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Abstract

This paper defines action-labelled quantitative transition systems as a general frame-
work for combining qualitative and quantitative analysis. We define state-metrics
as a natural extension of bisimulation from non-quantitative systems to quantitative
ones. We then prove that any single state-metric corresponds to a bisimulation and
that the greatest state-metric corresponds to bisimilarity. Furthermore, we provide
two extended examples which show that our results apply to both probabilistic
and weighted automata as special cases of action-labelled quantitative transition
systems.
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1 Introduction

Bisimulation, the widely used notion of equivalence for process calculi [16],
provides a definition of equality that can capture similarities between processes
without forcing them to be syntactically the same. The idea is to match any
step in one process with a step, labelled by the same action, in the other
process.
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Recently, there has been growing interest in systems that model quanti-
tative processes. In these systems steps are associated with a given quantity,
such as the probability that the step will happen [15,20,6] or the resources
(e.g. time or cost) needed to perform that step [28,2,17]. The standard notion
of bisimulation can be adapted to these systems by treating the quantities
as labels (see for example [15,20,19,6]), but this does not provide a robust
relation, since quantities are matched only when they are identical. Processes
that differ for a very small probability, for instance, would be considered just
as different as processes that perform completely different actions. This is
particularly relevant to security systems where specifications can be given as
perfect, but impractical processes and other, practical processes are considered
safe if they only differ from the specification with a negligible probability.

To find a more flexible way to differentiate processes, researchers in this
area have borrowed from pure mathematics the notion of metric 3 . A metric
is defined as a function that associates a set distance with a pair of elements.
Whereas topologists use metrics as a tool to study continuity and convergence,
we will use them to provide a measure of the difference between two processes
that are not quite bisimilar.

The first proposal based on metrics was by Giacalone et al. [10] for deter-
ministic probabilistic processes. Later, Desharnais et al. [7,8] and van Breugel
and Worrell [25,23] investigated the notion of metric for more general prob-
abilistic systems, using much more sophisticated techniques to deal with the
combination of probabilistic distribution, nondeterminism and recursion. In
particular, they used the notion of Hutchinson metric [12] on distributions;
this metric is also known under many different names including Kantorovich
metric [13] and Vaserstein metric [27]. In [7,8], Desharnais et al. treated
the case of labelled Markov chains and labelled concurrent Markov chains re-
spectively, and defined the intended metric as the greatest fixed point of a
monotone function. In contrast, the authors of [25,23] used a construction
based on the (unique) fixed point of a contractive transformation. They con-
sidered similar classes of automata, namely fully probabilistic systems and
reactive models.

In this paper, we extend the approach of [7,8] to a more general frame-
work that we call Action-labelled Quantitative Transition Systems (AQTS).
Our framework subsumes some other well-known quantitative systems such as
probabilistic automata, simple probabilistic automata [20], fully probabilistic
models [1], reactive models, generative models [26] (see [21] for other related
models and the relationship among them), as well as (a simplified version of)
weighted automata [9,17].

The main contributions of this work are the following:

• We define a notion of metrics, which we call state-metrics, for AQTSs. These

3 For simplicity, in this paper we use the term metric to denote both metric and pseudo-
metric. All the results of the paper are based on pseudometrics.
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are based on the Hutchinson distance and coincide with the metrics in [7,8]
in the case of probabilistic transition systems.

• We show that each state-metric corresponds to a bisimulation and that as a
consequence the greatest state-metric corresponds to bisimilarity. (In pre-
vious works, only the latter result was shown.) We show that the greatest
state-metric can be characterised as the greatest fixed point of a monotone
function on state-metrics, which is closely analogous to Milner’s character-
ization of bisimilarity as the greatest fixed point of a monotone function on
bisimulations [16].

• We consider two process calculi whose operational semantics are based on
probabilistic and weighted automata respectively. We show that prefix-
ing, choices and parallel composition constructors are non-expansive, which
means that when different processes are placed in the same context they
become more similar. This is a natural extension of the notion of congru-
ence and matches our intuition that the larger the parts of two processes
that are identical and the closer their behaviour the smaller the distance
between them should be. Our result for probabilistic automata is similar to
those in [7,8] for simple probabilistic automata.

The rest of the paper is structured as follows. In Section 2, after giving
the formal definition of AQTS, we define state-metrics and the greatest state-
metric. In Section 2.2 we show that state-metrics concur with bisimulations.
Sections 3 and 4 both give specific examples of action-labelled quantitative
transition systems. The first corresponds to Segala and Lynch’s probabilis-
tic automata and the second to weighted automata. In each case we define
a process calculus and we show the non-expansiveness of some constructors
with respect to the metric. In Section 5 we discuss related work. Section 6
concludes.

2 Action-labelled quantitative transition system

In this section we introduce the concept of AQTS. Then we define a pseudo-
metric suitable for finite-state AQTSs, and we relate it to bisimulation.

Definition 2.1 A action-labelled quantitative transition system is defined as
a tuple (S,A, s0, c,→), where

(i) S is a set of states, and s0 is the start state;

(ii) A is a finite set of action labels;

(iii) c is a positive real number;

(iv) Let D be all the functions η : A × S 7→ [0, c] s.t.
∑

(a,s)∈(A×S) η(a, s) ≤ c.
→⊆ S ×D represents a transition.

We shall use the more suggestive notation s → η instead of (s, η) ∈→.
Note that AQTSs subsume various other models which have appeared in the
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literature. We illustrate some examples. Let S = (S,A, s0, c,→); if c = 1 then
S is a probabilistic automaton. By adding further constraints, we can obtain
other models such as a simple probabilistic automaton, the reactive model
and the generative model. On the other hand, if for each transition s → η
there exists a unique pair (a, t) ∈ A × S s.t. η(a, t) 6= 0, then S is a weighted
automaton, which is similar to an ordinary automaton in which a transition
from s to t is labelled by a pair (a, w) where w = η(a, t).

2.1 State-metrics

We fix an AQTS with the set of states S finite, and consider pseudometrics
on S. A pseudometric is a function that yields a non-negative real number for
each pair of states and satisfies the following: m(s, s) = 0; m(s, t) = m(t, s);
and m(s, t) ≤ m(s, u) + m(u, t). We say a pseudometric m is c-bounded if
∀s, t : m(s, t) ≤ c, where c is a positive real number.

Definition 2.2 Mc is the class of c-bounded pseudometrics on states with
the ordering

m1 � m2 if ∀s, t : m1(s, t) ≥ m2(s, t).

Here we reverse the ordering with the purpose of characterizing bisimilarity
as the greatest fixed point (cf: Corollary 2.14).

Lemma 2.3 (Mc,�) is a complete lattice.

Proof. The top element is given by ∀s, t : >(s, t) = 0; the bottom element
is given by ⊥(s, t) = c if s 6= t, 0 otherwise. Greatest lower bounds are given
by ( X)(s, t) = sup{m(s, t) | m ∈ X} for any X ⊆ Mc. Finally, least upper
bounds are given by

⊔

X = {m ∈ Mc | ∀m′ ∈ X : m′ � m}. 2

In order to define the notion of state-metrics (which will correspond to
bisimulations) and the monotone transformation on metrics, we need to asso-
ciate a metric with D. We give a definition based on the Hutchinson metric
[12] on probability measures, which has been used by van Breugel and Worrell
for defining metrics on fully probabilistic systems [23] and reactive probabilis-
tic systems [24]; and by Desharnais et al. for labelled Markov chains [7] and
labelled concurrent Markov chains [8], respectively.

In the following, for η ∈ D, we will call the total mass of η the number
∑

(a,s)∈A×S η(a, s).

Definition 2.4 For each m ∈ Mc, we lift it to be a metric on distributions.
Given η, η′ ∈ D, we define m(η, η′) (with a slight abuse of the notation m) as
follows:

(i) if the total mass of η is not less than the total mass of η ′, then m(η, η′)
is given by the solution to the following linear program:
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maximize 1
c
·
∑

(ai ,si)∈A×S(η(ai, si) − η′(ai, si))xi (*)

subject to - ∀i : 0 ≤ xi ≤ c

- ∀i, j : xi − xj ≤ m̂((ai, si), (aj, sj))

where m̂((ai, si), (aj, sj)) =







c if ai 6= aj

m(si, sj) otherwise

(ii) if the total mass of η is less than the total mass of η ′, then m(η, η′) is
defined to be m(η′, η).

Note that since i and j range over all indexes it is unnecessary to require
|xi−xj| to be less than or equal to m̂((ai, si), (aj, sj)) in the second constraint.
It can be shown that m defined in this way is a pseudometric on D.

An alternative definition would be to scale the above m(η, η ′) by a factor
e ∈ (0, 1], see van Breugel and Worrell [25] for more discussions. Here we
simply let e = 1 because all the main results obtained in this paper are
independent from e.

Definition 2.5 m ∈ Mc is a state-metric if, for all ε ∈ [0, c), m(s, t) ≤ ε
implies:

• if s → η then there exists some η′ such that t → η′ and m(η, η′) ≤ ε.

Note that if m is a state-metric then it is also a metric. By m(s, t) ≤ ε we
have m(t, s) ≤ ε, which implies

• if t → η′ then there exists some η such that s → η and m(η′, η) ≤ ε.

In the above definition, we prohibit ε to be c because throughout this paper c
represents the distance between any two states including the case where one
state may perform a transition and the other may not.

The greatest state-metric is defined as

mmax =
⊔

{m ∈ Mc | m is a state-metric}.

When compared with the labelled transition system in CCS [16], it turns
out that state-metrics correspond to bisimulations and the greatest state-
metric corresponds to bisimilarity. To make the analogy closer, in what follows
we will characterize mmax as a fixed point of a suitable monotone function on
Mc. First we recall the definition of Hausdorff distance.

Definition 2.6 Given a c-bounded metric d on Z, the Hausdorff distance
between two subsets X, Y of Z is defined as follows:

Hd(X, Y ) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈Xd(y, x)}

where inf ∅ = c and sup ∅ = 0.

Next we define a function F on Mc by using the Hausdorff distance.
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Definition 2.7 Let tr (s) = {η | s → η}. F (m) is a pseudometric given by:

F (m)(s, t) = Hm(tr(s), tr(t)).

Thus we have the following property.

Lemma 2.8 For all ε ∈ [0, c), F (m)(s, t) ≤ ε if and only if:

• if s → η then there exists some η′ such that t → η′ and m(η, η′) ≤ ε;

• if t → η′ then there exists some η such that s → η and m(η ′, η) ≤ ε.

The above lemma can be proved by directly checking the definition of F ,
as can the next lemma.

Lemma 2.9 m is a state-metric iff m � F (m).

Consequently, we have the following characterization:

mmax =
⊔

{m ∈ Mc | m � F (m)}.

Lemma 2.10 F is monotone on Mc.

Because of Lemma 2.3 and 2.10, we can apply Tarski’s fixed point theorem
[22], which tells us that mmax is the greatest fixed point of F . Furthermore, by
Lemma 2.9 we know that mmax is indeed a state-metric, and it is the greatest
state-metric.

In addition, the finite-stateness of AQTSs ensures that the closure ordinal
of F is ω (cf:[7], Lemma 3.10). Therefore one can proceed in a standard way
to show that

mmax = {F i(>) | i ∈ N}

where > is the top metric in Mc and F 0(>) = >.

2.2 Bisimulations

Let η ∈ D, a ∈ A and V ⊆ S, we write η(a, V ) for
∑

t∈V η(a, V ). We lift an
equivalence relation on S to a relation on D in the following way:

Definition 2.11 Let η, η′ ∈ D, we say they are equivalent w.r.t. an equiva-
lence relation R on S, written η ≡R η′, if

∀a ∈ A, ∀V ∈ S/R : η(a, V ) = η′(a, V ).

We now show the correspondence between our state-metrics and bisimula-
tions. More precisely, the correspondence is with the extension of Larsen and
Skou’s probabilistic bisimulation [15] to AQTSs.

Definition 2.12 An equivalence relation R ⊆ S×S is a (strong) bisimulation
if sRt implies:

• whenever s → η, there exists η′ such that t → η′ and η ≡R η′.

Two states s, t are bisimilar, written s ∼ t, if there exists a bisimulation R
s.t. sRt.
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In the above definition, the “vice-versa” case is covered by the fact that R
is an equivalence relation.

A bisimulation is related to a state-metric by the following theorem:

Theorem 2.13 Given a binary relation R and a pseudometric m ∈ Mc such
that

m(s, t) =







0 if sRt

c otherwise.

Then R is a bisimulation iff m is a state-metric.

Proof. Given two distributions η, η′, let us consider how to compute m(η, η′) if
R is an equivalence relation. Since S is finite, we may assume that V1, ..., Vn ∈
S/R are all the equivalence classes of S under R. We rewrite the linear
program (*) in the form:

1

c
·
∑

ai∈A

∑

sj∈S

(η(ai, sj) − η′(ai, sj))xij(1)

If sj1, sj2 ∈ Vj for some j ∈ 1..n, then m̂((ai, sj1), (ai, sj2)) = m(sj1 , sj2) =
0, which implies xij1 = xij2 by the second constraint of (*). Thus, some
summands of (1) can be grouped together and we have the following linear
program:

1

c
·
∑

ai∈A

∑

j∈1..n

(η(ai, Vj) − η′(ai, Vj))xij(2)

with the constraint xij −xi′j′ ≤ c for any two variables xij and xi′j′. Therefore
if R is an equivalence relation then m(η, η′) is obtained by maximizing the
linear program (2).

(⇒) Suppose R is a bisimulation and m(s, t) = 0. Clearly R is an equiv-
alence relation. By the definition of m we have sRt. If s → η then t → η ′

for some η′ such that η ≡R η′. To show that m is a state-metric it suffices to
prove m(η, η′) = 0. We know from η ≡R η′ that η(ai, Vj) = η′(ai, Vj), for each
j ∈ 1..n. It follows that (2) is maximized to be 0, thus m(η, η′) = 0.

(⇐) Suppose m is as defined in the hypothesis. It is clear that R is an
equivalence relation. We show that it is a bisimulation. Suppose sRt, which
means m(s, t) = 0. If s → η then t → η′ for some η′ such that m(η, η′) = 0.
Without loss of generality we assume that the total mass of η is not less than
the total mass of η′.

∑

ai∈A

η(ai, S) ≥
∑

ai∈A

η′(ai, S)(3)

To ensure that m(η, η′) = 0, in (2) the following two conditions must be
satisfied.

(i) No coefficient is positive. Otherwise, if η(ai, Vj) − η′(ai, Vj) > 0 then (2)
would be maximized to a value not less than (η(ai, Vj)−η′(ai, Vj)), which
is greater than 0.
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(ii) It is not the case that at least one coefficient is negative and the other
coefficients are either negative or 0. Otherwise, by summing all the coef-
ficients, we would get

∑

ai∈A

(η(ai, S) − η′(ai, S)) < 0

which contradicts (3).

Therefore, the only possibility is that all coefficients in (2) are 0, i.e.,
η(ai, Vj) = η′(ai, Vj) for any action ai and equivalence class Vj ∈ S/R. It
follows that η ≡R η′. So we have shown that R is indeed a bisimulation. 2

Corollary 2.14 s ∼ t iff mmax (s, t) = 0.

Proof. (⇒) If s ∼ t then there exists a bisimulation R such that sRt. By
Theorem 2.13 there exists some state-metric m such that m(s, t) = 0. By the
definition of mmax we have m � mmax . Therefore mmax (s, t) ≤ m(s, t) = 0.

(⇐) From mmax we construct a pseudometric m as follows.

m(s, t) =







0 if mmax (s, t) = 0

c otherwise.

Since mmax is a state-metric, it is easy to see that m is also a state-metric.
Now we construct a binary relation R such that ∀s, s′ : sRs′ iff m(s, s′) = 0.
If follows from Theorem 2.13 that R is a bisimulation. If mmax (s, t) = 0, then
m(s, t) = 0 and thus sRt. Therefore we have the required result s ∼ t because
∼ is the largest bisimulation. 2

3 Example: probabilistic finite behaviours

In this section we consider a simple process calculus whose semantics is given
by Segala and Lynch’s general probabilistic automata, which admit both prob-
ability and nondeterminism. We define a parallel composition constructor for
the process calculus and show that, like probabilistic and nondeterministic
choices, it is non-expansive in the sense of [7].

First we give some preliminary notations. Let U be a set. A function
η : U 7→ [0, 1] is called a discrete probability distribution, or distribution for
short, on U if the support of η, defined as spt(η) = {x ∈ U | η(x) > 0}, is finite
or countably infinite and

∑

x∈U η(x) ≤ 1. Given two distributions η and η′, we
can define their sum η]η′, if the function given by (η]η′)(x) = η(x)+η′(x) is
still a distribution. If η is a distribution with finite support and V ⊆ spt(η) we
use the set {(si : η(si))}si∈V to enumerate the probability associated with each
element of V . For convenience of presentation, we may consider distributions
as either functions or sets, depending on their contexts.

Processes are defined by the following syntax:

P, Q ::=
⊕

i∈1..n

piai.Pi | ā.P |
∑

i∈1..m

Pi | P |Q
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conm ā.P → {(ā, P : 1)} psum
⊕

i∈1..n piai.Pi →
⊎

i∈1..n{(ai, Pi : pi)}

par
P → {(ai, Pi : pi)}i

P |Q → {(ai, Pi|Q : pi)}i

nsum
Pj → η

∑

i∈1..m Pi → η
for some j ∈ 1..m

com
P → {(ā, P ′ : 1)} Q → {(a, Qi : pi)}i∈I ] {(aj , Qj : qj)}j∈J

P |Q → {(τ, P ′|Qi : pi)}i∈I ] {(aj , P |Qj : qj)}j∈J

Table 1
Transitions of probabilistic automata

Here
⊕

i∈1..n piai.Pi stands for a probabilistic choice constructor, where the
pi’s represent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and

∑

i∈1..n pi =
1. When n = 0 we abbreviate the probabilistic choice as 0. Sometimes
we are interested in certain branches of the probabilistic choice; in this case
we write

⊕

i∈1..n piai.Ei as p1a1.E1 ⊕ · · · ⊕ pnan.En. The third construction
∑

i∈1..m Pi stands for nondeterministic choice, and occasionally we may write
it as P1 + ... + Pm. The above syntax defines only finite processes.

The operational semantics of a process P is defined as a probabilistic au-
tomaton whose states are the processes reachable from P and the transition
relation is defined by the axioms and inference rules in Table 1, where P → η
describes a transition that leaves from P and leads to a distribution η over
A × S. In rule com we require the condition that ∀j ∈ J : aj 6= a. The
symmetric rules of par and com are omitted. Here parallel composition is de-
fined to be asynchronous as in [11]. This way of treating parallel composition
is itself of interest: admitting parallelism in probabilistic automata is often
considered as a hard problem [20], while our treatment here is quite simple.

We show that prefixing, choices and parallel composition are non-expansive.

Proposition 3.1 If mmax (P, Q) ≤ ε then

(i) mmax (ā.P, ā.Q) ≤ ε

(ii) mmax (p1a1.R1 ⊕ ...⊕ pnan.Rn ⊕ pa.P, p1a1.R1 ⊕ ...⊕ pnan.Rn ⊕ pa.Q) ≤ ε

(iii) mmax (R + P, R + Q) ≤ ε

(iv) mmax (R|P, R|Q) ≤ ε.

Proof. The first three clauses are straightforward. The last clause is proved
by induction on the size of the process R|P +R|Q, as only finite processes are
involved. When the size is 0 the result is immediate. For the inductive step,
there are four cases, among which we consider the hardest one. Since mmax is a
fixed point of F , we only need to show that if R|P → η there is R|Q → η ′ such
that mmax (η, η′) ≤ ε. Suppose P → θ = {(a, Pi : pi)}i∈I1 ] {(ai, Pi : pi)}i∈I2

with ai 6= a for all i ∈ I2. Since mmax (P, Q) ≤ ε, there exists Q → θ′ = {(a, Pi :
pi)}i∈I′

1
] {(ai, Pi : pi)}i∈I′

2
such that ai 6= a for all i ∈ I ′

2 and mmax (θ, θ
′) ≤ ε.

9



Deng, Chothia, Palamidessi, Pang

That is, the linear program
∑

i∈I1∪I2

pixi −
∑

i∈I′
1
∪I′

2

pixi(4)

subject to

- xi − xj ≤ mmax (Pi, Pj) for all i, j ∈ I1 ∪ I ′
1

- xi − xj ≤ m̂max ((ai, Pi), (aj, Pj)) for all i, j ∈ I2 ∪ I ′
2

- xi − xj ≤ 1 for all i ∈ I1 ∪ I ′
1, j ∈ I2 ∪ I ′

2

or i ∈ I2 ∪ I ′
2, j ∈ I1 ∪ I ′

1

is maximized to a value not greater than ε. Let R → {(ā, R′ : 1)}. We
have R|P → η = {(τ, R′|Pi : pi)}i∈I1 ] {(ai, R|Pi : pi)}i∈I2 and Q|R → η′ =
{(τ, R′|Qi : pi)}i∈I′

1
] {(ai, R|Qi : pi)}i∈I′

2
. Then mmax (η, η′) is the maximum

value of the linear program (4) subject to

- xi − xj ≤ mmax (R
′|Pi, R

′|Pj) for all i, j ∈ I1 ∪ I ′
1

- xi − xj ≤ m̂max ((ai, R|Pi), (aj, R|Pj)) for all i, j ∈ I2 ∪ I ′
2

- xi − xj ≤ m̂max ((τ, R
′|Pi), (aj, R|Pj) for all i ∈ I1 ∪ I ′

1, j ∈ I2 ∪ I ′
2

- xi − xj ≤ m̂max ((ai, R|Pi), (τ, R
′|Pj) for all i ∈ I2 ∪ I ′

2, j ∈ I1 ∪ I ′
1

By induction hypothesis, we have

- mmax (R
′|Pi, R

′|Pj) ≤ mmax (Pi, Pj) for all i, j ∈ I1 ∪ I ′
1

- m̂max ((ai, R|Pi), (aj, R|Pj)) ≤ m̂max ((ai, Pi), (aj, Pj)) for all i, j ∈ I2 ∪ I ′
2

and clearly

- m̂max ((τ, R
′|Pi), (aj, R|Pj) ≤ 1 for all i ∈ I1 ∪ I ′

1, j ∈ I2 ∪ I ′
2

- m̂max ((ai, R|Pi), (τ, R
′|Pj) ≤ 1 for all i ∈ I2 ∪ I ′

2, j ∈ I1 ∪ I ′
1.

It follows that mmax (η, η′) ≤ mmax (θ, θ
′) ≤ ε. 2

Here we do not consider recursion µXE because this constructor is not
non-expansive. For example, let E = 1

2
a.0 ⊕ 1

2
a.X and F = 1

3
a.0 ⊕ 2

3
a.X.

Suppose the distance between 0 and X is 1, then mmax (E, F ) = 1
6
. On the

other hand we have mmax (µXE, µXF ) = 1
3

> 1
6
.

4 Example: weighted automata

4.1 Bisimulations on weighted automata

In this section we consider weighted automata, which are degenerate AQTSs
in that for each transition s → η there is a unique pair (a, t) ∈ A × S s.t.

η(a, t) 6= 0. For simplicity we write this transition as s
a[w]
−→ t, where w =

η(a, t). In the literature, the weight w is interpreted as cost in some places
(e.g. [17]) and as time in some other places (e.g. [2]), and strong bisimulation
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is often defined as follows.

Definition 4.1 A binary relation R ⊆ S×S is a labelled bisimulation if sRt
implies:

• if s
a[w]
−→ s′ there exists t′ such that t

a[w]
−→ t′ and s′Rt′;

• if t
a[w]
−→ t′ there exists s′ such that s

a[w]
−→ s′ and s′Rt′.

Two states s, t are labelled bisimilar, written s ∼′ t, if there exists a labelled
bisimulation R s.t. sRt.

Unlike bisimulation (cf: Definition 2.12) a labelled bisimulation is not nec-
essarily an equivalence relation. However, as far as weighted automata are
concerned, ∼ coincides with ∼′.

Lemma 4.2 In weighted automata, s ∼ t iff s ∼′ t.

Proof. (⇒) It is easy to see that if R is a bisimulation then R is a labelled
bisimulation.

(⇐) It can be shown that if R is a labelled bisimulation then R∗ is a
bisimulation, where R∗ is the equivalence (reflexive, symmetric and transitive)
closure of R. 2

Corollary 4.3 In weighted automata, s ∼′ t iff mmax (s, t) = 0.

Proof. By Corollary 2.14 and the preceding lemma. 2

4.2 Non-expansiveness of some constructors

We now give a process calculus with weighted automata as its underlying
operational semantics. Processes are defined by the following syntax:

P, Q ::= 0 | α.P | P + Q | P |Q

α ::= a[w] | ā[w] | τ [w]

The operational behaviour of a process P is described as a weighted au-
tomaton whose states are the derivatives of P and the transition relation is
defined by the rules in Table 2. The symmetric rules of sum, par and com

are omitted. The intuition for the semantics is as follows. In a transition

P
a[w]
−→ P ′, process P performs action a, with the maximal cost or maximal

delay of time w, before evolving into P ′. Therefore in rule com the weight w
should be the smaller one between w1 and w2.

In this process calculus, the constructions prefixing, choice and parallel
composition are non-expansive.

Proposition 4.4 If mmax (P, Q) ≤ ε then

(i) mmax (α.P, α.Q) ≤ ε

(ii) mmax (R + P, R + Q) ≤ ε

11
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pre

α.P
α

−→ P
sum

P
α

−→ P ′

P + Q
α

−→ P ′

par
P

α
−→ P ′

P |Q
α

−→ P ′|Q
com

P
a[w1]
−→ P ′ Q

ā[w2]
−→ Q′ w = min{w1, w2}

P |Q
τ [w]
−→ P ′|Q′

Table 2
Transitions of weighted automata

(iii) mmax (R|P, R|Q) ≤ ε

Proof. The first two clause are easy to show. The last clause is proved by
induction on the size of the process R|P + R|Q. When the size is 0 the result
is immediate. For the inductive step we consider one case. Suppose R|P → η

with η = {(τ, R′|P ′ : w)}, i.e., R|P
τ [w]
−→ R′|P ′. We consider the situation that

the transition comes from R
ā[w1]
−→ R′ and P

a[w2]
−→ P ′, with w = min{w1, w2}. We

need to show that there exists some η′ such that R|Q → η′ and mmax (η, η′) ≤ ε.

Since mmax (P, Q) ≤ ε, it can be shown that there exists a transition Q
b[w′

2
]

−→ Q′

such that

|w2 − w′
2| +

min{w2, w
′
2}

c
· m̂max ((a, P ′), (b, Q′)) ≤ ε.(5)

Now there are two possibilities.

• If a 6= b then m̂max ((a, P ′), (b, Q′)) = c, thus it follows from (5) that

max{w2, w
′
2} ≤ ε. Now we have the transition R|Q

b[w′

2
]

−→ R|Q′ and

|w − w′
2| +

min{w,w′

2
}

c
· m̂max ((τ, R

′|P ′), (b, R|Q′))

≤ |w − w′
2| + min{w, w′

2}

= max{w, w′
2}

≤ max{w2, w
′
2}

≤ ε.

In other words, we have the required condition that R|Q → η ′ and mmax (η, η′) ≤
ε, where η′ = {(b, R|Q′ : w′

2)}.

• If a = b then it follows from (5) that

|w2 − w′
2| +

min{w2, w
′
2}

c
· mmax (P ′, Q′) ≤ ε.(6)

Observe that we have the transition R|Q
τ [w′]
−→ R′|Q′ where w′ = min{w1, w

′
2}.

That is, R|Q → η′, where η′ = {(τ, R′|Q′ : w′)}.

12
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Now we assert that

|w − w′| +
min{w, w′}

c
· mmax (P

′, Q′) ≤ ε,(7)

which can be proved by analyzing the relation between w1 and w2, w
′
2. There

are four cases:
(i) w1 ≤ w2 and w1 ≤ w′

2;
(ii) w2 ≤ w1 and w′

2 ≤ w1;
(iii) w′

2 ≤ w1 ≤ w2;
(iv) w2 ≤ w1 ≤ w′

2.
As an example we only consider the last case; the first three cases are similar.
If w2 ≤ w1 ≤ w′

2 then w = w2 and w′ = w1. Thus we have the following:

|w − w′| + min{w,w′}
c

· mmax (P
′, Q′)

= |w2 − w1| +
min{w2,w1}

c
· mmax (P

′, Q′)

≤ |w2 − w′
2| +

min{w2,w′

2
}

c
· mmax (P

′, Q′)

≤ ε by (6).

Therefore (7) holds.
At last, we can derive that

|w − w′| + min{w,w′}
c

· m̂max ((τ, R
′|P ′), (τ, R′|Q′))

= |w − w′| + min{w,w′}
c

· mmax (R
′|P ′, R′|Q′)

≤ |w − w′| + min{w,w′}
c

· mmax (P
′, Q′) by induction hypothesis

≤ ε by (7).

It follows that mmax (η, η′) ≤ ε.

2

One can also define restriction and relabelling constructors in the process
calculus in the style of CCS, and then show their non-expansiveness. However,
as in Section 3 recursion is still not non-expansive.

5 Related work

Giacalone et al. [10] were the first to suggest a metric between probabilis-
tic transition systems to formalize the notion of distance between processes.
Metrics were used also in [14,18] to give denotational semantics for reactive
models. De Vink and Rutten [4] showed that discrete probabilistic transi-
tion systems can be viewed as coalgebras. They considered the category of
complete ultrametric spaces. Similar ultrametric spaces are considered by den
Hartog in [5]. De Alfaro et al. [3] presented a quantitative transition system
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by interpreting propositions as numbers between 0 and 1, without consider-
ing action labels on the transitions. This system is quite different from the
usual labelled transition systems and it is hard to precisely compare their
metrics with the metrics in all other models (see [21] for an overview) and our
transition systems.

The works most related to ours are [8,7,25,23]. Desharnais et al. [8] studied
a logical pseudometric for labelled Markov chains, which is a reactive model
of probabilistic systems. The metric has the property that two processes have
distance of 0 if and only if they are probabilistic bisimilar. They also intro-
duced a probabilistic process calculus and showed that some of the process
constructors are non-expansive. A similar pseudometric was defined by van
Breugel and Worrell [24] via the terminal coalgebra of a functor based on a
metric on the space of Borel probability measures. Interestingly, van Breugel
and Worrell [23] also presented a polynomial-time algorithm to approximate
their coalgebraic distances. In [7] Desharnais et al. dealt with labelled concur-
rent Markov chains (this model can be captured by the simple probabilistic
automata of [20]). They showed that the greatest fixed point of a monotonic
function on pseudometrics corresponds to the weak probabilistic bisimilarity
of [19]. They also showed that some process constructors of a probabilistic
process calculus are non-expansive.

In comparison with the works [8,7,25,23] discussed above, we note that:
(i) our results on state-metrics hold for a strictly more general framework; (ii)
besides characterizing bisimilarity, we have the more refined property of using
state-metrics to characterize every bisimulation relation; (iii) our results on
non-expansiveness of some constructors in Sections 3 and 4 hold for probabilis-
tic and weighted automata respectively, while the non-expansiveness results
of [8] and [7] are for a kind of reactive models and simple probabilistic au-
tomata respectively; (iv) the metric of [8,25] works for continuous probabilistic
transition systems, while in this work we concentrate on discrete systems.

Another interesting work is [29], in which Ying proposed the notion of
bisimulation index for the usual labelled transition systems, by using ultra-
metrics on actions instead of using pseudometrics on states. He applied bisim-
ulation indexes on timed CCS and real time ACP. But the deeper connection
between [29] and our work worths some further studies.

6 Concluding remarks

We have presented the notion of action-labelled quantitative transition sys-
tems, a class of quantitative automata which subsume various traditional
models used in quantitative verification, such as probabilistic automata and
weighted automata. We have investigated a metric semantics on the new
transition systems and we have related it to the classical bisimulation-based
semantics. More precisely, we have shown that state-metrics correspond to
bisimulations and the greatest state-metric corresponds to bisimilarity. Addi-
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tionally, we have shown the non-expansiveness of some constructors for prob-
abilistic and weighted automata.

In this paper we have considered only strong bisimulations. The exten-
sion of our results to weak bisimulations is not difficult if weak transitions
are appropriately defined. For example, as far as probabilistic automata are
concerned, we could define weak transition ⇒ in the way as in [6], thus weak
state-metric and weak bisimulation would be as follows.

m ∈ Mc is a weak state-metric if, for all ε ∈ [0, c), m(s, t) ≤ ε implies:
• if s ⇒ η then there exists some η′ such that t ⇒ η′ and m(η, η′) ≤ ε.

An equivalence relation R ⊆ S × S is a weak bisimulation if sRt implies:
• whenever s ⇒ η, there exists η′ such that t ⇒ η′ and η ≡R η′.
We write s ≈ t if there exists a weak bisimulation R s.t. sRt.

By arguments similar to those in Section 2, one could verify the property
that weak state-metrics correspond to weak bisimulations and the greatest
weak state-metric characterizes weak bisimilarity ≈.

As to the future work, it might be interesting to see what kind of non-
expansiveness is enjoyed by recursion construct. It is also worth studying
logical characterization of state-metrics and developing efficient algorithms to
compute the distance between any two finite-state AQTSs.
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