
University of Pennsylvania
ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1988

Enriching a Meta-Language With Higher-Order
Features
John Hannan
University of Pennsylvania

Dale Miller
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_reports

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-45.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/695
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
John Hannan and Dale Miller, "Enriching a Meta-Language With Higher-Order Features", . June 1988.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_reports%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_reports%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/695
mailto:libraryrepository@pobox.upenn.edu

Enriching a Meta-Language With Higher-Order Features

Abstract
Various meta-languages for the manipulation and specification of programs and programming languages have
recently been proposed. We examine one such framework, called natural semantics, which was inspired by the
work of G. Plotkin on operational semantics and extended by G. Kahn and others at INRIA. Natural
semantics makes use of a first-order meta-language which represents programs as first-order tree structures
and reasons about these using natural deduction-like methods. We present the following three enrichments of
this meta-language. First, programs are represented not by first-order structures but by simply typed λ-terms.
Second, schema variables in inference rules can be higher-order variables. Third, the reasoning mechanism is
explicitly extended with proof methods which have proved valuable for natural deduction systems. In
particular, we add methods for introducing and discharging assumptions and for introducing and discharging
parameters. The first method can be used to prove hypothetical propositions while the second can be used to
prove generic or universal propositions. We provide several example specifications using this extended meta-
language and compare them to their first-order specifications. We argue that our extension yields a more
natural and powerful meta-language than the related first-order system. We outline how this enriched meta-
language can be compiled into the higher-order logic programming language λProlog.

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-45.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/695

http://repository.upenn.edu/cis_reports/695?utm_source=repository.upenn.edu%2Fcis_reports%2F695&utm_medium=PDF&utm_campaign=PDFCoverPages

Enriching A Meta-Language
With Higher-Order Features

MS-CIS-88-45
LINC LAB 118

John Hannan
Dale Miller

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

June 1988

Acknowledgements:
This research was supported in part by NSF grants

CCR-87-05596, MCS-8219196-CER, IRI84-10413-A02,
DARPA grant N00014085-K-0018, and U.S. Army

grants DAA29-84-K-0061, DAA29-84-9-0027

ENRICHING A META-LANGUAGE WITH HIGHER-ORDER FEATURES *

Preliminary Report
June 1988

John ~ a n n a n t Dale ~ i l l e r *
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT
Various meta-languages for the manipulation and specification of programs and programming lan-
guages have recently been proposed. We examine one such framework, called natural semantics,
which was inspired by the work of G. Plotkin on operational semantics and extended by G. Kahn
and others at INRIA. Natural semantics makes use of a first-order meta-language which repre-
sents programs as first-order tree structures and reasons about these using natural deduction-like
methods. We present the following three enrichments of this meta-language. First, programs are
represented not by first-order structures but by simply typed A-terms. Second, schema variables in
inference rules can be higher-order variables. Third, the reasoning mechanism is explicitly extended
with proof methods which have proved valuable for natural deduction systems. In particular, we
add methods for introducing and discharging assumptions and for introducing and discharging
parameters. The first method can be used to prove hypothetical propositions while the second
can be used to prove generic or universal propositions. We provide several example specifications
using this extended meta-language and compare them to their first-order specifications. We argue
that our extension yields a more natural and powerful meta-language than the related first-order
system. We outline how this enriched meta-language can be compiled into the higher-order logic
programming language XProlog.

1 INTRODUCTION

We examine the specification and manipulation of programming languages in the framework of
natural semantics, which was initially inspired by the work of G. Plotkin in operational semantics
[27] and extended by G. Kahn and others at INRIA [16, 2, 11. These meta-languages represent
programs as first-order tree structures and provide a reasoning style similar to that of natural
deduction. One strength of natural semantics is that it can be compiled directly into PROLOG
by using first-order terms to represent programs and by using unification and backchaining to
implement the natural deduction-style reasoning. We shall show how natural semantics can be
extended by introducing higher-order terms (simply typed A-terms) directly into the meta-language.
Along with such an extension, we extend the underlying reasoning mechanism with two kinds of

'This is a revised version of a paper submitted to the Workshop on Meta-Programming in Logic Programming,
Bristol, June 1988. Comments are welcomed. Address correspondence to John Hannan at the above address or at
"hannan@linc.cis.upenn.edu."

'Supported by a fellowship from the Corporate Research and Architecture Group, Digital Equipment Corporation,
Maynard, MA.

*supported by NSF grant CCR-87-05596 and DARPA N000-14-85-K-0018.

introduction and discharge rules. We argue that this extension yields a higher-level description
of many program manipulations and provides a more natural specification of these tasks. Many
low-level routines for manipulating program code, such as substitutions for free variables, changing
bound variable names, maintaining a context, etc., are essentially moved to the meta-language and
need not be written into the specification.

1.1 Motivation

The process of designing and implementing new programming languages could be greatly enhanced
with a meta-programming tool that provides a generic framework in which designers can develop
and experiment with new programming languages and their properties. Programs like compilers,
interpreters, type checkers, and type inferencers are standard tools that designers implement and
test. For our purposes we are concerned with two levels of programming languages: the object-
languages and the meta-languages in which compilers, interpreters, etc. for the object languages
are implemented. The work in natural semantics [16] can be viewed as a proposal for a general
and flexible meta-language in which such meta-programs can be written for a wide class of object-
languages. This work has also demonstrated how such apparently disparate tasks as compiling and
type checking can be presented in a unified framework, one akin to natural deduction-style theorem
provers. In this framework, properties of object-level programs are given by a set of axioms and
inference rules in which the simplest propositions often have immediate and declarative readings.
Such propositions are, for example, of the form I' i- E : r, denoting the property that "in context r
program phrase E has type r," or of the form r t- E -t F, denoting the property that "in context
I' program phrase E has value F (or compiles to program F)." Reasoning about programs, then,
is performed by a restricted kind of theorem proving in this meta-language.

Since, as we shall argue, higher-order expressions and higher-order reasoning arise naturally
in meta-level manipulations of program code, a higher-order extension to natural semantics could
be useful. While such higher-order extensions are not essential to capture the meaning of these
program manipulations, having certain higher-order operations, such as abstraction, p-conversion,
and unification of A-terms, as primitives permits the specification of some manipulations to be
given at a higher and more general level than in natural semantics. Since resulting specifications
are often more perspicuous, establishing their formal correctness properties will hopefully also be
easier.

1.2 Related Work

The seminal work on a structured approach to operational semantics is by G. Plotkin [27] . This
work introduced the general approach of describing semantics with inference rules. Much of the
work reported in this paper was motivated by the research in natural semantics done subsequently
by G. Kahn and many others at INRIA. They chose to study semantics of programming languages
by developing proof systems similar to the ones we develop in this paper. A crucial difference
is that they view programs as first-order structures which can be manipulated by a first-order
language (e.g., PROLOG). While the use of a first-order language may lead directly to efficient
implementations, the logical aspects of program systems are not always elucidated in a strictly
first-order setting. This point will become obvious, for example, when we discuss the manipulation
of recursive objects.

Other efforts with similar goals have considered denotational instead of operational or natural
semantics. Some of the earliest work in this area is due to Mosses and his SIS system [22]. SIS is a
compiler generator which takes as input a specification of the denotational semantics of an object

language and produces a compiler for this language. There have been numerous other efforts with
similar goals and their contributions are well documented in the literature [9, 151. While this
abundance of work has produced some fruitful results certain limitations appear inherent with
this approach. First the mathematical machinery required to specify a denotational semantics can
become burdensome for practical language definitions. Furthermore, denotational semantics, in
general, does not appear to be a convenient technique for specifying parallelism or nondeterminism.
Many of the techniques used in natural semantics do not seem to suffer from these deficiencies.

From the perspective of reasoning in a higher-order setting this work shares much with several
other projects. In [14,10,19] the authors argue that higher-order unification and logic programming
can elegantly be used to manipulate programs in semantically meaningful ways. In [7] a logic
programming language containing not only higher-order terms but also the ability to introduce and
discharge assumptions and parameters is used to specify and implement various natural deduction-
style theorem provers. Many techniques from that paper find immediate applications in this paper.
The meta-language outlined in the next section is essentially an application of the general notion of
higher-order abstract syntax to a particular program manipulation system [25]. This meta-language
can also be specified in the much richer proof system specification language of LF [ll]. Although
we outline briefly how this meta-language can be implemented in the AProlog logic programming
language [7, 18, 231, it should also be possible to provide an immediate implementation in the
theorem proving system Isabelle [24].

2 A HIGHER-ORDER META-LANGUAGE

To extend the meta-language proposed in [16] we use a higher-order abstract syntax for the repre-
sentation of programs as data objects and for specifying proof rules [25]. The use of higher-order
features actually provides a "high-level" approach to specifying program manipulations. The spec-
ification language described here could be translated or "compiled" into either natural semantics or
into first-order Prolog, though we will not attempt to do either. This translation could, however,
be important since the removal of high-level features (here, higher-order features) usually results
in more efficient implementations of specifications. Our purpose in the current work, however, is to
concentrate on the inherent logical content of various program manipulations and not to address
the efficiency of the programs which implement them.

The abstract syntax for programs and types of the object language is based on the simply typed
A-calculus. We shall represent programs as simply typed terms by introducing an appropriate set of
constants from which we can construct terms denoting programs. In general, for each programming
language construct we introduce a new constant which is used to build a term representing this
construct. We also define new base types (or sorts) corresponding to the different categories of
the object language. For example, a simple functional language might require two sorts, one for
object-level terms and one for object-level types. We provide an example of such an abstract syntax
in the next section. In the rest of this section, we present the proof and reasoning components of
our met a- theory.

2.1 An Abstract Proof System

Given a representation of programs as terms we now describe the general structure of a proof system
for manipulating these terms. We consider a natural deduction calculus patterned after Gentzen
proof systems [B]. The propositions of this system will typically be binary statements of the form
t- E : T or t- E + F. Here, of course, we are thinking of E , F , T as variables which might range
over A-terms. Although propositions can have more complex structure, we shall restrict them to

be X-terms with a constant symbol as their head.

The proof system of our meta-language comes equipped with four built-in inference figures. The
first has the structure:

A1 -
A0

in which the X-terms representing the propositions in A. and A1 are ,Oq-convertible. By virtue of
this rule, we generally think of any two X-terms as equal if they are pq-convertible. The second
inference figure is:

A1 A2
A1 & A2

This rule is called conjunction introduction. When implementing this inference rule, we interpret
it in the following backward fashion: to establish the proposition in A1 & A2, establish the two
separate propositions found in A1 and A2.

The remaining two rules deal with introduction and discharge. To specify the introduction and
discharge of assumptions needed to prove hypothetical propositions we use the following inference
figure.

(A1)

That is, to prove A1 j A2, first assume that there is a proof of A1 and attempt to build a proof
for A2 from it. If such a proof is found, then the implication is justified and the proof of this
implication is the result of discharging the assumption about A1. This rule is called implication
introduction. Proving a universally quantified proposition has a similar structure, suggesting the
following inference figure.

Here, to prove a universal instance, a new parameter (c) must be introduced and the resulting
generic instance of the quantified formula must be proved. Of course, after that instance is proved,
the parameter must be discharged, in the sense that c cannot occur free in A or in any undischarged
hypotheses. This rule is called universal introduction.

A specification of a meta-level program will be a collection of atomic propositions which will
denote axioms and a collection of inference figures, none of which introduce the symbols &, +,V.
Of course, the premises to user supplied inference figures can contain instances of these symbols.
When providing examples of inference figures later in this paper, we shall drop references to the
connective & in premises. Inference figures of the form

&
will simply be written as A1 A2

A0 A0

A proof in this language will be understood in the standard sense of proofs in natural deduction
[8, 281.

2.2 An Implementation of the Meta-Language

Following the observation described in [16] that natural semantics has an intimate connection to
logic programming, we show how the preceding four inference figures are related to logic pro-
gramming. First-order Horn clauses, however, are not strong enough to directly implement these

inference rules. First, the notion of equality between terms would be that of simple tree equality,
not that of pq-conversion. Horn clauses also do not provide a mechanism for directly implementing
the introduction and discharge of parameters and assumptions. It is not difficult to modify our
proof system so that the explicit references to introducing and discharging assumptions could be
eliminated in favor of treating basic propositions as essentially sequents. That is, a proposition
l- Prop would be replaced by a proposition r t- Prop, in which r is used to store assumptions.
This is, for example, used in natural semantics to handle contexts. For the examples in this paper
we actually used this approach to implement them in XProlog. We were required to do this since
version 2.6 of XProlog does not fully support implication in goal clauses. (See appendix B.) A more
serious challenge to Horn clauses is that they cannot naturally implement the universally quantified
proposition.

There is, however, a generalization of Horn clauses which adds both implications and universal
quantifiers to the body of clauses and permits quantification over higher-order variables. This
extension, called higher-onler hereditary Harrop formulas [20] has (partially) been implemented in
the AProlog system. XProlog does, in fact, provide a natural implementation language for these
inference rules. For example, the user can specify inference rules by directly writing program
clauses containing conjunction, implication, and universal quantifiers, since these are understood
on a primitive level of XProlog. For example, clauses of the form

can be used to represent complex inference figures. Free (higher-order) variables here are assumed
to be universally quantified over the scope of the full clause. Instead of using this kind of syntax
to present example inference rules later in this paper, we shall continue to use the more graphi-
cally oriented inference figures. All the examples presented in this paper have been implemented
and tested in a version of XProlog. The XProlog code for these examples may be found in the
appendices.

3 MINI-ML AND TYPE INFERENCE

To introduce the features of our meta-language we present a description of type inferencing for
a variant of mini-ML [2], which is a subset of Standard ML containing just the functional part
of that language. (It does not contain exceptions, pattern matching, datatype declarations or
modules.) This presentation demonstrates how an abstract syntax for a functional language can
be constructed using simply typed lambda terms and also how the unique features of our meta-
language can be exploited in the manipulation of programs. We take care in making the distinction
between terms and types at the object (mini-ML) level and terms and types at the meta-level.
We refer to the latter as meta-terms and meta-types. We have two base meta-types, tm and tp,
representing object-level terms and types, respectively.

To define our abstract syntax for mini-ML we begin by giving a signature for some meta-terms
that we use to construct terms and types at the object level. (See figure 1.) Notice that the
constants lamb, let and fix are higher-order, that is, they each require a functional argument of type
tm--+tm. In the examples that follow M will be used as a higher-order variable of this meta-type.
'*' and '+' are the product space and function space constructors, respectively, for tp. We have
overloaded the symbol 't', using it at both the object and meta levels; its use, however, should
be clear from context. The object types we consider are only monotypes (in the sense of [21] as
we do allow type variables). Expressions with polytypes (i.e., monotypes that may be prefixed by
universal quantification over type variables) do arise, however, in mini-ML. At the conclusion of
this section we present a separate discussion of polytypes.

Figure 1: Signature for mini-ML abstract syntax

meta-term
true, false
0 , 1 2
I t

fst
snd
if
'@'
lamb
let
fix

meta-type
tm
tm
tm + tm --+ tm
tm + tm
tm + tm
trn -+ tm + tm + tm
tm + (t m + tm)
(t m - tm) - tm
(t m 4 tm) + tm + tm
(t m + tm) + tm

Figure 2: Abstract Syntax for mini-ML

syntax
c
x

(el , ez)
(fst e), (snd e)

(i f e l e 2 e s)
(el @ ez)
(lamb M)
(let M ez)

(f i x M)

3.1 An Abstract Syntax for mini-ML

description
constants: integers, true, false, etc.
variables
pairing
first and second projections
i fe l thenezelseea
application
M = Xx.e (lambda abstraction)
M = Xz.e~ (let x = e2 in el)
M = X f.e (least fixed point operator)

Figure 2 contains the higher-order abstract syntax for expressions in mini-ML. The first few lines
treat constants, variables, pairing, projections and the conditional in a traditional manner. Ap-
plication is made explicit with the infix operator '@'. For lambda abstraction we introduce the
constructor lamb which takes a meta-term M of the form Xx.e, in which x and e are of meta-type
tm, and produces a mini-ML term. Similar to lamb, the let construct uses a meta-term M of the
form Xx.e to represent the binding of an identifier. To accommodate recursion we introduce the
fix construct which again uses an explicit abstraction to capture the binding. Thus, we employ the
general principal that bindings at the object level have an associated abstraction at the meta-level.
Two differences between our approach and INRIA's (aside from the use of higher-order syntax) are
immediately obvious. First, our binding of identifiers is restricted to individual identifiers while
the INRIA approach allows patterns (e.g., pairs) to be bound simultaneously. Second, we do not
provide a letrec construct, but rather obtain an equivalent construct by combining let and fix [2].

This abstract syntax is essentially the embedding of the untyped lambda calculus into a simply
typed calculus as described originally in [29], in terms of lattices, and later in [17]. Using the
notation of [I?] our meta-term lamb corresponds to the function 9, for coercing functions into
terms. The meta-term '@' corresponds to the function @ for coercing terms into functions. Thus
our representation of mini-ML code is essentially the same as first encoding them as untyped lambda
terms and then embedding them into the typed calculus using Q, and Q.

Throughout this paper we will avoid discussing primitive operations of mini-ML, such as +, -,

etc. They are, of course, important to have in the full language but including them here is neither
difficult nor illuminating. (See appendix B for examples of how we treat primitive operations.)

The restriction that bindings cannot be over patterns is used only as a matter of convenience
here: it does not reduce the expressiveness of our version of mini-ML. Most expressions that bind
patterns can be transformed into equivalent ones that do not use patterns. For example consider
the expression found in [2] that contains a pair of mutually recursive function definitions:

letrec (even, odd) = ((lambda x (if x = 0 then true else odd(x - I))),

(lambda x (if x = 0 then false else even(x - 1))))

in even(3)

(We use the notation (lambda x E) to denote the "first-order" term representing a lambda ab-
straction. This distinguishes it from our use of A in simply typed terms.) This recursive definition
can be rewritten in our abstract syntax as follows.

(let A f((fst f) 3) (fix Af(Ax(if x = 0 true (snd f)(x - I)),
Xx(if x = 0 false (fst f)(x - 1)))))

In this example, we have systematically dropped the apply "@" operator in order to make this
example more readable. (There should be 14 occurrences of "O" in this example.) In words, the
first expression contains a pair of (mutually) recursive functions and the second expression contains
a recursively defined pair of functions. A general program transformer taking expressions of the
former kind into equivalent ones of the latter kind is given in appendix A. The simplicity of the
transformer given there helps justify our claims that our meta-language allows us to naturally
specify manipulations of programs.

3.2 Environments versus Abstractions

Before presenting the type inference proof procedure we make another distinction between our
method and typical approaches to natural semantics. This distinction concerns the treatment
of identifiers. The typical approach to analyzing programs uses an environment (or context) to
denote a finite mapping from identifiers to some domain (e.g., types or terms). When analyzing
an abstraction, the bound variable is stripped from the abstraction and the identifier which names
that bound variable is added to the context. The meaning of such an identifier within the body of
the abstraction is then determined by "looking up" the value associated with the identifier in the
current environment. We refer to this technique as the environment approach.

Given our commitment to representing program abstractions using abstractions with A-terms
and to equating such terms when they are pq-convertible, it is impossible to access the bound
variable name of a A-term at the meta-level, since such an operation would return different answers
on equal terms. A combination of the V and + propositions, however, can provide a very simple
solution to this problem. When an abstraction is encountered, typically within lamb, let and
fix constructions, a V judgement is used to introduce a new parameter. That parameter is then
substituted into the abstraction using p-conversion. The value or type to be associated with this
new parameter is then introduced as an assumed proposition. In this way, the newly introduced
identifier is used to stand for the name of the bound variable.

This relation between the environment approach and our technique is similar to an observation
by Plotkin about evaluations in the SECD machine [26]. There two different evaluation functions
were defined: the awkward Eva2 function defined in terms of closures and the simpler eval defined

ky N : int tfy true : boo1 ky false : boo1 (1,2,3)

kv el : boo1 tfv el : r ky ez : r
ky (if el e2 es) : r (4)

hv el : TI by e2 : ~2

ky (el , ez) : (ri * ~ 2) (5)

k,. e : (rl * n) try e : (TI * TZ)
ky (fst e) : rl ky (snd e) : rz (6j7)

(Vc) (kv c : r~ =+ kV (M C) : r2) by el : (rl -+ ~ 2) e2 : rl
ky (lamb M) : (rl -i ~ 2) tfy (el@ez) : h (8 ,9)

tfy ez : 5 tfv (M ez) : r~ (Vc) (kv c : r +- tt, (M c) : r)
ky (let M e2) : TI tfy (fix M) : T

(10,11)

Figure 3: Type Inference for Mini-ML

using substitution (p-conversion, here). While these two functions were shown to be equivalent,
introducing the simpler definition for evaluation allowed properties of the SECD machine to be
described much more naturally than with the first, more cumbersome, definition. Similarly, we
believe that the use of abstractions and substitution in our meta-language will often produce this
kind of advantage over programs using the environment approach.

3.3 A Type Inference System

The proof system for type inference in our formulation of mini-ML is given in figure 3. A proof
of the proposition ky E : 7, in which E is a closed expression given in the above abstract syntax,
states that E has type r. To be precise we should prove certain properties about this typing system,
e.g., soundness, completeness and principal typing [4, 121. However, due to the preliminary nature
of this work we prefer t o provide an informal discussion of this system. The first three clauses
(actually axioms) are for typing the constants of the language; here N denotes any integer. The
next clause gives the usual typing for the conditional statement. Clause 5 gives the typing for pairs.
Clauses 6 and 7 give the typings for the corresponding projections.

Clause 8 is the typing rule for lambda abstraction and it is a bit different from the usual typing
rule using environments. In the environment approach, typing the (first-order) term (lambda x E)
would first require adding the type assignment x : rl to the environment, then computing the type
of E in this new environment to be 72, and then finally inferring the type of the original term to be
r1 + r2. Our rule uses P-reduction and operationally works as follows. Given the term (lamb M)
we first pick a new constant c and assume it has type 71 (i.e., we introduce the assunlption ky c : rl).
Under this assumption we then type (the pq-normal form of) the term (M c). If M is of the form
Xx.e then the P-reduction is, in this case, equivalent to the substitution e[x H c]. If we infer the
type rz for this term then we infer the type of the original term to be r1 + TZ. Informally, this
infers the correct type because every occurrence of x bound by this abstraction has been replaced
by a term c whose type will be inferred t o be T I . Although this is in many ways similar to the
environment approach, it avoids the need to access the names of bound variables.

Clause 9 is the usual typing rule for application. Clause 11 for fixed points uses the same
technique as lamb, though in this case we know that M must be of type r + r for some r. Clause
10 requires some explanation. The more standard implementation of type inference for let first
infers the principle type for e2, then generalizes that type with a universal quantifier over type
variables, yielding a polytype. Later in the typing of the abstraction M, various universal instances
of this polytype could be made for instances of the abstracted variable of M. Our meta-language,
however, contains no method for generalizing a free variable into a bound variable, and so this
kind of implementation is not possible here. Instead, we avoid inferring a polytype for ea explicitly.
Clause 10 requires that e2 have some type, but that type is then ignored. P-reduction is used to
substitute e2 into the abstraction M, and then the type of the result is inferred. If e2 is placed into
several different places in M, each of those instances will again have a type inferred for them; this
time the types might be different. Therefore, e2 could be polymorphic in that its occurrences in M
might be at several different types.

We do not need a rule for typing identifiers because any identifier occurring in a term is replaced
via P-reduction with either (i) a term explicitly typed via an assumption (lamb, fix) or (ii) a term
whose type has already been inferred (let). (Recall that we are typing only closed expressions.)
Note that the three clauses that make significant use of higher-order features correspond precisely to
the three clauses in the environment approach that extend the environment. This is not surprising
as these are the only three clauses that introduce identifiers and bindings. An implementation of
this system is given in appendix B.

3.4 The Subsumes Relation for Polytypes

As a second example of using our meta-language to manipulate ML types, we present a proof
system for the subsumes relation on polytypes [21]. For this purpose, we now introduce a higher-
order constant for constructing ML types, namely the type quantifier forall which is of meta-type
(tp + tp) + tp. Any term of type tp which does not contain an instance of this constant is a
monotype. A term of type tp in which all of occurrences of forall are in its prefix (that is, no
occurrence of forall is in the scope of * or +) is called a polytype (a monotype is a polytype). I t is
possible to construct terms (of meta-type tp) that are neither monotypes nor polytypes, but these
will not interest us here. In the following discussion, the greek letter r will represent a monotype
and a a polytype. Before defining the subsumes relation we define an auxiliary definition.

Definition 1 (Instance of a Polytype) T is an instance of polytype (forall Atl(. . . (forall At,
(r')) . . .)) if there exists a substitution S of the variables tl, . . . , t, into monotypes such that S(r1) =
7.

The subsumes relation on polytypes is then given by the following.

Definition 2 (Subsumes) Let a1 and a 2 be two polytypes. a1 subsumes a2, written a1 5 a 2 , if
every instance of a 2 is also an instance of al.

For example, the polytype (forall At.t) subsumes all other polytypes. An informal operational
description of this definition is the following. Given a1 and 02, erase the quantifiers of each yielding
two monotypes, rl and 72. Then a1 C a 2 iff there exists a substitution S such that S(r l) = r2 .

Since the erasure of bound variables is another operation not available in our meta-language, we
need to approach the implementation of subsumes differently.

In our meta-language we can construct a simple proof system for the subsumes relation; it is
given in figure 4. The first clause states the obvious: any polytype subsumes itself. The second

Figure 4: Subsumes Relation for Polytypes

clause produces a 'canonical' instance of az. This step is essentially like the process of erasing a
type quantifier. The meta-level universal quantifier used in this clause ensures that, after removing
the quantifiers on a*, revealing a monotype, any future substitution does not affect this monotype
(its free variables are, in a sense, protected). The third clause is used to build an instance of the
first type by stripping off a quantifier (replacing a bound (type) variable with a free one).

Notice that these three proof rules have a simple declarative reading. Assume that types are
interpreted as sets of objects of that type, that forall is interpreted as intersection, and C as subset.
The second clause states that a type is a subset of the intersection of a family of types if it is a
subset of all members of the family. The third clauses similarly states that if some member of a
family is a subset by a given type, then the intersection of that family is a subset of that type.

4 DYNAMIC SEMANTICS

In mini-ML the evaluation of an expression E always yields some 'canonical' value a. Following
[16] we refer to a formal specification of an evaluator for a language as the language's dynamic
semantics. We characterize the dynamic semantics of an object language via judgements of the
form k E + a in which E is an expression of the object language and a is the result of
evaluating E . By providing rules corresponding to the operational behavior of the language (with
the general guideline of having one rule for each programming language construct) we can specify
the declarative aspects of interpreters (or evaluators) for the language, isolated from control issues.
As mentioned previously this provides a convenient tool for analyzing and experimenting with new
programming languages.

We now present a dynamic semantics for mini-ML, using the same higher-order abstract syntax
as given in the previous section. Propositions in our system are of the form h E - cr in which E
and a are expressions in mini-ML and cr is the result of evaluating E. The dynamic semantics for
our version of mini-ML is given in figure 5. Many of these rule are similar to the ones given in figure
2 of [16], except that our rules do not make explicit reference to an environment. We highlight
here, then, only the important differences between the two, which principally revolve around the
treatment of variable bindings. To aid in the discussion we present those rules from [16] which differ
significantly from our own. These are given in figure 6 with numbers referring to the corresponding
rules of figure 5. An implementation of our system is given in appendix B.

First consider rule (9) for handling abstractions. In the environment approach, an explicit
closure is created for preserving the current environment. This ensures static scoping. Closures
are not used in our specification since no environment is maintained: neither the universal nor
the implicational propositions are used in this example. Static scoping is ensured in our model
because @-reduction, as a means of propagating binding information, guarantees that the identifiers
occurring free within a lambda abstraction are replaced (with their associated value) prior to
manipulating the abstraction. The two rules for application (10) are somewhat similar, though in
our model el evaluates to a lambda abstraction rather than a closure. Also use of P-conversion

t,l N ---. N kl true ---, true t,, false -+ false (1 ,2 ,3)

b-,1 e l d true hl ez - O.

t-,1 (if e l e2 es) -+ a
(4)

h1 el ---. false la e3 +. ff

h (if e l ez es) d O.
(5)

tl el + a 1 b~ e2 -+ a 2

hl (el , e2) + (0.1, 0.2)
(6)

bl e - (a l , a z) e - (0 .1 ,az)
hl (fst e) - 0.1 h-,1 (snd e) + 0.2

(798)

t-,1 (lamb M) - (lamb M) (9)

bl e l ---+ (lamb M) hl ez -+ ffz k1 (M az) - a
h1 (e1Qe2) + O. (10)

hl ez + a 2 t-,~ (M 0.2) + a t-,, (M (fix M)) + a
t-,l (let M ez) -+ a t-,-,1 (fix M) -+a (11,121

Figure 5: Dynamic Semantics for Mini-ML

instead of environment updating correctly models the notion of function application (with a call-
by-value semantics). Similar comments apply to our rule for let (11).

Finally we have the rules for introducing recursion. We opt for a fixed point operator with its
intuitive operational semantics (i.e., unfolding). This again makes explicit use of p-conversion since
the higher-order variable M is applied to the term (fix M). The result of /?-converting this expression
substitutes the recursive call, namely (fix M), within the body of the recursive program, namely
M. This rule in the environment approach is less perspicuous and relies on constructing an infinite
structure. This technique appears to be motivated more by the underlying implementation language
(MU-PROLOG, which supports such constructs) than by a logical description of recursion. This
infinite structure results from the construction of a cyclic term in MU-PROLOG when encountering
an occur-check situation implicit in the implementation of (12) in figure 6.

We have also specified a proof system providing a dynamic semantics for the Categorical Ab-
stract Machine (CAM) [3]. As the CAM is alow-level stack-based machine, higher-order syntax pro-
vides little advantage in specifying its semantics. Values in the CAM must be explicitly maintained
on a stack, thus forming a kind of environment; hence we could not dispense with environments.
We were, however, able t o avoid the use of infinite structures for handling the rec command. In
the first-order system of [16], the rec command, which allows recursion, is handled by constructing
a cyclic (hence, infinite) environment. We construct a higher-order object for the environment and
then represent this recursive environment by a fixed point. This specification, we believe, provides
a clear picture of the underlying stack manipulation of the CAM. An implementation of this system
is given in appendix B.

p I- XP.E + [XP.E, p] (9)

p I- El [XP.E, p ~ l p l - E2 =+ a p l . P ~ a k E + p
p I - ElOEz + ,f3 (10)

p k E 2 * a p . P w a l - E 1 j p
pl-let P = Ez in El * p (11)

p . P w a l - E 2 ~ a p . P ~ a t - E l * P
p k letrec P = E2 in El + p (12)

Figure 6: Dynamic Semantics for Mini-ML (using environments)

5 TRANSLATION FROM MINI-ML TO CAM

As a final example we take the translation from mini-ML to CAM given in [6] and specify i t in
our higher-order meta-language. The inference figures for this translation are given in figure 7. We
were able t o replace the use of environments with de Bruijn indices (the D's occurring in the proof
rules). Such a simple addressing scheme is due partly to our restriction that bindings refer only
to individual identifiers. When dealing with identifiers, our presentation is somewhat simpler than
that of [6]. We give only an overview here of the functioning of this proof system. We have not
presented the constructors for the abstract syntax for the CAM since they all have straightforward
first-order types. An implemenation of this translation system is given in appendix C.

Given a mini-ML term e we define the depth of a subterm el of e to be the number of variable
bindings in e of which el is in the scope. The proposition D kr e - C then has the declarative
reading: "the mini-ML term e , occurring at a depth D in some term, translates to the CAM code
C." The depth of a subterm is needed in order to generate the correct CAM code for accessing
the value of mini-ML identifiers. Identifiers are translated into access paths into an environment
on top of the CAM's stack. The precise nature of this environment is not important; we only note
that it is, in general, a tree structure with values at its leaves. An access path is a sequence of fsts
and snds for descending through this environment to retrieve a desired value. Due to the uniform
manner in which identifiers are introduced into (our simplified) mini-ML the access path for an
identifier has the form "fstd-';sndn in which d is the usual de Bruijn index for the identifier [5] .
We can compute this index during translation by noting that d = D - Dl + 1 where D is the depth
of the occurrence of the identifier and Dl is the depth of the binding occurrence for the identifier.
For example, in the term XxXy.x the occurrence of the identifier x is a t depth 2 and the binding
occurrence of x is at depth 1 (the top level). The de Bruijn index for the occurrence of x is then
computed to be 2 (= 2 - 1 + 1). (Compare this with the same lambda term given in a syntax using
de Bruijn indices: XX.2.)

To implement this translation in our meta-language we use a technique similar to our handling
of lambda abstraction in the mini-ML type inference system. Consider rule 9 in figure 7. To
translate the term (lamb M) we introduce a new parameter c and apply the meta-term M to it.
This substitutes c for the abstracted variable of the term. Since the term (lamb M) represents
the introduction of a new binding we must increment by one the depth D for translating subterms
in M. The assumption D + 1 $ c asserts that c is an identifier which was abstracted at depth

D + 1. This will be precisely the information required to produce the access path for this identifier
(given by rule 4). When the subterm c is reached during the translation process the depth (Dl)
of its binding occurrence is obtained from the assumptions of the form Dl b, c. Noting the above
relation between de Bruijn indices and our depths we form rule 4 to generate the correct access
path. This is essentially the rule for the "categorical combinator" n! given in [3], though they work
directly with de Bruijn indices and so their translation of identifiers into such indices is simpler.

The translations for let and fix (rules 11 and 12, respectively) use the same approach for manip-
ulating the identifiers. The translations for the remaining constructs are almost identical to their
counterparts in [6] and we do not discuss them here.

D trr N ---r (quote N)

D IT, true - (quote true) D kr false - (quote false)

Dl bo z
D k, z - f ~ t ~ - ~ l + ' ; snd

D kr el + CI D IT, ez --, C2 D kI ea - (73

D kr (if el ez es) + (push; C1; branch(C2,

D h e 1 - 4 D k, e2 ---+ C2
D kr (el, e2) - (push; CI ; swap; C2; cons)

D h , e + C D tr, e --+ C
D hi (fst e) -+ (push; C ; fst) D kr (snd e) + (push; C; snd)

(Vc) (D + 1 bD c * D + 1 h, (M c) ---,C)
D hr (lamb M) ---, cur(C)

I D tr, el -+ CI D tr, ez ---, C2
D hr (el@ez) + (push; CI; swap; C2; cons; ~ P P)

D kr ez - C2 (Vc) (D + 1 hD c * D + 1 kr (M c) - - t 4)
D kr (let M e2) --+ (push; C2; cons; CI) (11)

(Vc) (D + 1 h, c + D + 1 h (M c) ---, C)
D k, (f ix M) -+ (push; rec(C))

Figure 7: Translation from mini-ML to CAM

6 CONCLUSION

We have presented an enrichment of the natural semantics meta-language. This language differs
from previous work in natural semantics in three significant ways. First, we represent programs as
simply typed A-terms instead of first order structures. We demonstrated how this representation
affords higher-level reasoning about programs, since many low-level manipulations, e.g., substitu-
tions for free variables and changing bound variable names, are pushed into the meta-language and
need not be explicitly stated in a specification. Second, we extended the reasoning mechanism with
proof methods which have proved valuable in other natural deduction systems. We incorporated
explicit methods for introducing and discharging assumptions and parameters which are used to

prove hypothetical and universal propositions. Typically we applied these two in tandem for in-
troducing identifiers for object-level bound variables. Finally, the schema variables appearing in
inference rules can be higher-order variables.

We presented several examples to support our claim that this enriched meta-language permits a
high-level and elegant specification of program manipulations. From the specification point-of-view,
we argued that the proof rules provided in this enriched meta-language were more perspicuous and
we did not need to introduce any non-logical meta-level operations to implement all the examples
considered above. An important concern for the researchers in natural semantics was the compiling
of inference rules into efficient programs. Although we see no reason to believe that the specifications
given here could not also be implemented efficiently, it seems probable that such compiling will be
more involved than it is for compiling a first-order natural semantics.

By providing a purely logical framework in which one can naturally reason about properties of
programs we expect that correctness properties for these systems will be easier t o show than for
systems using only first-order features. While correctness proofs have been given for translations
in natural semantics [6], we believe that proofs for systems specified in our meta-language will be
simpler due to the stronger meta-theory of our language. The construction of such correctness
proofs for the meta-level programs in this paper has not yet been done. Finding such proofs is one
of our next concerns.

Acknowledgements: We would like to thank Carl Gunter for first directing us towards the work
on operational and natural semantics. We also like t o thank Amy Felty, Elsa Gunter and Val
Breazu-Tannen for several valuable discussions related to this paper.

REFERENCES

[I] D. Cldment. The natural dynamic semantics of mini-standard ML. In Proceedings of the
International Joint Conference on Theory and Practice of Software Development, pages 67-
81, Springer-Verlag LNCS, Vol. 250, 1987.

[2] D. Cldment, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language:
mini-ML. In Proceedings of the ACM Lisp and Functional Programming Conference, pages 13-
27, 1986.

[3] G. Cousineau, P-L. Curien, and M. Mauny. The categorical abstract machine. The Science of
Programming, 8(2):173-202, 1987.

[4] L. Damas and R. Milner. Principal type schemes for functional programs. In Proceedings of
the ACM Conference on Principles of Programming Languages, pages 207-212, 1982.

[5] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser Theorem. Indag. Math., 34(5):38 1-392,
1972.

[6] J. Despeyroux. Proof of translation in natural semantics. In Proceedings of the First ACM
Confemnce on Logic in Computer Science, pages 193-205, 1986.

[7] A. Felty and D. Miller. Specifying theorem provers in a higher-order logic programming
language. In Proceedings of the Ninth International Conference on Automated Deduction,
1988.

[8] G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The Collected Papers
of Gerhad Gentzen, pages 68-131, North-Holland Publishing Co., 1969.

[9] M. J. C. Gordon. The Denotational Description of Programming Languages. Springer-Verlag,
1979.

[lo] J. Hannan and D. Miller. Uses of higher-order unification for implementing program trans-
formers. In K. Bowen and R. Kowalski, editors, Fifth International Conference Symposium on
Logic Programming, MIT Press, 1988.

[ll] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Symposium on
Logic in Computer Science, pages 194-204, 1987.

[12] R. Hindley. The completeness theorem for typing A-terms. Theoretical Computer Science,
22(1-2):l-18, 1983.

[13] G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science, 1:27-57,
1975.

[14] G. Huet and B. Lang. Proving and applying program transformations expressed with second-
order logic. Acta Informatica, 11:31-55, 1978.

[15] N. Jones, editor. Semantics-Directed Compiler Generation. Volume 94 of Lecture ATotes in
Computer Science, Springer-Verlag, 1980.

[16] G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pages 22-39, Springer-Verlag LNCS, Vol. 247, 1987.

[17] A. Meyer. What is a model of the lambda calculus? Information and Control, 52(1):87-122,
1981.

[18] D. Miller and G. Nadathur. Higher-order logic programming. In Proceedings of the Third
International Logic Programming Conference, Springer-Verlag, 1986.

[19] D. Miller and G. Nadathur. A logic programming approach to manipulating formulas and
programs. In Proceedings of the IEEE Fourth Symposium on Logic Programming, IEEE Press,
1987.

[20] D. Miller, G. Nadathur, and A. Scedrov. Hereditary Harrop formulas and uniform proof
systems. In Symposium on Logic in Computer Science, pages 98-105, ACM Press, 1987.

[21] J. Mitchell and B. Harper. The essence of ML. In Proceedings of the ACM Conference on
Principles of Programming Languages, pages 28-46, 1988.

[22] P. Mosses. SIS: a Compiler Generator System Using Denotational Semantics. DAIMI MD-30,
Aarhus University, Aarhus, Denmark, August 1979.

[23] G. Nadathur and D. Miller. An overview of AProlog. In K. Bowen and R. Kowalski, editors,
Fifth International Conference Symposium on Logic Programming, MIT Press, 1988.

[24] L. Paulson. The Foundation of a Generic Theorem Prover. Technical Report 130, University
of Cambridge, Cambridge, England, March 1988.

[25] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the ACM-SIGPLAN
Conference on Programming Language Design and Implementation, 1988.

[26] G. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science,
l(1): 125-159, 1976.

[27] G. Plotkin. A Structural Approach to Operational Semantics. DAIMI FN-19, Aarhus Univer-
sity, Aarhus, Denmark, September 1981.

[28] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

[29] C. P. Wadsworth. The relation between computational and denotational properties for Scott's
D, models of the lambda-calculus. SIA M Journal of Computing, 5(3):488-521, 1976.

Appendix A: Transformation of Recursive Equations

In section 3 we presented examples of two different abstract syntaxes for representing recursive
definitions. We present here a transformation specified in our meta-language for converting a re-
cursive definition of the first kind (which we call recursive equations) to an equivalent definition of
the second kind (which we call fixed point equations). As presented earlier the recursive equations
actually appear embedded in a letrec expression which combines the recursive definition and an
application. To isolate just the definition part we introduce two new constructors, '+' and receq,
with meta-types (tm * tm) i (tm * tm) + tm and (tm + tm + tm) + tm, respectively. The
intended meaning of '+' is to associate a pair of identifiers with a pair of (mutually recursive)
function definitions. To facilitate the manipulation of this term we abstract out the names of these
identifiers, yielding a meta-term. To coerce this meta-term back into a A-term of type tm we use the
receq constructor which takes this meta-term to a term. For example, a definition of the even/odd
functions using recursive equations in this syntax would be:

(receq AFAG.((F,G) ((lamb AX.(if (X = 0) true (G (X - 1))))

(lamb AX.(if (X = 0) false (F (X - 1)))))))

Again, we have dropped occurrences of the apply operator "@" to make this example more readable.
Now we wish to transform this term into the term

(fix AF.(AX.(if X = 0 true (snd F) (X - I)),
XX.(if X = 0 false (fst F) (X - 1)))))

This type of transformation is similar to the "curry" transformation of [19] which transforms a
function of one argument (representing a pair) to a function of two arguments (representing the
two elements of the pair). Let ke, R - F be the proposition stating that the recursive equation
represented by R is equivalent to the fixed point equation represented by F. A proof system for
this proposition (restricted to definitions of exactly two recursive equations) is given by the single
axiom involving higher-order terms:

k c (receq AFAG.((F, G) + ((MI F G), (M2 F G)))) -
(fix AF.((Ml (fst F) (snd F)) , (M2 (fst F) (snd F))))

This proof rule makes a significant use of higher-order unification 113, 141 to generate the meta-
terms MI and Mz, both of type tm i tm + tm. Transformations of this type and their reliance
on higher-order unification are discussed in [lo].

Append ix B: XProlog Source C o d e for Mini-ML Examples

We give below the XProlog code for the mini-ML type inference and dynamic semantics systems.
This is given in four modules (a module is a named collection of declarations and definitions,
providing scoping and structuring mechanisms in XProlog): the first gives the signature for the mini-
ML abstract syntax; the second gives an implementation of the mini-ML type inference system;
the third gives an implementation of the mini-ML dynamic semantics; and the last gives some
examples. In XProlog one can accumulate definitions from other modules by explicitly importing
those modules into another. The import declaration provides this capability and is used in the
modules below. (Note: the module lists contains the usual list manipulation routines, including
member.

Some additional comments regarding the signature may elucidate the example. We introduce
the object types mint and mbool (for int and boo9 and the object-type constructors mand and mlist
(for x and list). We do this to maintain the distinction between the object types and the meta-
types (of XProlog) which include types for int, bool, etc. Also we introduce the constructor # for
coercing meta-level integers (as provided by XProlog) to object-level integers. This allows us t o
move easily between the object-level representation of integers and the meta-level representation.
Similar comments apply to the primitive operators for addition, multiplication, etc.

As mentioned previously, the current version of XProlog does not fully implement hereditary
Harrop formulas. Specifically, formulas of the form A1 + A2 are restricted to instances in which
A1 is the name of a module. Hence we cannot directly implement the proof systems given earlier
in the paper. We must resort to supplying a context with our proof rules for type inference. Here,
a context is a list of pairs (tm, tp) associating identifiers to types. Only rules 8 and 11 extend
the context and the last clause for infer searches the environment to find the type of an identifier
(really a universal constant).

%%%
%%% mini-ML : Signature %%%
%%% Declaration of Type and Expression Constructors %%%
%%%

module mldecl .

%%% Infix Declarations for Constructors
infix 40 tand yfx. %%% product type constructor
infix 60 --> xfy. %%% function type constructor
infix 40 && yfx. %%% product term constructor
infix 30 Q yfx. %%% application

%%% Kinds for object terms and types
kind tm type. %%% meta-type for terms
kind tp type. %%% meta-type for types

%%% Type Constructors
type mand tp -> tp -> tp.
type - - tp -> tp -> tp.
type mbool tp.

type mint tp.
type mlist tp -> tp.

%%% Term Constructors
type lamb (tm -> tm) -> tm.
type cond tm -> tm -> tm -> tm.
type && tm -> tm -> tm.

type @ tm -> tm -> tm.
type let (tm -> tm) -> tm -> tm.
type fix (tm -> tm) -> tm.
type # int -> tm.

%%% Primi ti ves/Constan ts
type tt tm.
type ff tm.

type fst tm.

type snd tm.
type :: tm.

type nil tm.
type hd tm.

type tl tm.
type empty tm.

type == tm .
type != tm.

type It tm.

type gt tm.

type plus tm.
type minus tm.

type times tm.

%%% End of module mldecl %%%

%%% product space
%%% function space
%%% meta-type boo1
%%% meta-type int
%%% meta-type list constructor

%%% Lambda Abstraction
%%% Conditional
%%% Products
%%% Application
%%% Let
%%% Fixed Point
%%% Coerces int to mint

%%% true
%%% false
%%% first projection
%%% first projection
%%% list constructor
%%% empty list
%%% head-of-list function
%%% tail-of-list function
%%% empty-list function
%%% equality function
%%% inequality function
%%% integer <
%%% integer >
%%% integer +
%%% integer -
%%% integer *

%%%
%%% mini-ML : Type Inference %%%
%%% (infer Gamma Exp Type) succeeds if Exp has type %%%
%%X Type in "context" Gamma. %%%

module m l t ype .

import mldecl l i s t s .

t ype i n f e r (l i s t (pa i r t m t p)) -> t m -> t p -> 0 .

%%% Numbers i n parentheses correspond t o the numbering given t o t h e

%%% r u l e s i n f i gure 3 .

i n f e r Gamma (# N) mint . %%% (I) Numbers

i n f e r Gamma tt mbool.

i n f e r Gamma f f mbool.

i n f e r Gamma (cond E l E2 E3) T : -
i n f e r Gamma El mbool,
i n f e r Gamma E2 T ,

i n f e r Gamma E3 T.

%%% (2,3) Boolean constants

%%% (4) Conditional

i n f e r Gamma (El && E2) (Ti mand T2) : - %%% (5) Product Introduction
i n f e r Gamma El T i ,
i n f e r Gamma E2 T2.

i n f e r Gamma (lamb M) (Ti --> T2) :- 11% (8) Abstraction

p i C\ (i n f e r [(pair C T I) I~amma] (M C) ~ 2) .

i n f e r Gamma (El Q E2) T2 : -
i n f e r Gamma El (T i --> T2).

i n f e r Gamma E2 T i .

i n f e r Gamma (1 e t M E2) T i : -
i n f e r Gamma E2 T2,
i n f e r Gamma (M E2) T I

%%% (9) Application

%%% (10) Let

i n f e r Gamma (f i x M) T : - %%% (11) Recursion
p i C\ (i n f er [(pair C T) /Gamma] (M C) TI .

%%% pr imi t ive operators %%%

i n f e r Gamma f s t ((TI mand T2) --> T I) . %%% (6) F i r s t Project ion

i n f e r Gamma snd ((T i mand T2) --> T2) . %%% (7) Second Project ion

i n f e r Gamma :: (T --> (m l i s t T) --> (ml i s t T)). %%% l i s t constructor

i n f e r Gamma hd ((m l i s t T) --> T) . %%% head o f l i s t

i n f e r Gamma tl ((m l i s t T) --> (ml i s t T I) .
i n f e r Gamma n i l (m l i s t T) .
i n f e r Gamma empty ((m l i s t T) --> mbool) .

i n f e r Gamma == (T --> T --> mbool) .
i n f e r Gamma != (T --> T --> mbool).
i n f e r Gamma I t (mint --> mint --> mbool) .
i n f e r Gamma g t (mint --> mint --> mbool).
i n f e r Gamma plus (mint --> mint --> min t) .
i n f e r Gamma minus (mint --> mint --> mint)
i n f e r Gamma t imes (mint --> mint --> mint)

%%% Assumed Types (instead o f '=>') %%A

i n f e r Gamma C T :-
member (pa i r C T) Gamma.

%%% End o f module m l t ype %%%

%%% t a i l o f l i s t
%%% t h e empty l i s t
%%% empty-l is t funct ion

%%% term equa l i t y
%%% term inequa l i t y
%%% i n t eger <
%%% i n t eger >
%%% i n t eger +
%%% in teger -
%%% i n t eger *

...
%%% mini-ML : Evaluation Procedure %%%
%%% (eval Exp V) succeeds i f Exp evaluates t o V . %%%
...

module mleval .

import mldecl l i s t s .

t ype eval t m -> t m -> o.
type evalbinaryop t m -> t m -> t m -> t m -> o.
type evalunaryop t m -> t m -> t m -> 0 .

%%% Numbers i n parentheses correspond t o the numbering given t o t h e
%%% r u l e s i n f i gure 5 .

eval (# N) (# N) . %%% (I) Numbers

eval tt t t .
eval f f f f .

%%% (2,3) constants

eval nil nil.

eval (cond El E2 E3) C : -
eval El B,
(B = tt, eval E2 C, ! ;

eval E3 C) .

eval (El && E2) (C1 && C2) :-
eval El Cl.
eve1 E2 C2.

eval (lamb W) (lamb M).

eval (El Q E2) C :-
eval El (lamb M),
eval E2 C2,
eval (M C2) C.

eval (let W E2) C :-

eval E2 C2,
eval (M C2) C.

eval (fix M) C :-
eval (M (fix M)) C.

%%% (4.5) Conditional

%%% (6) Product

%%% (9) Abstraction

%%% (10) Application

%%% (11) Let

%%% (12) Recursion

%%% Primitive unary operators %%%
eval (Op Q El) C :-

member Op ifst, snd, hd, tl, empty],
eval Ei Ci,
evalunaryop Op C1 C.

%%% Primitive binary operators %%%
eval (Op Q Ei Q E2) C : -

member Op C::, ==, !=, It, gt, plus, minus, times],
eval El Ci,
eval E2 C2,
evalbinaryop Op Ci C2 C.

evalunaryop f st (Ci && C2) Ci .
evalunaryop snd (Ci && C2) C2.
evalunaryop hd (: : Q C1 Q C2) Ci.
evalunaryop tl (: : Q Ci 13 C2) C2.
evalunaryop empty nil tt.

evalunaryop empty (: : Q Ci Q C2) ff

evalbinaryop : : Ci C2 (: : Q C1 Q C2).
evalbinaryop == C C tt.

%%% (7) First Projection
%%% (8) Second Projection
%%% head of list
%%% tail of list
%%% empty-list function
%%% i i ' i

%%% list construction
%%% term equality

evalbinaryop == C l C2 f f . %%% "',
evalbinaryop != C C f f . %%% term inequa l i t y

evalbinaryop != C l C2 t t . %%% ,',,
evalbinaryop I t (# Nl) (# N2) T :- %%% i n t e g e r <

(t r u t h i s (Nl < N2), T = t t , ! ; T = f f) .
evalbinaryop g t (# Nl) (# N2) T :- %%% i n t e g e r >

(t r u t h i s (N l > N 2) , T = t t , ! ; T = f f) .
evalbinaryop p lu s (# Nl) (# N2) (# N) :- %%% i n t eger +

N i s (Nl + 1 2) .
evalbinaryop minus (# Nl) (# N2) (# N) :- %%% i n t e g e r -

N i s (XI - N2).
evalbinaryop t imes (# N l) (# N2) (# N) :- %%% i n t e g e r *

N i s (Nl * N2).

%%% End o f module ml eval %%%

%%%
%%% mini-ML: Examples %%%
%%% Examples f o r t e s t i n g t ype i n f e renc ing %%%
%%% and evaluator . %%%

module m l t e s t

import m l t y p e mleval .

%%% FUNCTION DEFINITIONS %%%

%%% f a c t o r i a l func t ion
f ac t1 (f i x Fact\ (lamb N\ (cond (== Q N Q (# 0))

(# 11
(t imes Q N Q (Fact Q (minus Q N Q (# I))))))) .

%%% append func t ion
appl (f i x App\ (lamb K\ (lamb L\

(cond (== Q K Q n i l)
L

(:: Q (hd Q K) Q (App Q (t l Q K) Q L)))))) .

%%% mutual recurs ion example: even/odd func t ions
evenoddl (f i x EO\

((lamb X\ (cond (== Q X Q (# 0))
tt

((snd Q EO) Q (minus Q X Q (# 1))))) &&

(lamb X\ (cond (== Q X Q (# 0))
f f

((f s t Q EO) Q (minus Q X (P (# 1))))))).

%%% TEST CASES %%%
t e s t 1 T :- f a c t l F, i n f e r n F T .

t e s t 2 T :- f a c t l F, i n f e r 11 (l e t Fact\(Fact (P (# 3)) F) T .
t e s t 3 V :- f a c t l F, eval (l e t Fact\(Fact Q (# 3)) F) V .

t e s t 4 T :- appl A , i n f e r 11 A T.
t e s t s T :- appl A , i n f e r U (l e t App\(App Q (:: Q (# 1) Q (:: O (# 2) (P n i l))

Q (:: Q (# 3) Q (:: Q (# 4) Q n i l))) A)

T.

t e s t 6 V :- appl A , eval (l e t App\(App Q (:: Q (# 1) Q (:: Q (# 2) Q n i l))
Q (: : Q (# 3) Q (: : Q (# 4) Q n i l))) A)

v.
t e s t 7 T :- evenoddl F, i n f e r 11 F T.

t e s t 8 V :- evenoddl F, eval (l e t EO\((fst Q EO) Q (# 3)) F) V .

%%% End o f module m l t e s t %%%

Appendix C: XProlog Source Code for Mini-ML t o C A M Translat ion

Comments similar to those given for the mini-ML example apply to this example as well. We do
not provide a signature for the CAM here but only give the XProlog module corresponding to figure
7. We number the clauses in this module with the number of the corresponding proof rule.

We again must resort to supplying a context with our proof rules. For this example the context
is a list of pairs (t m , i n t) associating identifiers to the depth at which they were bound. The
three proof rules in figure 7 that use the schema for + (9,11,12) correspond exactly to the three
rules in our implementation that extend the context. The clauses generate-path generate the code
(cfstn; csnd) and the de Bruijn index in calculated as before, only now we must refer to the context
for the value Dl.

...
%%% ML-CAM Translat ion %%%
%%% This version uses d e B r u i j n indexing t o %%%
%%% generate code for i d e n t i f i e r s . %%%
...

module camml .

impor t mldec l camdecl l i s t s .

t y p e t rans la te t m -> prog -> o.
t y p e trans (l i s t (p a i r t m i n t)) -> in t -> t m -> com -> o .

t y p e transop t m -> oper -> o.
t y p e generate-path i n t -> com -> o.

t y p e member A -> (l i s t A) -> o.

%%% (t rans la te ML CAM) t rans la te s mini-ML expression 'ML ' i n t o CAM program
%%% 'CAN .

translate E (program C) : -
trans 0 E C .

trans Gamma Depth (# N) (quote (## X)) . %%% (I) Numbers

trans Gamma Depth t t (quote c t t) . %%% (2) t r u e

t r a n s Gamma Depth f f (q u o t e c f f) .

t r a n s Gamma Depth (cond El E2 E3)
(push & C1 & (branch C2 C3)) :

t r a n s Gamma Depth El C l ,

t r a n s Gamma Depth E2 C 2 ,

t r a n s Gamma Depth E3 C 3 .

%%% (3) f a l s e

%%% (5) Condi t iona l

t r a n s Gamma Depth (El && E2) %%% (6) Product
(push & C1 & swap & C2 & cons) : -

t r a n s Gamma Depth El C l ,

t r a n s Gamma Depth E2 C2.

t r a n s Gamma Depth (Op B E) (push & C & Camop) : - %%% (7,8) P r o j e c t i o n s
member Op [f s t , s n d] ,
t r a n s Gamma Depth E C ,

t r a n s o p Op Camop.

t r a n s Gamma Depth (lamb E) (c u r C) :- %%% (9) Lamb
NewDepth i s Depth t 1 ,
p i K\(trans [(p a i r K NewDepth) /Gamma]

NewDepth (E K) C).

t r a n s Gamma Depth (l e t M E2) %%% (1 1) Le t
(push & C2 & cons & C l) :-

t r a n s Gamma Depth E2 C2,
NewDepth i s Depth + I ,

p i K\ (t r a n s [(p a i r K MewDepth) /Gamma]
NewDepth (M K) C I) .

t r a n s Gamma Depth (f i x M) (push & (r e c C)) :- %%% (12) F i x
NewDepth i s Depth + I ,
p i K\ (t r a n s [(p a i r K NewDepth) /Gamma]

NewDepth (M K) C).

%%% (1 0) A p p l i c a t i o n
t r a n s Gamma Depth (Op B E l 8 E2) %%% b i n a r y p r i m i t i v e s

(push & C l & swap & C2 & cons & (op Camop)) :-
member Op [==, !=, ::, p l u s , minus , t i m e s 3 ,
t r a n s Gamma Depth E l C1,
t r a n s Gamma Depth E2 C 2 ,

t r a n s o p Op Camop.

t r a n s Gamma Depth (Op E l)

(push & C l & (op Camop)) :-
member Op i h d , t l , empty] ,
t r a n s Gamma Depth El C1,

%%% unary p r i m i t i v e s

t r a n s o p Op Camop.

t r a n s Gamma Depth (El cP E2) %%% General Apply
(push k C l k swap k C 2 k cons k app) :-

t r a n s Gamma Depth Ei C l ,

t r a n s Gamma Depth E2 C2.

t r a n s Gamma Depth K C :-
member (p a i r X D) Gamma,
Dis tance i s (Depth - D) + 1 ,
generate-path Dis tance C .

%%% t r a n s l a t i o n s f o r p r i m i t i v e opera tors %%%
t r a n s o p == cequal .
t r a n s o p != cnequal .
t r a n s o p :: ccons .
t r a n s o p p l u s c p l u s .
t r a n s o p minus cminus.
t ransop t i m e s c t i m e s .
t r a n s o p h d chd .
t r a n s o p tl c t l .
t r a n s o p empty cempty.

%%% t r a n s l a t e N + i i n t o (c f s t ' N & csnd) %%%
genera te -pa th 1 c snd .
generate-path X (c f s t & C) :-

X i i s N - 1 ,
genera te -pa th N1 C .

%%% (4) I d e n t i f i e r

%%% End o f module canunl %%%

	University of Pennsylvania
	ScholarlyCommons
	June 1988

	Enriching a Meta-Language With Higher-Order Features
	John Hannan
	Dale Miller
	Recommended Citation

	Enriching a Meta-Language With Higher-Order Features
	Abstract
	Comments

	tmp.1194020400.pdf.ew7kQ

