POPLmark Challenge problems 1a and 2a
I Evaluation by explicit substitution
I PCF: Programming language for Computable Functions
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Related work: Nominal Logic

Pitts & Gabbay developed a semantic approach to a first order
theory of names and binding called nominal logic.

It contains a self-dual quantifier similar to ∇.

Relating nominal logic to the logic here has been difficult since
their semantic assumptions are hard to capture in proof theory.

If one weakens the logic sufficiently, one can get results:

I Gacek [PPDP 10] shows an exact match between αProlog
(using nominal techniques) and a logic programming language
using λ-terms and ∇-quantification.



Related work: POPLMark Challenge

Can existing theorem provers can be augmented (with, say,
packages) so that they can treat binding structures well.

Solutions: Nominal Isabelle, Coq libraries for locally nameless
encodings, etc.

In this talk: bindings are fundamentally part of logic.

I The very nature of logic and proof requires bindings in the
form of quantification and substitutions.

I Binding is not an “add-on” package.

I Start with a logic (Church’s Simple Theory of Types) where
binders and λ-conversions are primitive.

I Add just ∇-quantification.
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