
SOS 2005 Preliminary Version

A congruence format for name-passing calculi

Axelle Ziegler, Dale Miller, and Catuscia Palamidessi 1

INRIA-Futurs and LIX, École Polytechnique, Palaiseau, France

Abstract

We define and use a SOS-based framework to specify the transition systems of
calculi with name-passing properties. This setting uses proof-theoretic tools to take
care of some of the difficulties specific to name-binding and make them easier to
handle in proofs. The contribution of this paper is the presentation of a format
that ensures that open bisimilarity is a congruence for calculi specified within this
framework, extending the well-known tyft/tyxt format to the case of name-binding
and name-passing. We apply this result to the π-calculus in both its late and early
semantics.

Key words: Structural operational semantics, rule formats,
name-binding, name-mobility, open bisimulation.

1 Introduction

Structured operational semantics (SOS) [Plo81] is well-suited for the specifi-
cation of process calculi and allows for both a clear and convenient presenta-
tion of transition systems. Because it is desirable to reason about behavioral
equivalences in a compositional fashion, various researchers have provided re-
strictions on the specification of operational semantics that guarantee that
the derived notion of bisimilarity is a congruence. The first such restric-
tions, such as GSOS [BIM95], tyft/tyxt [GV92], and Panth [Ver95], were
not well-suited to deal with processes involving abstractions. Examples of
such process calculi are the higher-order process calculi, like CHOCS [Tho93],
and the name-passing and name-binding process calculi, like the π-calculus
[MPW92]. Recently, there have been proposals for extending rule formats
to higher-order languages [How96] and in particular to higher-order process
calculi [Ber98,MGR05]. However, [MGR05] considers neither name-passing
nor name-binding features, while [Ber98] does handle some name-passing lan-
guages, but at the cost of a complete rewriting of the specification, which ends

1 Email: ziegler [at] clipper.ens.fr, dale [at] lix.polytechnique.fr, and
catuscia [at] lix.polytechnique.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ziegler, Miller, and Palamidessi

up in representing the features of names in an indirect and low-level way. As
far as we know, rule formats for the mechanisms related to names have not
been investigated yet, at least not in a direct fashion.

The aim of this paper is to fill the above gap: we present a rule format for
name-passing and name-binding process-calculi which guarantees that open
bisimilarity is a congruence, and which handles name binding and passing in
a direct fashion.

To obtain the result of congruence, we need to make precise the notion of
congruence for name-passing and name-binding process-calculi. We propose a
notion which lifts to our higher-order setting the standard first-order notion
of congruence. Our definition is strongly inspired by similar definitions in the
case of λ-calculus (for instance, logical relations [Sta85]). In the framework of
process calculi, the only other proposal of this kind we know of is the notion of
agent congruence for the π-calculus with abstraction and concretion [Mil99].
However, the spirit of our approach is different from the one of [Mil99]: we aim
at preserving the meaning of the first-order notion of congruence, and, as a
consequence, our definition is much stricter. For instance, strong bisimilarity
is an agent congruence in [Mil99] but is not a congruence according to our
definition.

The results presented here are based on the first author’s master thesis
[Zie04]. We refer to the full version of this paper [ZMP05] for details.

1.1 Plan of the paper

In Section 2 we describe the proof-theoretic tools that we use to encode tran-
sition system specifications and we illustrate briefly their use with the π-
calculus. Sections 3 and 4 show how the usual notions of bisimulation and
congruence can be lifted to our proof theoretic framework to accommodate
name-binding. In Section 5, we use this framework to define a rule format
that ensures that open bisimilarity is a congruence. We conclude in Section 6
with some future directions.

2 Transition System Specifications and Name Passing

2.1 Motivating a logical framework for binding

The main drawback of standard treatments of SOS when used to specify a
name-passing and name-binding calculus, such as the π-calculus, is that the
status of variables and names generally requires adding a number of side-
conditions. Some might for instance require a name to be free or not in certain
subexpressions, or a name to be “fresh” with respect to some context, etc.
Those side conditions are generally not allowed in rule formats that guarantee
congruence of bisimilarity. Moreover, the presence of such side conditions is
generally acknowledged as inducing many complications into the theory of the
specified process calculus.

2

Ziegler, Miller, and Palamidessi

A more declarative approach to specifying the semantics of processes with
abstractions involves finding a logic that completely internalizes the complex-
ities of bindings. If there is such a logic, then hopefully the side conditions are
replaced by naturally occurring phenomenon within the logic. The specifiers
of such a logic must, of course, deal with the complexities of bindings and
substitutions.

In 1940, Church [Chu40] designed the Simple Theory of Types (STT) as a
higher-order logic containing just one binder, the λ-binder, that could be used
to capture all binders in formulas and in terms. The proof rules for STT were,
indeed, complex in order to fully axiomatize how λ-binders interacted with
logical inference rules. Decades later, experience with programming languages
such as λProlog [MN87] (based on a subset of STT without extensionality)
showed that bindings in operational semantic specifications could be treated
declaratively in that logic.

The use of λ-terms within certain weak subsets of higher-order logic is
referred to as the λ-tree syntax approach to encoding syntax [MP99]. The λ-
tree syntax approach is a particular approach to higher-order abstract syntax
(HOAS) [PE88]. In the latter, other approaches to the encoding of bindings
are possible. For example, the HOAS encoding of the π-calculus in [Des00]
makes use of a logic that is extensional and, hence, bindings in syntax are
mapped to functions in higher-order logic. Most of the development of this
paper requires that the logic interprets λ-bindings as abstract syntax and not
functions.

While Church’s logic provided strong methods for reasoning about λ-terms
as functions, the viewing of λ-terms as syntax requires a more intensional
approach. Recent papers of Miller and Tiu [MT03b,MT03a] provide such
an approach by providing the logic FOλ∆∇ (fold-nabla) that includes the
new quantifier ∇ for defining generic judgments. It is possible in FOλ∆∇ to
specify labeled transitions, bisimulations, and modal logics for the π-calculus
[TM04,Tiu05] completely declaratively and without side conditions.

2.2 Technical description of the system

The conventional approach to presenting SOS for labeled transition systems
uses inference rules of the form{

Pi

Ai

−−→ Qi | i ∈ I

}
P

A
−−→ Q

.

It is a trivial observation that such an inference rule can be seen as the Horn
clause

∀X̄

[(∧
i∈I

Pi

Ai

−−→ Qi

)
⊃ P

A
−−→ Q

]
3

Ziegler, Miller, and Palamidessi

in a first-order logic. Here, the variables in the list X̄ are the variables free
in the conclusion or in some premise of the rule. They have first-order type
n, a, or p, which stand for names, actions, and processes, respectively. These
variables are known as meta-variables or schema variables of the inference
rule.

In order to use this conventional approach to treat name-binding constructs
in processes and their transitions, side-conditions on the inference rules are
often employed. These side conditions generally state that a name is “fresh”
or not free in a given term. There are two choices to formalizing such side
conditions: one can axiomatize them in first-order logic, or, following the
motivation in Section 2.1, one moves to a logic that directly supports bindings.

We take this second approach here. In particular, we use the FOλ∆∇

logic that allows for λ-bindings in terms and use the two arrow types n → a
and n → p that are constructed by this λ-binding. Being derived from STT,
syntactic expressions involving λ-bindings satisfy α, β, and η conversion. As
we shall see, in order to adequately be able to reason about the structure of
λ-abstractions, we shall need the ∇-quantifier, and a distinction over types of
n.

To encode a transition system, we shall introduce a new type system: As
stated before, we have one type p for the syntactic category of processes in
our language, but we actually need two types, n and v, for the syntactic
category of names. Here, n denotes the usual notion of names and contains
an infinite number of constants, and v denotes new names. There are no
constants assumed of type v and v is considered to be a subtype of n, which
means that we can use a value of type v wherever a value of type n is required
(a new name is a name). We also have both n → p and v → p abstractions.
Further, we have a type a for actions, which comes with the three constructors
↓: n → n → a, ↑: n → n → a, and τ : a, denoting input, output, and internal
actions. For example, ↓ xy denotes the action of inputting name y on the
channel with name x. If needed, the system could be extended to handle
more kinds of actions.

Transitions themselves are encoded using the symbol · −·−→
·
·. This symbol

denotes three different predicates: · −·−→
p

· taking arguments of type p, a and

p, · − ·−−→
n→p

· taking arguments of type p, n → a and n → p, and · − ·−−→
v→p

·
taking arguments of type p, v → a and v → p. The first predicate allows us
to encode free transitions, whereas the two others allows us to encode bound
transitions, abstracted on names or on fresh names. The intuition behind this
distinction will be further discussed in the rest of the paper.

With this symbol, we can specify transition systems in the usual way. The
major difference with usual practice is that we will allow both quantification
of schema variables of higher type, such as n → a and n → p, as well as
∇-quantifications over names in the premises of rules. In particular, rules will

4

Ziegler, Miller, and Palamidessi

be of the following form: {
Qi

(
Pi −

Ai−→
γi

Qi

)
| i ∈ I

}
P −A−→

γ
Q

where I is a finite subset of N, and γ and γi may be any type amongst {p,
n → p, v → p}. Furthermore, the schema variables P and Pi are of type p,
the variables Q, Qi are of type γ and γi respectively, and the variables A, Ai

are of type a, n → a or v → a, depending on γ. Finally, the Qi denotes a
possibly empty sequence of ∇-quantified variables of type v. See Figure 1 for
examples of such inference rules.

2.3 A logic for operational semantics

We overview here the proof theory of the ∇-quantifier in order to help make
its role in the specification of name-binding clear. More details can be found
in [MT03b,MT03a]. The proof theory for the logic FOλ∆∇ is derived from
the standard sequent calculus for intuitionistic logic by adding the quantifier
∇. This quantifier is used to declare that a new object has scope within a
certain part of a computation and nowhere else. Given our focus here on
name-binding in process calculi, ∇-quantified variables will always be names,
and they will be in the type v.

We now outline how ∇-quantification is accommodated within proofs. Our
sequents extend traditional (single-conclusion) sequent calculus by the addi-
tion of both global and local signatures. In particular, in the sequent

Σ ; σ1 . B1, . . . , σn . Bn ` σ0 . B0,

the set Σ, called the global signature, collects together the free (eigen)variables
of the entire sequent, while the lists σi are local signatures and these contain
variables scoped only over Bi. We consider both kinds of signatures as binding
structures within sequents.

To illustrate the novel features FOλ∆∇, we present the inference rules for
∇ and ∀. The interaction between those two quantifiers is central to our work.

Σ, σ ` t : γ Σ ; σ . B[t/x], Γ ` C
Σ ; σ . ∀γx.B, Γ ` C ∀L

Σ, h ; Γ ` σ . B[(h σ)/x]

Σ ; Γ ` σ . ∀x.B
∀R

Σ ; (σ, y) . B[y/x], Γ ` C
Σ ; σ .∇x B, Γ ` C ∇L

Σ ; Γ ` (σ, y) . B[y/x]

Σ ; Γ ` σ .∇x B
∇R

Notice the right and left introduction rules for ∇ are essentially the same.
Thus, ∇ is self-dual: that is, the equivalence ¬∇x.Bx ≡ ∇x.¬B will hold.
In comparing the right introduction rules for ∇ and ∀, we notice that ∇-
bound variables move to local signatures (reading proof rules bottom up)

5

Ziegler, Miller, and Palamidessi

and ∀-bound variables move to global signatures. The new eigen-variable h
introduced by the ∀R rule does raising: that is, instead of instantiating the
quantifier with a new variable, it instantiates the quantifier with the “raised”
variable expression (h σ), which denotes the term (hx1 . . . xn) if σ is the list
(x1 . . . xn). Thus, when a ∀-bound variable appears in the scope of a local
variable, the ∀-bound variable is instantiated with an abstraction over the
local variable.

A brief comparison of ∇ with the “new”quantifier proposed by Gabbay
and Pitts [?] might be useful here. The “new” quantifier is provided with a
set-theoretic semantics that contains a denumerably infinite set of names. The
“new” quantifier is then able to select a fresh variable name (in particular, a
name not present in the quantified formula) from this existing set of names and
the underlying set theory provides laws that make the particular choice of the
fresh name immaterial. The ∇ quantifier is described in terms of proof theory
and can be used to quantify over any type (not necessarily one for names) and
its meta-theory does not assume that that type is inhabited. The ∇ quantifier
is essentially hypothetical. It essentially asks the question: “If you are given
a new element of this type, can you prove the body of the quantifier for it.”
A concrete difference between these quantifiers is that the ∇ quantifier is not
entailed by nor entails the ∀ or ∃ quantifier, whereas the “new” quantifier is
implied by the ∀ quantifier and implies the ∃ quantifier.

Another aspect of FOλ∆∇ is that it allows for the treatment of fixed points:
that is, predicates can be defined inductively and co-inductively. For example,
operational semantics are specified by an inductive definition while bisimilar-
ity is specified by a co-inductive one. The specifics of how this are treated in
the sequent calculus are not central to our presentation of our rule format def-
inition nor to the statement of our main results. The formal proof of the main
results are, however, based on the details of such fixed pointed constructions.
The interested reader can find more details in [MT03c,Tiu04].

2.4 Example: encoding of the pi-calculus

To encode the π-calculus syntax, we use the constructors

0 : p, !, τ : p → p, out : n → n → p → p, in : n → (n → p) → p,

+, | : p → p → p, match : n → n → p → p, ν : (v → p) → p.

in the straightforward way: in particular, we encode x(y).P as in x (λy.P),
x̄y.P as out x y P , νy.P as ν(λy.P), and [x = y].P as match x y P . Notice
that π-calculus bindings are mapped to λ-bindings within terms. We shall
usually write π-calculus expressions in their original form and only refer to
this specific encoding when needed.

The rules for π-calculus are shown in Figure 1. On the surface, these infer-
ences resemble the usual ones for the π-calculus. There are, however, several

6

Ziegler, Miller, and Palamidessi

τ.P −τ−→
p

P
(τ)

X(y).(My) −↓X−−→
n→p

M
(in)

X̄Y.P −↑XY−−→
p

P
(out)

P −A−→
γ

R

P + Q −A−→
γ

R
(plus)

P −A−→
γ

Q

[X = X].P −A−→
γ

Q
(match)

P −A−→
p

P ′

P |Q −A−→
p

P ′ |Q
(par)

P −A−→
δ

M

P |Q −A−→
δ

λx(M x |Q)
(par)

∇x(Px −A−→
p

Qx)

νx.Px −A−→
p

νx.Qx
(res)

∇x(Px −A−→
δ

P ′x)

νx.Px −A−→
δ

λy.νx.P ′xy
(res)

∇y(Py −↑Xy−−→
p

Qy)

νy.Py −↑X−−→
v→p

Q
(open)

P −↓X−−→
n→p

M Q −↑X−−→
v→p

N

P |Q −τ−→
p

νy.(My |Ny)
(close)

P −↓X−−→
n→p

M Q −↑XY−−→
p

Q′

P |Q −τ−→
p

MY |Q′
(com)

P −↑XY−−→
p

P ′ Q −↓X−−→
n→p

M

P |Q −τ−→
p

P ′ |MY
(com)

P −A−→
p

P ′

!P −A−→
p

P ′ | !P
(!act)

P −A−→
δ

P ′

!P −A−→
δ

λx(P ′x| !P)
(!act)

P −↑XY−−→
p

P ′ P −↓X−−→
n→p

M

!P −τ−→
p

!P | (P ′ |MY)
(!com)

P −↑X−−→
v→p

M P −↓X−−→
n→p

N

!P −τ−→
p

νy.(!P | (Ny |My))
(!close)

Fig. 1. Transition system for the late semantics of the π-calculus. The symmetric
versions of (close) and both (plus) and (par) rules are also assumed. We use the
convention that schema variables for a rule are written with a capitalized letter.
The type variable γ ranges over the set {p, n → p, v → p}, while δ ranges over
{n → p, v → p}.

subtle differences. One difference is that rules do not explicitly contain names
but rather meta-variables of type v and n (these are implicitly universally
bound and written with capital letters) or bound variables of type v or n
(these are explicitly λ- or ∇-bound and are written with lowercase letters).
The types of the variables can always be inferred from the context. In this
paper, ∇-quantified variables will always be considered to be of type v.

A second difference is that these inference rules use higher-order variables
of type n → a, n → p, v → a, v → p and (in the second (res) rule) n → n →
p. Notice that the expression X(y).(My) matches the π-calculus expression
n(w).w̄m.0 exactly when the meta-variables X and M are instantiated with

7

Ziegler, Miller, and Palamidessi

the terms n and λw.w̄m.0, respectively. These matching substitutions are
unique up to α-conversion. Notice further that the expression X(y).M fails
to match this same π-calculus expression since there is no capture-avoiding
substitution for M that will yield that expression.

A third difference is the use of the ∇-quantification: there are not ex-
plicit rules for introducing ∇-quantification in Figure 1. Instead, the logical
inference rules outlined in Section 2.3 are responsible for dealing with this
quantifier. The interplay between higher-order variables and ∇-quantification
means that the common side conditions on names and their occurrences are
not necessary. For example, the usual restriction for the (res) rule that states
that x is not free in A is implicit in the quantifier scoping rules of that rule:
the ∇-quantifier for x is in the scope of the ∀-quantification for A, thus no
substitution instance of this inference rule will have an occurrence of x in the
substitution of A. The logic guarantees, of course, that the application of a
substitution avoids variable-capture.

It is straightforward to modify those rules to encode the early semantics
of the π-calculus [Par01]: in particular, we need to add the rule

X(y)(My) −↓XU−−→
p

(M U)
(in-e)

and replace the two (com) rules with the rules

P −↑XY−−→
p

P ′ Q −↓XY−−→
p

Q′

P |Q −τ−→
p

P ′ |Q′
(com-e)

P −↓XY−−→
p

P ′ Q −↑XY−−→
p

Q′

P |Q −τ−→
p

P ′ |Q′
(com-e)

and change the (!com) and (open) rules to the rules

P −↑XY−−→
p

P ′ P −↓XY−−→
p

Q′

!P −τ−→
p

!P | P ′ |Q′
(!com-e)

∇y(Py −Ay−→
p

Qy)

νy.Py −A−→
δ

Q
(open)

3 Open bisimulation

The co-inductive predicate defined in Figure 2 defines our notion of open
bisimulation in the sense that two processes P and Q are said to be open
bisimilar when there is a proof (possibly involving the co-induction inference
rule) of ∀x̄ bisim P Q, where x̄ denotes the set of all free name variables in P
and Q. In the case of the π-calculus, this definition exactly coincides with the
usual definition of open-bisimulation [SW01,TM04]. In other calculi however,
this relation could be named otherwise. What we will call open bisimulation
in the rest of this paper is bisimulation up to substitutions of variables of type
n and distinctions of variables of type v [SW01].

8

Ziegler, Miller, and Palamidessi

bisim P Q
ν
=

∀A∀P ′ [P −A−→
p

P ′ ⊃ ∃Q′.Q −A−→
p

Q′ ∧ bisim P ′ Q′] ∧

∀A∀Q′ [Q −A−→
p

Q′ ⊃ ∃P ′.P −A−→
p

P ′ ∧ bisim Q′ P ′] ∧

∀A∀P ′ [P −A−−→
n→p

P ′ ⊃ ∃Q′.Q −A−−→
n→p

Q′ ∧ ∀w.bisim (P ′w) (Q′w)] ∧

∀A∀Q′ [Q −A−−→
n→p

Q′ ⊃ ∃P ′.P −A−−→
n→p

P ′ ∧ ∀w.bisim (Q′w) (P ′w)] ∧

∀A∀P ′ [P −A−−→
v→p

P ′ ⊃ ∃Q′.Q −A−−→
v→p

Q′ ∧∇w.bisim (P ′w) (Q′w)] ∧

∀A∀Q′ [Q −A−−→
v→p

Q′ ⊃ ∃P ′.P −A−−→
v→p

P ′ ∧∇w.bisim (Q′w) (P ′w)]

Fig. 2. Specification of the bisim predicate. The ν= symbol is used to declare that
this definition can be used with a co-inductive inference rule.

Note that if we considered proving the formula ∇x̄ bisim P Q instead, we
would be treating the free names of P and Q as different. Thus, ∇ quantifica-
tion can help encode distinction in the case of open bisimulation. As shown in
[TM04], assuming the excluded middle assumption on the equality of names,
namely, the formula

∀w∀x[x = w ∨ x 6= w],

allows us to capture strong bisimulation instead.

We now define three binary relations Obisimp, Obisimn→p, and Obisimv→p

with respect to provability involving the definition in Figure 2 and any given
SOS description following the lines described in Section 2.2.

Let 〈P, Q〉 be a pair of open terms of the same type and let x̄ a the list the
variables free in either P or in Q. If P and Q have type p then the set Obisimp

contains 〈P, Q〉 if and only if ` ∀x̄.bisim P Q. If P and Q have type n → p
then the set Obisimn→p contains 〈P, Q〉 if and only if ` ∀x̄∀y.bisim (Py) (Qy).
Finally, if P and Q have type v → p then the set Obisimv→p contains 〈P, Q〉
if and only if ` ∀x̄∇y.bisim (Py) (Qy).

4 Congruence

We now propose a notion of congruence in our framework.

To be a congruence, a relation should obviously be constructor preserving
(taking equality as a relation on names) and be an equivalence relation on each
set. Furthermore the addition of abstracted types in our framework requires
adding conditions on the interaction between primitive types and abstracted
types.

Definition 4.1 The triple 〈Rp, Rn→p, Rv→p〉 is said to be a congruence if for
each γ ∈ {p, n → p, v → p}, Rγ is a binary relation of open terms of type γ

9

Ziegler, Miller, and Palamidessi

and if the following properties hold.

• (Equ): The three binary relations are equivalence relations.

• (λ): If 〈P, Q〉 ∈ Rp then 〈λx.P, λx.Q〉 ∈ Rn→p and 〈λx.P, λx.Q〉 ∈ Rv→p,
depending on the type of x.

• (App): If 〈M, N〉 ∈ Rn→p and t is a term of type n, then 〈Mx, Nx〉 ∈ Rp.
If 〈M, N〉 ∈ Rv→p and M and N are closed and t is a constructor of type n
that appears in neither N nor M , then 〈Mt, Nt〉 ∈ Rp.

• (Cons): If c is a constructor of type t1 → t2 → · · · → tn → p, and if
〈P1, Q1〉, . . . , 〈Pn, Qn〉 are in Rt1 , . . . , Rtn , 〈c(P1, . . . , Pn), c(Q1, . . . , Qn)〉 is
in Rp.

The properties in Definition 4.1 are the minimum requirements for a re-
lation to be compositional in our setting: in addition to the standard con-
ditions, one needs the (λ) property to ensure that constructor with abstrac-
tion in their types will behave as expected according to the standard notion
of congruence. In fact, consider for instance the case of the in constructor
of the π-calculus. Without the (λ) property, one could have 〈P, Q〉 ∈ Rp

but not 〈(λx.P), (λx.Q)〉 ∈ Rn→p and the (Cons) property would not ensure
〈in y x P, in y x Q〉 ∈ Rp. This is exactly the reason why strong bisimilarity
is not a congruence (for the π-calculus) in the standard sense. Note that in
[Mil99] congruence is formulated using a much weaker requirement than (λ):
〈(λx.P) and (λx.Q)〉 are forced to be related only if all the instances of P and
Q are related. As a consequence, in [Mil99] strong bisimilarity is a congruence.

Notice that the first three properties defining a congruence hold for

〈Obisimp, Obisimn→p, Obisimv→p〉,

no matter what SOS rules are used, by merit of the proof-theoretic origin of
their definition. These properties are inherent to the definition of the relation
more than to the system: It is the “constructor preserving” condition that
requires restrictions on the transition system in order to hold.

5 The rule format

In [GV92], two restrictions on the format of rules where introduced to ensure
that bisimilarity is a congruence. We provide generalizations of these two
restrictions so that we can claim the same theorem in the extended setting.

Definition 5.1 The tyft/tyxt format for SOS restricts all inference rules to
be either of the form{

Qi(Pi −
Ai−→
γi

Ŷi) | i ∈ I

}
(f X1 . . . Xn) −A−→

γ
Q

, where all the schema variables Xj and Yi

are distinct, except for the name variables
(i.e. variables of type n)
or

10

Ziegler, Miller, and Palamidessi{
{Qi(Pi −

Ai−→
γ

Ŷi) | i ∈ I

}
X −A−→

γ
Q

, where X and all the schema variables Yi

are distinct.

Here, as before, Qi denotes a possibly empty sequence of ∇-quantified vari-
ables. The notation Ŷi denotes a term of the form (Yi u1 . . . uk) where Qi is
∇u1 . . .∇uk. The type variable γ ranges over the set {p, n → p, v → p}

In the standard definition of tyft/tyxt format, a premise of a rule is of

the form Pi

Ai

−−→ Yi, where Yi is a variable (of type p). This requirement
that a variable appears as the continuation of the transition implies that an
inference rule can not be selected by first probing the structure of the result of

a transition. For example, a premise of the form Pi

Ai

−−→ 0 is explicitly ruled
out. When there are binding surrounding such a labeled transition judgment,
it is necessary to replace that variable by a variable that is applied to all those
∇-bindings: that is, the premise format becomes

∇u1 . . .∇uk

(
Pi −

Ai−→
γi

(Yi u1 . . . uk)

)
Notice that instances of this premise will result in continuations that may or
may not contain the variables u1, . . . , uk. If fewer ∇-bound variables were
in this application, however, the rule could be used to probe some of the
structure of the continuation. For example, the premise of the (open) rule in

Figure 1 is ∇y(Py −↑Xy−−→
p

Qy). If instead that premise was ∇y(Py −↑Xy−−→
p

Q′)

then the premise would match only those output transitions in which the ∇-
bound variable y was not bound (recall that substitution is capture-avoiding
in logic). Such ability to probe the structure of a continuation can result in a
lost of congruence for bisimilarity.

Definition 5.2 The dependency graph of a rule with premise set

{Qi(Pi −
Ai−→
γ

Ŷi) | i ∈ I}

has I as its nodes and arrows from i to j if Yi is free in Pj. A rule is without
circular dependencies if this graph is acyclic.

We also, of course, require that all inference rules are properly typed.
Such a typing restriction adds another way in which rules are constrained.
For example, consider an inference rule that contains a meta-variable M of
type v → p and contains a premise or conclusion containing the formula

P −A−−→
n→p

λx.Qx. Proper typing will imply that the variable M cannot be

applied to x in the expression Qx: in essence, the expression M , which requires
a new name, cannot be applied to the variable x.

We now state our main result.

11

Ziegler, Miller, and Palamidessi

Theorem 5.3 If the specification of labeled transitions in tyft/tyxt format and
all rules have no circular dependences, then the relation induced by bisim for
this system is a congruence according to Definition 4.1.

The structure of this proof follows in part the one in [GV92]. There are
novelties related to the treatment of names, which are mainly handled by our
proof-theoretic setting. We only illustrate here the structure of the proof. The
full proof of the main lemma appears in the appendix of [ZMP05].

First, consider the function C(t, s, γ), where t and s are terms of type γ
and γ ∈ {n, p, v → p, n → p}. It then takes values as follows.

C(t, s, n) = (t = s) C(t, s, v → p) = ∇y.congr (ty) (sy)

C(t, s, p) = congr t s C(t, s, n → p) = ∀y.congr (ty) (sy)

Second, we give an inductive definition for congr that contains the clause

congr P Q
µ
= bisim P Q

as well as the clauses

congr (f T1 . . . Tn) (f S1 . . . Sn)
µ
=

n∧
i=1

C(Ti, Si, γi),

one for each constructor f : γ1 → · · · → γn → p of process expressions. Thus,
if there are j constructors for type p then there are j + 1 clauses defining
congr. Despite its appearance, the symbol

µ
= is not literally an equivalence.

Instead, it is used to indicate that congr is inductively defined by mutual
recursion using all clauses marked by the

µ
= symbol. To illustrate the second

kind of definition clause above, the following are the corresponding clauses for
+ : p → p → p and for in : n → (n → p) → p.

congr (T1 + T2) (S1 + S2)
µ
= congr T1 S1 ∧ congr T2 S2

congr (in X R) (in Y S)
µ
= X = Y ∧ ∀w. congr (Rw) (Sw)

Next, we wish to show that the predicate congr equals bisim. Clearly the
latter is a subset of the former. To prove the converse, we simply need to
show that congr is a post-fixed point of the definition of bisim. Since bisim
is defined co-inductively, this would imply that the interpretation of congr is
included in bisim. To proceed, we prove the following lemma.

Lemma 5.4 Let B be the formula defined in Figure 3. The formula

∀P∀Q. congr P Q ⊃ B congr P Q

is provable.

This part of the proof is similar to the standard case in its structure. The

12

Ziegler, Miller, and Palamidessi

B = λrλPλQ.

∀A∀P ′ [P −A−→
p

P ′ ⊃ ∃Q′.Q −A−→
p

Q′ ∧ r P ′Q′] ∧

∀A∀Q′ [Q −A−→
p

Q′ ⊃ ∃P ′.P −A−→
p

P ′ ∧ r Q′P ′] ∧

∀A∀P ′ [P −A−−→
n→p

P ′ ⊃ ∃Q′.Q −A−−→
n→p

Q′ ∧ ∀w.r (P ′w)(Q′w)] ∧

∀A∀Q′ [Q −A−−→
n→p

Q′ ⊃ ∃P ′.P −A−−→
n→p

P ′ ∧ ∀w.r (Q′w)(P ′w)] ∧

∀A∀P ′ [P −A−−→
v→p

P ′ ⊃ ∃Q′.Q −A−−→
v→p

Q′ ∧∇w.r (P ′w)(Q′w)] ∧

∀A∀Q′ [Q −A−−→
v→p

Q′ ⊃ ∃P ′.P −A−−→
v→p

P ′ ∧∇w.r (Q′w)(P ′w)]

Fig. 3. A higher-order λ-expression used to prove a co-inductive property.

interested reader can refer to the appendix of [ZMP05] for more details and
to [GV92] to compare our proof to the standard case.

From this lemma, we can deduce that the relation induced by the two
predicates congr and obisim coincides.

We can now prove that 〈Obisimp, Obisimn→p, Obisimv→p〉 is a congruence
according to our definition. As we commented at the end of Section 4, the
first three conditions in the definition of congruence hold automatically given
the logic used to describe this triple of relations. The fourth condition holds
immediately for Congr and since that relation coincides with Obisimp, it holds
for Obisimp as well.

We have now proved that our format is enough to ensure that open bisim-
ilarity is a congruence. The use of quantification on names and its interaction
with binders allows our proofs to be almost as simple as in the first order case.

It is easy to see that π-calculus as presented earlier satisfies our extended
tyft/tyxt format, for both the late and early transition systems. We have thus
provided another proof that open bisimilarity is a congruence in these cases.

6 Conclusion and future work

We have presented a format to ensure that open bisimilarity is a congruence
for name-passing calculi. To obtain this result, we used a new presentation
of transition system specifications, better suited for reasoning about name-
passing and name-binding, based on an extension of SOS exploiting a logic-
based approaches to binding. In fact, by using an enriched logic able to
handle bindings internally, we were able to naturally re-use standard first-
order techniques to get our result.

This work opens several interesting fields of extension. First of all, the
fact that all our work is done within proof theory permits using standard

13

Ziegler, Miller, and Palamidessi

higher-order logic programming technique to provide executable specifications
of SOS rules as well as symbolic bisimulation for (finite) process expressions
[TM04,Tiu05]. The recent Level0/1 system [TNM05] has been used to provide
just such implementations for the π-calculus.

Besides, it would be both useful and insightful to express other name-
passing calculi in our framework. The distinction made between the different
kind of bound transition should allow us to model fusion calculus’ hyperequiv-
alence ([PV98]), and even seems well-suited for specifying the operational se-
mantic of calculi based on D-fusion ([BBM04]), and maybe solve the problem
of congruence of bisimilarity in this case. Handling extension of the π-calculus,
like Abadi and Fournet’s Applied Pi-Calculus ([AF01]), would also be very in-
teresting. Here the hope is that our fully proof-theoretical framework will
provide us with convenient tools to handle unification of terms. Finally, it
would be very interesting to extend our work to process-passing calculi, as
done in [MGR05], since it would provide us with a united framework to han-
dle name-binding and higher-order.

Relating this work to other work on operational semantics based on model
theoretic semantics, such as [?], is certainly an interesting direction to pursue.

Acknowledgments. We are grateful for the support of the ACI grants GEOCAL
and Rossignol and for comments on an earlier draft of this paper from Alwen
Tiu. Work of the first author was partially supported by ENS, Paris.

References

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In POPL ’01: Proc. of the 28th Symposium on Principles
of programming languages, pages 104–115. ACM Press, 2001.

[BBM04] M. Boreale, M. Buscemi, and U. Montanari. D-fusion: a distinctive fusion
calculus. In Proc. of APLAS04, volume 3302 of LNCS. Springer, 2004.

[Ber98] Karen L. Bernstein. A congruence theorem for structured operational
semantics of higher-order languages. In John Mitchell, editor, Proceedings
of LICS98, pages 153–163. IEEE, June 1998.

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be
traced. Journal of the ACM, 42(1):232–268, January 1995. Preliminary
version appeared in POPL 1988: 229-239.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Des00] Joëlle Despeyroux. A higher-order specification of the π-calculus. In
Proc. of the IFIP International Conference on Theoretical Computer
Science, Sendai, Japan, August 17-19, 2000., August 2000.

14

Ziegler, Miller, and Palamidessi

[GV92] Jan Friso Groote and Frits Vaandrager. Structured operational semantics
and bisimulation as a congruence. Information and Computation,
100:202–260, 1992.

[How96] Douglas J. Howe. Proving congruence of bisimulation in functional
programming languages. Information and Computation, 124(2):103–112,
1996.

[MGR05] Mohammad Reza Mousavi, Murdoch J. Gabbay, and Michel A. Reniers.
SOS for higher order precesses. In CONCUR’05: Concurrency Theory,
2005. To appear.

[Mil99] Robin Milner. Communicating and Mobile Systems : The π-calculus.
Cambridge University Press, 1999.

[MMP03] Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding
transition systems in sequent calculus. Theoretical Computer Science,
294(3):411–437, 2003.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach
to manipulating formulas and programs. In Seif Haridi, editor, IEEE
Symposium on Logic Programming, pages 379–388, San Francisco,
September 1987.

[MP99] Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. In
P. Degano, R. Gorrieri, A. Marchetti-Spaccamela, and P. Wegner, editors,
ACM Computing Surveys Symposium on Theoretical Computer Science:
A Perspective, volume 31. ACM, September 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, Part I. Information and Computation, 100(1):1–40, September
1992.

[MT03a] Dale Miller and Alwen Tiu. A proof theory for generic judgments.
ACM Trans. on Computational Logic, ed. Phokion Kolaitis. To appear.,
November 2003.

[MT03b] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An
extended abstract. In Proc. 18th IEEE Symposium on Logic in Computer
Science (LICS 2003), pages 118–127. IEEE, June 2003.

[MT03c] Alberto Momigliano and Alwen Tiu. Induction and co-induction in
sequent calculus. In Mario Coppo Stefano Berardi and Ferruccio Damiani,
editors, Post-proceedings of TYPES 2003, number 3085 in LNCS, pages
293 – 308, January 2003.

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Bergstra,
Ponse, and Smolka, editors, Handbook of Process Algebra, pages 479–543.
Elsevier, 2001.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proc.
of the Conference on Programming Language Design and Implementation,
pages 199–208. ACM Press, June 1988.

15

Ziegler, Miller, and Palamidessi

[Plo81] G. Plotkin. A structural approach to operational semantics. DAIMI FN-
19, Aarhus University, Aarhus, Denmark, September 1981.

[PV98] Joachim Parrow and Bjorn Victor. The fusion calculus: Expressiveness
and symmetry in mobile processes. In Logic in Computer Science, pages
176–185, 1998.

[Sta85] Richard Statman. Logical relations and the typed λ-calculus.
Information and Control, 65:85–97, 1985.

[SW01] Davide Sangiorgi and David Walker. π-Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[Tho93] Bent Thomsen. Plain chocs: A second generation calculus for higher order
processes. Acta Inf., 30(1):1–59, 1993.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical
Specifications. PhD thesis, Pennsylvania State University, May 2004.

[Tiu05] Alwen Tiu. Model checking for π-calculus using proof search. In
CONCUR’05: Concurrency Theory, 2005. To appear.

[TM04] Alwen Tiu and Dale Miller. A proof search specification of the π-calculus.
In 3rd Workshop on the Foundations of Global Ubiquitous Computing,
September 2004.

[TNM05] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success
and finite failure in an automated prover. Submitted, May 2005.

[Ver95] Chris Verhoef. A congruence theorem for structured operational
semantics with predicates and negative premises. Nordic J. of Computing,
2(2):274–302, 1995.

[Zie04] Axelle Ziegler. Un format pour que la bisimulation soit une congruence
dans les langages de processus avec mobilité. Technical report, ENS,
2004. Master Thesis.

[ZMP05] Axelle Ziegler, Dale Miller, and Catuscia Palamidessi. A congruence
format for name-passing calculi. Technical report, LIX, Ecole
Polytechnique, 2005. Available at
http://www.lix.polytechnique.fr/parsifal/ziegler05report.pdf.

16

Ziegler, Miller, and Palamidessi

A Proof of congruence result

We’ll now describe the proof of the Lemma 5.4. We shall assume that the
reader is familiar with basic ideas behind sequent calculus and the main ideas
about the use of definitions to provide fixed points in such proofs: see, for
example, [MMP03,MT03a].

In order to prove the sequent

P : p, Q : p ; congr P Q ` B congr P Q

we may assume that it is the result of using the definition left introduction
rule for the congr predicate, which then yields the following two sequents to
prove:

P : p, Q : p ; bisim P Q ` B congr P Q

T1 : γ1, S1 : γ1, . . . , Tn : γn, Sn : γn ;
∧
C(Ti, Si, γi) ` B congr f(T̄) f(S̄).

In the second case, P and Q unified with f(T1, . . . , Tn) and f(S1, . . . , Sn),
respectively, where f is a constructor of type γ1 → · · · → γn → p.

In the first case, one unfolding of the definition for bisim yields (via the
left-introduction rule for definitions) the sequent

P : p, Q : p ; B bisim P Q ` B congr P Q.

Given the definition of congr, this sequent has a simple proof.

In the second case, things are slightly more complicated. One can write
B congr P Q as the following formula:

∧
γ

[
∀A∀P ′

(
P −A−→

γ
P ′ ⊃ ∃Q′[Q −A−→

γ
Q′ ∧ C(P ′, Q′, γ)]

)]
∧

∧
γ

[
∀A∀Q′

(
Q −A−→

γ
Q′ ⊃ ∃P ′[P −A−→

γ
P ′ ∧ C(P ′, Q′, γ)]

)]
,

where γ ranges over {p, n → p, v → p}. Application of the conjunction right
introduction rules yields six sequents, consisting of two groups of three sym-
metrical sequents. Since the problem is symmetrical, we prove the following
three sequents (one for each γ ∈ {p, n → p, v → p}):

Σ ;
∧

C(Ti, Si, γi) ` ∀A∀P ′(f(T̄) −A−→
γ

P ′) ⊃ ∃Q′[(f(S̄) −A−→
γ

Q′) ∧ C(P ′, Q′, γ)],

where Σ is T1 : γ1, S1 : γ1, . . . , Tn : γn, Sn : γn. Application of standard inference
rules yields instead the following sequent to prove:

Σ, A, P ′ : γ ;
∧

C(Ti, Si, γi), f(T̄) −A−→
γ

P ′ ` ∃Q′[f(S̄) −A−→
γ

Q′ ∧ C(P ′, Q′, γ)]

17

Ziegler, Miller, and Palamidessi

One can now use one of the rule of our specification to unify with the transition
predicate on the left-hand side. If there is no such unification, the sequent is
proved. Otherwise, we have a sequent for each rule and each unifier. Since
they are all of the same form, we shall consider just one of those cases where
the rule used is

Qj

(
Rj −

Bj−→
δj

Ŷj

)
f(X1, . . . , Xn) −B−→

γ
R

(∗)

and the substitution is θ, such that θ(Xi) = Ti, θ(B) = A and θ(R) = P ′.
We may assume that the variables free in the range of θ are distinct from
any ∇-bound variables in any premise of this rule. This leaves us with the
following sequent to prove:

Σ, θ(B), θ(R) ;
∧
C(Ti, Si, γi),

∧
j Qj[θ(Rj) −

θ(Bj)−−−→
δj

θ(Ŷj)] `

∃Q′
(

f(S̄) −θ(B)−−→
γ

Q′ ∧ C(θ(R), Q′, γ)

)
By the expression Σ, θ(B), θ(R) we mean the signature resulting from collect-
ing together the variables in Σ with any free variables in θ(B) or in θ(R).

We next need to build a instantiation for the ∃Q′ quantifier and we do
this by constructing a substitution θ′ such that this existential quantifier is
instantiated with θ′(R).

Let Z be the set of all free (meta) variables in the rule (∗). For each variable
z ∈ Z we define its rank, rk(z) as follows: if z = Yi, i ∈ I, rk(z) is the length
of the greatest path in the dependency graph starting from i. Otherwise,
rk(z) = 0. The set Z is thus partitioned into sets Zi = {z | rk(z) = i}. We
define θ′ inductively over these sets. First, we define θ′ on the set Z0. We have
two cases:

• If the meta variable Xi in (∗) is of rank 0, then set θ′(Xi) = Si.

• For all other name variables process variables of rank 0, set θ′(z) = θ(z).

For the remainder of the variables, we’ll define θ′ by induction on the rank
i of the variable. The induction invariant is for all variables of rank smaller
than i, we can prove C(θ(z), θ′(z), δ), where δ is the type of z. This property
is respected at rank 0: Ti and Si are defined as belonging to the proper sets,
and all of our relations are guaranteed to be reflexive. To build θ′ we need the
following lemma.

Lemma A.1 Let T be a sub-term of type γ of either the conclusion or any
premises of (∗). If for every free variable x of T , the expression C(θ(x), θ′(x), δx)
is provable (where δx is the type of x) in a given context then C(θ(T), θ′(T), δ)
is provable in the same context.

Proof. We proceed by structural induction on T .

18

Ziegler, Miller, and Palamidessi

• If T is a variable, the result is immediate.

• If T is of the form f(T1, . . . , Tn), then by the induction hypothesis, we
can build proofs of C(θ(Ti), θ

′(Ti), γi) (where γi is the type of Ti). By the
definition of congr, we thus have a proof of

C(f(θ(T1), . . . , θ(Tn)), f(θ′(T1), . . . , θ
′(Tn)), δ),

which is also the formula C(θ(T), θ′(T), δ).

• If T is of the form T = Mx, where M is of type v → p, then x is a ∇-
bound variable because the rule type checks, and, by induction hypothesis
C(θ(M), θ′(M), v → p) is provable. Since x is ∇-bound, C(θ(M), θ′(M), p)
is provable.

• if T is of the form T = MT ′ where M is of type n → p and T is a term
of type n, then C(θ(M), θ′(M), n → p) is provable and θ(T ′) = θ′(T ′) by
induction hypothesis. It’s immediate that C(θ(T), θ′(T), p) is provable.

• If T is of the form λx.M with M of type p, the result is again immediate.

2

We can now continue building our substitution θ′. Pick z ∈ Zi+1. Notice
that z necessarily is one of the Yj and as such, there is a transition of the form

∇x1, . . . xnRj −
Bj−→
δj

z(x1, . . . , xn) in the premises of the rule we are applying,

and ∀z′ ∈ fv(Rj), rk(z′) ≤ i. From the Lemma A.1 and the induction
hypothesis, C(θ(Rj), θ

′(Rj), δj) is provable in the context of (∗∗), but such a
proof necessarily contains a proof of

θ(Rj) −
A−→
δj

θ(z) ⊃ ∃R′.θ′(Rj) −
A−→
δj

R′ ∧ C(θ(z), R′, δj).

From there, if θ(Rj) −
A−→
δj

θ(z) unifies to nothing our original sequent is proved.

Otherwise, since the sequent above is provable, the proof will contain a term R
that unifies with R′ and which makes both the right-hand side of our sequent
provable. One can set θ′(z) = λ x1 . . . λxn R′. This method allows to build
θ′ on every free variable. Moreover, the substitution θ′ respects the following
properties:

(i) θ′(f(X1, . . . , Xn)) = f(S1, . . . , Sn)

(ii) θ′(B) = θ(B)

(iii) For all free variable z of type γ in our rule C(θ(z), θ′(z), γ) is provable.

Let’s have a look at the sequent we wanted to prove:

Σ, θ(B), θ(R) ;
∧
C(Ti, Si, γi),

∧
j Qj[θ(Rj) −

θ(Bj)−−−→
δj

θ(Ŷj)] `

∃Q′.f(S̄) −θ(B)−−→
γ

Q′ ∧ C(θ(R), Q′, γ)

19

Ziegler, Miller, and Palamidessi

We will now instantiate Q′ with θ′(R). We obtain the following sequents:

Σ, θ(B), θ(R), θ′(R) ;
∧
C(Ti, Si, γi),

∧
j Qj[θ(Rj) −

θ(Bj)−−−→
δj

θ(Ŷj)] `

θ′(f(S̄)) −θ(B)−−→
γ

θ′(R)

Σ, θ(B), θ(R), θ′(R) ;
∧
C(Ti, Si, γi),

∧
j Qj[θ(Rj) −

θ(Bj)−−−→
δj

θ(Ŷj)] `

C(θ(R), θ′(R), γ)

To prove the first sequent, one can use the same deduction rule that was used
on the left earlier. We now need to provide a proof for one such sequent for
each j in J :

Σ, θ(B), θ(R), θ′(R) ;
∧
C(Ti, Si, γi), θ(Rj) −

θ(Bj)−−−→
δj

θ(Ŷj) ` θ′(Rj) −
θ′(Bj)−−−→

γ
θ′(Ŷj)

But they are provable by construction of θ′.

As for the second sequent, one can apply the Lemma A.1 to (θ(R)) and
(θ′(R)).

We have thus completed the proof of Lemma 5.4.

20

	Introduction
	Plan of the paper

	Transition System Specifications and Name Passing
	Motivating a logical framework for binding
	Technical description of the system
	A logic for operational semantics
	Example: encoding of the pi-calculus

	Open bisimulation
	Congruence
	The rule format
	Conclusion and future work
	References
	Proof of congruence result

