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Protocols for information-hiding often use randomized primitives to obfuscate the link between

the observables and the information to be protected. The degree of protection provided by a
protocol can be expressed in terms of the probability of error associated to the inference of the

secret information.
We consider a probabilistic process calculus approach to the specification of such protocols,

and we study how the operators affect the probability of error. In particular, we characterize

constructs that have the property of not decreasing the degree of protection, and that can therefore
be considered safe in the modular construction of protocols.

As a case study, we apply these techniques to the Dining Cryptographers, and we are able to

derive a generalization of Chaum’s strong anonymity result.
Finally, we consider the metric on processes defined by Desharnais et al., and we prove that

the degree of protection is continuous with respect to the metric.
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1. INTRODUCTION

During the last decade, internet activities have become an important part of many people’s
lives. As the number of these activities increases, there is a growing amount of personal
information about the users that is stored in electronic form and that is usually transferred
using public electronic means. This makes it feasible and often easy to collect, transfer
and process a huge amount of information about a person. As a consequence, the need for
mechanisms to protect such information is compelling.

A recent example of such privacy concerns are the so-called “biometric” passports.
These passports, used by many countries and required by all visa waiver travelers to the
United States, include a RFID chip containing information about the passport’s owner.
These chips can be read wirelessly without any contact with the passport and without the
owner even knowing that his passport is being read. It is clear that such devices need pro-
tection mechanisms to ensure that the contained information will not be revealed to any
non-authorized person.

In general, privacy can be defined as the ability of users to prevent information about
themselves from becoming known to people other than those they choose to give the infor-
mation to. We can further categorize privacy properties based on the nature of the hidden
information. Data protection usually refers to confidential data like the credit card num-
ber. Anonymity, on the other hand, concerns the identity of the user who performed a
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certain action. Unlinkability refers to the link between the information and the user, and
unobservability regards the actions of a user.

Information-hiding protocols aim at ensuring a privacy property during an electronic
transaction. For example, the voting protocol Foo 92 ([Fujioka et al. 1993]) allows a user
to cast a vote without revealing the link between the voter and the vote. The anonymity
protocol Crowds ([Reiter and Rubin 1998]) allows a user to send a message on a pub-
lic network without revealing the identity of the sender. These kinds of protocols often
use randomization to introduce noise, thus limiting the inference power of a malicious
observer.

1.1 Information theory

Recently it has been observed that at an abstract level information-hiding protocols can be
viewed as channels in the information-theoretic sense. A channel consists of a set of input
values S, a set of output valuesO (the observables) and a transition matrix which gives the
conditional probability p(o|s) of producing o as the output when s is the input. In the case
of privacy preserving protocols, S contains the secret information that we want to protect
and O the facts that the attacker can observe. This framework allows us to apply concepts
from information theory to reason about the knowledge that the attacker can gain about the
input by observing the output of the protocol.

In the field of information flow and non-interference there have been various works
[McLean 1990; Gray, III 1991; Clark et al. 2001; 2005; Lowe 2002] in which the high
information and the low information are seen as the input and output respectively of a
(noisy) channel. Non-interference is formalized in this setting as the converse of channel
capacity.

Channel capacity has been also used in relation to anonymity in [Moskowitz et al. 2003;
Moskowitz et al. 2003]. These works propose a method to create covert communication
by means of non-perfect anonymity.

A related line of work is [Serjantov and Danezis 2002; Dı́az et al. 2002], where the main
idea is to express the lack of (probabilistic) information in terms of entropy.

A different information-theoretic approach is taken in [Clarkson et al. 2008]. In this pa-
per, the authors define as information leakage the difference between the a priori accuracy
of the guess of the attacker, and the a posteriori one, after the attacker has made his obser-
vation. The accuracy of the guess is defined as the Kullback-Leibler distance between the
belief (which is a weight attributed by the attacker to each input hypothesis) and the true
distribution on the hypotheses.

1.2 Hypothesis testing

In information-hiding systems the attacker finds himself in the following scenario: he can-
not directly detect the information of interest, namely the actual value of the random vari-
able S ∈ S, but he can discover the value of another random variable O ∈ O which
depends on S according to a known conditional distribution. This kind of situation is quite
common also in other disciplines, like medicine, biology, and experimental physics, to
mention a few. The attempt to infer S from O is called hypothesis testing (the “hypothe-
sis” to be validated is the actual value of S), and it has been widely investigated in statistics.
One of the most used approaches to this problem is the Bayesian method, which consists in
assuming known the a priori probability distribution of the hypotheses, and deriving from
that (and from the matrix of the conditional probabilities) the a posteriori distribution after
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a certain fact has been observed. It is well known that the best strategy for the adversary is
to apply the MAP (Maximum Aposteriori Probability) criterion, which, as the name says,
dictates that one should choose the hypothesis with the maximum a posteriori probability
for the given observation. “Best” means that this strategy induces the smallest probabil-
ity of error in the guess of the hypothesis. The probability of error, in this case, is also
called Bayes risk. In [Chatzikokolakis et al. 2007b], we proposed to define the degree of
protection provided by a protocol as the Bayes risk associated to the matrix.

A major problem with the Bayesian method is that the a priori distribution is not always
known. This is particularly true in security applications. In some cases, it may be possible
to approximate the a priori distribution by statistical inference, but in most cases, especially
when the input information changes over time, it may not. Thus other methods need to be
considered, which do not depend on the a priori distribution. One such method is the one
based on the so-called Maximum Likelihood criterion.

1.3 Contribution

In this paper we consider both the scenario in which the input distribution is known, in
which case we consider the Bayes risk, and the one in which we have no information on
the input distribution, or it changes over time. In this second scenario, we consider as
degree of protection the probability of error associated to the Maximum Likelihood rule,
averaged on all possible input distributions. It turns out that such average is equal to the
value of the probability of error on the point of uniform distribution, which is much easier
to compute.

Next, we consider a probabilistic process algebra for the specification of information-
hiding protocols, and we investigate which constructs in the language can be used safely
in the sense that by applying them to a term, the degree of protection provided by the term
does not decrease. This provides a criterion to build specifications in a compositional way,
while preserving the degree of protection. We do this study for both the Bayesian and the
Maximum Likelihood approaches.

We apply these compositional methods to the example of the Dining Cryptographers,
and we are able to strengthen the strong anonymity result by Chaum. Namely we show
that we can have strong anonymity even if some coins are unfair, provided that there is a
spanning tree of fair ones. This result is obtained by adding processes representing coins
to the specification and using the fact that this can be done with a safe construct.

Finally, we consider the notion of distance on processes that was defined by Desharnais
et al [2002], and we prove that the degree of protection provided by a protocol is continuous
with respect to this metric. The proof is similar to the proof provided in [Desharnais et al.
2002] for their result on the continuity of the capacity, however our result does not follow
directly from theirs: In fact, in the literature there are results relating the probability of
error to the conditional entropy of a channel, but not, as far as we know, to its capacity.

1.4 Plan of the paper

In the next section we recall some basic notions. Section 3 introduces the language CCSp.
Section 4 shows how to model protocols and process terms as channels. Section 5 discusses
hypothesis testing and presents some properties of the probability of error. Section 6 char-
acterizes the constructs of CCSp which are safe. Section 7 applies previous results to find
a new property of the Dining Cryptographers. Section 8 considers a metric on processes,
and shows that the degree of protection is continuous. Section 9 concludes.
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2. PRELIMINARIES

In this section we give a brief overview of the technical concepts from the literature that
will be used through the paper. More precisely, we recall here some basic notions of
probability theory and probabilistic automata ([Segala 1995; Segala and Lynch 1995]).

2.1 Probability spaces

Let Ω be a set. A σ-field over Ω is a collection F of subsets of Ω closed under complement
and countable union and such that Ω ∈ F . If B is a collection of subsets of Ω then the σ-
field generated by B is defined as the smallest σ-field containing U (its existence is ensured
by the fact that the intersection of an arbitrary set of σ-fields containing B is still a σ-field
containing B).

A measure on F is a function µ : F → [0,∞] such that

(1) µ(∅) = 0 and
(2) µ(

⋃
i Ci) =

∑
i µ(Ci) if {Ci}i is a countable collection of pairwise disjoint elements

of F .

A probability measure on F is a measure µ on F such that µ(Ω) = 1. A probability
space is a tuple (Ω,F , µ) where Ω is a set, called the sample space, F is a σ-field on Ω
and µ is a probability measure on F . The elements of a σ-field F are also called events.

We will denote by δ(x) (called the Dirac measure on x) the probability measure s.t.
δ(x)({y}) = 1 if y = x, and δ(x)({y}) = 0 otherwise. If {ci}i are convex coefficients,
and {µi}i are probability measures, we will denote by

∑
i ciµi the probability measure

defined as (
∑
i ciµi)(A) =

∑
i ciµi(A).

If A,B are events then A ∩ B is also an event. If µ(A) > 0 then we can define the
conditional probability p(B|A), meaning “the probability of B given that A holds”, as

p(B|A) =
µ(A ∩B)
µ(A)

Note that p(·|A) is a new probability measure on F . In continuous probability spaces,
where many events have zero probability, it is possible to generalize the concept of condi-
tional probability to allow conditioning on such events. However, this is not necessary for
the needs of this paper. Thus we will use the above “traditional” definition of conditional
probability and make sure that we never condition on events of zero probability.

A probability space and the corresponding probability measure are called discrete if Ω
is countable and F = 2Ω. In this case, we can construct µ from a function p : Ω → [0, 1]
satisfying

∑
x∈Ω p(x) = 1 by assigning µ({x}) = p(x). The set of all discrete probability

measures with sample space Ω will be denoted by Disc(Ω).

2.2 Probabilistic automata

A probabilistic automaton M is a tuple (St , Tinit ,Act , T ) where St is a set of states,
Tinit ∈ St is the initial state, Act is a set of actions and T ⊆ St × Act × Disc(St) is a
transition relation. Intuitively, if (T, a, µ) ∈ T then there is a transition from the state T
performing the action a and leading to a distribution µ over the states of the automaton.
(We use T for states instead of s because later in the paper states will be (process) terms,
and s will be used for sequences of actions.) We also write T a−→ µ if (T, a, µ) ∈ T .
The idea is that the choice of transition among the available ones in T is performed nonde-
terministically, and the choice of the target state among the ones allowed by µ (i.e. those
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states T ′ such that µ(T ′) > 0) is performed probabilistically. A probabilistic automaton
M is fully probabilistic if from each state ofM there is at most one transition available.

An execution fragment α of a probabilistic automaton is a (possibly infinite) sequence
T0a1T1a2T2 . . . of alternating states and actions, such that for each i there is a transition
(Ti, ai+1, µi) ∈ T and µi(Ti+1) > 0. We will use fst(α), lst(α) to denote the first and last
state of a finite execution fragment α respectively. An execution (or history) is an execution
fragment such that fst(α) = Tinit . An execution α is maximal if it is infinite or there is no
transition from lst(α) in T . We denote by exec∗(M), exec⊥(M), and exec(M) the set
of all the finite, all the non-maximal, and all executions ofM, respectively.

A scheduler of a probabilistic automatonM = (St , Tinit ,Act , T ) is a function

ζ : exec⊥(M)→ T

such that ζ(α) = (T, a, µ) ∈ T implies that T = lst(α).
The idea is that a scheduler selects a transition among the ones available in T and it

can base his decision on the history of the execution. The execution tree of M relative
to the scheduler ζ, denoted by etree(M, ζ), is a fully probabilistic automaton M′ =
(St ′, Tinit ,Act , T ′) such that St ′ ⊆ exec∗(M), and (α, a, µ′) ∈ T ′ if and only if ζ(α) =
(lst(α), a, µ) for some µ, and µ′(αaT ) = µ(T ). Intuitively, etree(M, ζ) is produced by
unfolding the executions ofM and resolving the nondeterminism using ζ.

Given a fully probabilistic automatonM = (St , Tinit ,Act , T ) we can define a proba-
bility space (ΩM,FM, pM) on the space of executions ofM as follows:

—ΩM ⊆ exec(M) is the set of maximal executions ofM.
—If α is a finite execution ofMwe define the cone with prefix α asCα = {α′ ∈ ΩM|α ≤
α′}. Let CM be the collection of all cones ofM. Then F is the σ-field generated by
CM (by closing under complement and countable union).

—We define the probability of a cone Cα where α = T0a1T1 . . . anTn as

p(Cα) =
n∏
i=1

µi(Ti)

where µi is the (unique because the automaton is fully probabilistic) measure such that
(Ti−1, ai, µi) ∈ T . We define pM as the measure extending p to F (see [Segala 1995]
for more details about this construction).

3. CCS WITH INTERNAL PROBABILISTIC CHOICE

We consider an extension of standard CCS ([Milner 1989]) obtained by adding internal
probabilistic choice. The resulting calculus CCSp can be seen as a simplified version of
the probabilistic π-calculus presented in [Herescu and Palamidessi 2000; Palamidessi and
Herescu 2005] and it is similar to the one considered in [Deng et al. 2005]. Like in those
calculi, computations have both a probabilistic and a nondeterministic nature. The main
conceptual novelty is a distinction between observable and secret actions, introduced for
the purpose of specifying information-hiding protocols.

We assume a countable set Act of actions a, and we assume that it is partitioned into a
set Sec of secret actions s, a set Obs of observable actions o, and the silent action τ . For
each s ∈ Sec we assume a complementary action s ∈ Sec such that s = s, and the same
for Obs . The silent action τ does not have a complementary action, so the notation a will
imply that a ∈ Sec or a ∈ Obs .
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PROB
◦
P
i pi Ti

τ−→
P
i pi δ(Ti)

ACT
j ∈ I�

Iai.Ti
aj−→ δ(Tj)

PAR1
T1

a−→ µ

T1 | T2
a−→ µ | T2

PAR2
T2

a−→ µ

T1 | T2
a−→ T1 | µ

REP
T | !T a−→ µ

!T
a−→ µ | !T

COM
T1

a−→ δ(T ′
1) T2

a−→ δ(T ′
2)

T1 | T2
τ−→ δ(T ′

1 | T ′
2)

RES
T

b−→ µ α 6= a, a

(νa)T
b−→ (νa)µ

Table I. The semantics of CCSp.

The syntax of CCSp is the following:

T ::= process term

◦
∑
i pi Ti probabilistic choice

|
�
i si.Ti secret choice (si ∈ Sec)

|
�
i ri.Ti nondeterministic choice (ri ∈ Obs ∪ {τ})

| T | T parallel composition

| (νa)T restriction

| !T replication

All the summations in the syntax are finite. We will use the notation T1⊕pT2 to represent
a binary probabilistic choice ◦

∑
i pi Ti with p1 = p and p2 = 1− p. Similarly we will use

a1.T1
�
a2.T2 to represent a binary secret or nondeterministic choice.

The semantics of a given CCSp term is a probabilistic automaton whose states are pro-
cess terms, whose initial state is the given term, and whose transitions are those derivable
from the rules in Table I. We will use the notations (T, a, µ) and T a−→ µ interchangeably.
We denote by µ | T the measure µ′ such that µ′(T ′ | T ) = µ(T ′) for all processes T ′

and µ′(T ′′) = 0 if T ′′ is not of the form T ′ | T , and similarly for T | µ. Furthermore we
denote by (νa)µ the measure µ′ such that µ′((νa)T ) = µ(T ), and µ′(T ′) = 0 if T ′ is not
of the form (νa)T .

Note that in the produced probabilistic automaton, all transitions to non-Dirac measures
are silent. Note also that a probabilistic term generates exactly one (probabilistic) transi-
tion.

A transition of the form T
a−→ δ(T ′), i.e. a transition having for target a Dirac measure,

corresponds to a transition of a non-probabilistic automaton (a standard labeled transition
system). Thus, all the rules of CCSp specialize to the ones of CCS except from PROB.
The latter models the internal probabilistic choice: a silent τ transition is available from
the sum to a measure containing all of its operands, with the corresponding probabilities.

A secret choice
�
i si.Ti produces the same transitions as the nondeterministic term
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i ri.Ti, except for the labels.
The distinction between the two kind of labels influences the notion of scheduler for

CCSp: the secret actions are assumed to be inputs of the system, namely they can only be
performed if the input matches them. Hence some choices are determined, or influenced,
by the input. In particular, a secret choice with different guards is entirely decided by the
input. The scheduler has to resolve only the residual nondeterminism.

In the following, we use the notation X ⇀ Y to represent the partial functions from X
to Y , and α|Sec represents the projection of α on Sec.

Definition 3.1. Let T be a process in CCSp and M be the probabilistic automaton
generated by T . A scheduler is a function

ζ : Sec∗ → exec∗(M) ⇀ T

such that:

(i) if s = s1s2 . . . sn and α|Sec = s1s2 . . . sm with m ≤ n, and
(ii) there exists a transition (lst(α), a, µ) such that, if a ∈ Sec then a = sm+1

then ζ(s)(α) is defined, and it is one of such transitions. We will write ζs(α) for ζ(s)(α).

Note that this definition of scheduler is different from the one used in probabilistic au-
tomaton, where the scheduler can decide to stop, even if a transition is allowed. Here the
scheduler must proceed whenever a transition is allowed (provided that if it is labeled by a
secret, that secret is the next one in the input string s).

We now adapt the definition of execution tree from the notion found in probabilistic
automata. In our case, the execution tree depends not only on the scheduler, but also on the
input.

Definition 3.2. LetM = (St , T,Act , T ) be the probabilistic automaton generated by
a CCSp process T , where St is the set of processes reachable from T . Given an input
s and a scheduler ζ, the execution tree of T for s and ζ, denoted by etree(T, s, ζ), is
a fully probabilistic automaton M′ = (St ′, T,Act , T ′) such that St ′ ⊆ exec(M), and
(α, a, µ′) ∈ T ′ if and only if ζs(α) = (lst(α), a, µ) for some µ, and µ′(αaT ) = µ(T ).

4. MODELING PROTOCOLS FOR INFORMATION-HIDING

In this section we propose an abstract model for information-hiding protocols, and we show
how to represent this model in CCSp. An extended example is presented in Section 7.

4.1 Protocols as channels

We view protocols as channels in the information-theoretic sense [Cover and Thomas
1991]. The secret information that the protocol is trying to conceal constitutes the input of
the channel, and the observables constitute the outputs. The set of the possible inputs and
that of the possible outputs will be denoted by S and O respectively. We assume that S
andO are of finite cardinality m and n respectively. We also assume a discrete probability
distribution over the inputs, which we will denote by ~π = (πs1 , πs2 , . . . , πsm), where πs
is the probability of the input s.

To fit the model of the channel, we assume that at each run, the protocol is given exactly
one secret si to conceal. This is not a restriction, because the si’s can be complex infor-
mation like sequences of keys or tuples of individual data. During the run, the protocol
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may use randomized operations to increase the level of uncertainty about the secrets and
obfuscate the link with the observables. It may also have internal interactions between
internal components, or other forms of nondeterministic behavior, but let us rule out this
possibility for the moment, and consider a purely probabilistic protocol. We also assume
there is exactly one output from each run of the protocol, and again, this is not a restrictive
assumption because the elements of O can be structured data.

Given an input s, a run of the protocol will produce each o ∈ O with a certain probability
p(o|s) which depends on s and on the randomized operations performed by the protocol.
Note that p(o|s) depends only on the probability distributions on the mechanisms of the
protocol, and not on the input distribution. The probabilities p(o|s), for s ∈ S and o ∈ O,
constitute a m × n array M which is called the matrix of the channel, where the rows are
indexed by the elements of S and the columns are indexed by the elements of O. We will
use the notation (S,O,M) to represent the channel.

Note that the input distribution ~π and the probabilities p(o|s) determine a distribution
on the output. We will represent by p(o) the probability of o ∈ O. Thus both the input and
the output can be considered random variables. We will denote these random variables by
S and O.

If the protocol contains some forms of nondeterminism, like internal components giv-
ing rise to different interleaving and interactions, then the behavior of the protocol, and
in particular the output, will depend on the scheduling policy. We can reduce this case
to previous (purely probabilistic) scenario by assuming a scheduler ζ which resolves the
nondeterminism entirely. Of course, the conditional probabilities, and therefore the matrix,
will depend on ζ, too. We will express this dependency by using the notation Mζ .

4.2 Process terms as channels

A given CCSp term T can be regarded as a protocol in which the input is constituted by
sequences of secret actions, and the output by sequences of observable actions. We assume
that only a finite set of such sequences is relevant. This is certainly true if the term is
terminating, which is usually the case in security protocols, as each session is supposed to
terminate in finite time.

Thus the set S could be, for example, the set of all sequences of secret actions up to a
certain length (for example, the maximal length of executions) and analogously O could
be the set of all sequences of observable actions up to a certain length. To be more general,
we will just assume S ⊆fin Sec∗ and O ⊆fin Obs∗.

Definition 4.1. Given a term T and a scheduler ζ : S → exec∗(M) → T , the matrix
Mζ(T ) associated to T under ζ is defined as the matrix such that, for each s ∈ S and
o ∈ O, p(o|s) is the probability of the set of the maximal executions in etree(T, s, ζ)
whose projection in Obs is o.

The following remark may be useful to understand the nature of the above definition:

Remark 4.2. Given a sequence s = s1s2 . . . sh, consider the term

T ′ = (νSec)(s̄1.s̄2. . . . .s̄h.0 | T )

Given a scheduler ζ for T , let ζ ′ be the scheduler on T ′ that chooses the transition

((νSec)(s̄j .s̄2. . . . .s̄h.0 | U), r, (νSec)(s̄j .s̄2. . . . .s̄h.0 | µ))
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if ζs chooses (U, r, µ), with (r 6∈ Sec), and it chooses

((νSec)(s̄j .s̄2. . . . .s̄h.0 | U), τ, (νSec)(δ(s̄j+1.s̄2. . . . .s̄h.0 | (U ′)))

if ζs chooses (U, sj , δ(U ′)).
Note that ζ ′ is a “standard” scheduler, i.s. it does not depend on an input sequence.
We have that each element p(o|s) in Mζ(T ) is equal to the probability of the set of all

the maximal executions of T ′, under ζ ′, whose projection in Obs gives o.

5. INFERRING THE SECRETS FROM THE OBSERVABLES

In this section we discuss possible methods by which an adversary can try to infer the
secrets from the observables, and consider the corresponding probability of error, that is,
the probability that the adversary draws the wrong conclusion. We regard the probability
of error as a representative of the degree of protection provided by the protocol, and we
study its properties with respect to the associated matrix.

We start by defining the notion of decision function, which represents the guess the
adversary makes about the secrets, for each observable. This is a well-known concept,
particularly in the field of hypothesis testing, where the purpose is to try to discover the
valid hypothesis from the observed facts, knowing the probabilistic relation between the
possible hypotheses and their consequences. In our scenario, the hypotheses are the secrets.

Definition 5.1. A decision function for a channel (S,O,M) is any function f : O →
S.

Given a channel (S,O,M), an input distribution ~π, and a decision function f , the
probability of error P(f,M,~π) is the average probability of guessing the wrong hypothesis
by using f , weighted on the probability of the observable (see for instance [Cover and
Thomas 1991]). The probability that, given o, s is the wrong hypothesis is 1−p(s|o) (with
a slight abuse of notation, we use p(·|·) to represent also the probability of the input given
the output). Hence we have:

Definition 5.2 [Cover and Thomas 1991]. The probability of error is defined by

P(f,M,~π) = 1−
∑
O
p(o)p(f(o)|o)

Given a channel (S,O,M), the best decision function that the adversary can use, namely
the one that minimizes the probability of error, is the one associated to the so-called MAP
rule, which prescribes choosing the hypothesis s which has Maximum Aposteriori Proba-
bility (for a given o ∈ O), namely the s for which p(s|o) is maximum. The fact that the
MAP rule represent the ‘best bet’ of the adversary is rather intuitive, and well known in
the literature. We refer to [Cover and Thomas 1991] for a formal proof.

The MAP rule is used in the so-called Bayesian approach to hypothesis testing, and
the corresponding probability of error is also known as Bayes risk. We will denote it by
PMAP(M,~π). The following characterization is an immediate consequence of Definition 5.2
and of the Bayes theorem p(s|o) = p(o|s)πs/p(o).

PMAP(M,~π) = 1−
∑
O

max
s

(p(o|s)πs)
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It is natural then to define the degree of protection associated to a process term as the
infimum probability of error that we can obtain from this term under every compatible
scheduler (in a given class).

In the following, we assume the class of schedulers A to be the set of all the schedulers
compatible with the given input S.

It turns out that the infimum probability of error on A is actually a minimum. In order
to prove this fact, let us first define a suitable metric on A.

Definition 5.3. Consider a CCSp process T , and letM be the probabilistic automaton
generated by T . We define a distance d between schedulers in A as follows:

d(ζ, ζ ′) =

 2−m if m = min{|α| | α ∈ exec∗(M) and ζ(α) 6= ζ ′(α)}

0 if ζ(α) = ζ ′(α) for all α ∈ exec∗(M)

where |α| represents the length of α.

Note that M is finitely branching, both in the nondeterministic and in the probabilistic
choices, in the sense that from every node T ′ there is only a finite number of transitions
(T ′, a, µ) and µ is a finite summation of the form µ =

∑
i pi δ(Ti). Hence we have the

following (standard) result:

PROPOSITION 5.4. (A, d) is a sequentially compact metric space, i.e. every sequence
has a convergent subsequence (namely a subsequence with a limit in A).

We are now ready to show that there exists a scheduler that gives the minimum proba-
bility of error:

PROPOSITION 5.5. For every CCSp process T we have

inf
ζ∈A

PMAP(Mζ(T ), ~π) = min
ζ∈A

PMAP(Mζ(T ), ~π)

PROOF. By Proposition 5.4, (A, d) is sequentially compact. By definition,PMAP(Mζ(T ), ~π)
is a continuous function from (A, d) to ([0, 1], d′), where d′ is the standard distance on real
numbers. Consequently, ({PMAP(Mζ(T ), ~π) | ζ ∈ A}, d′) is also sequentially compact.
Let {ζn}n be a sequence such that for all n

PMAP(Mζn(T ), ~π)− inf
A
PMAP(Mζ(T ), ~π) ≤ 2−n

We have that {PMAP(Mζn
(T ), ~π)}n is convergent and

lim
n
PMAP(Mζn

(T ), ~π) = inf
A
PMAP(Mζ(T ), ~π)

Consider now a convergent subsequence {ζnj}j of {ζn}n. By continuity of PMAP , we have

lim
n
PMAP(Mζn

(T ), ~π) = lim
j
PMAP(Mζnj

(T ), ~π) = PMAP(lim
j
Mζnj

(T ), ~π)

which concludes the proof.

Thanks to previous proposition, we can define the degree of protection provided by a
protocols in terms of the minimum probability of error.
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Definition 5.6. Given a CCSp process T , the protection PtMAP(T ) provided by T , in
the Bayesian approach, is given by

PtMAP(T, ~π) = min
ζ∈A

PMAP(Mζ(T ), ~π)

The problem with the MAP rule is that it assumes that the input distribution is known
to the adversary. This is often not the case, so it is natural to try to approximate it with
some other rule. One such rule is the so-called ML rule, which prescribes the choice of
the s which has Maximum Likelihood (for a given o ∈ O), namely the s for which p(o|s)
is maximum. The name comes from the fact that p(o|s) is called the likelihood of s given
o. We will denote the corresponding probability of error by PML(M,~π). The following
characterization is an immediate consequence of Definition 5.2 and of the Bayes theorem.

PML(M,~π) = 1−
∑
O

max
s

(p(o|s))πs

It has been shown (see for instance [Chatzikokolakis et al. 2007a]) that under certain
conditions on the matrix, the ML rule approximates indeed the MAP rule, in the sense that
by repeating the protocol the adversary can make the probability of error arbitrarily close
to 0, with either rule.

We could now define the degree of protection provided by a term T under the ML rule
as the minimum PML(Mζ(T ), ~π), but it does not seem reasonable to give a definition that
depends on the input distribution, since the main reason to apply a non-Bayesian approach
is that indeed we do not know the input distribution. Instead, we define the degree of
protection associated to a process term as the average probability of error with respect to
all possible distributions ~π:

Definition 5.7. Given a CCSp process T , the protection PtML(T ) provided by T , in the
Maximum Likelihood approach, is given by

PtML(T ) = min
ζ∈A

(m− 1)!
∫
~π

PML(Mζ(T ), ~π) d~π

In the above definition, (m− 1)! represents a normalization function: 1
(m−1)! is the hyper-

volume of the domain of all possible distributions ~π on S, namely the (m−1)-dimensional
space of points ~π such that 0 ≤ πs ≤ 1 and 0 ≤

∑
s∈S πs = 1 (where m is the cardinality

of S).
Fortunately, it turns out that this definition is equivalent to a much simpler one: the

average value of the probability of error, under the Maximum Likelihood rule, can be
obtained simply by computing PML on the uniform distribution ~πu = ( 1

m ,
1
m , . . . ,

1
m ).

THEOREM 5.8. PtML(T ) = minζ∈A PML(Mζ(T ), ~πu)

PROOF. Simplifications. Given a channel (S,O,M) and an input distribution ~π =
(π1, . . . , πm) of cardinality m, the probability of error is characterized by the expression:

fm(~π) = 1−
∑
O

max
s

(p(o|s)πs) = PML(M,~π)

fm(~π) is a linear function of the input distribution ~π of the form:

fm(~π) = a1π1 + . . .+ amπm
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where ∀i, ai ∈ R.
With the additional constraint

∑
i=1...m πi = 1, the dependency on one of the m vari-

ables π1, . . . , πm, for instance πm, can be removed. Replacing πm by the equivalent ex-
pression 1−

∑m−1
i=1 πi yields:

fm(~π) = c1π1 + . . .+ cm−1πm−1 + cm

with
c1 = a1 − am
c2 = a2 − am
. . .
cm−1 = am−1 − am
cm = am

Expression of the normalization function. The hyper-volume Vm(X) of the domainDm(X)
of all possible distributions ~π on S, i.e. the (m − 1)-dimensional space of points ~π such
that 0 ≤ πs ≤ X and 0 ≤

∑
s∈S πs = X (where m is the cardinality of S) is given by:

Vm(X) =
Xm−1

(m− 1)!

Induction hypothesis. We will show by induction on m that following equality Hm
holds for all m: ∫

Dm(X)

fm(~π)d~π = Vm(X)fm(~πu(X))

where ~πu(X) = (Xm ,
X
m , . . . ,

X
m ). Theorem 5.8 then follows by taking X = 1.

According to the aforementioned notations,Hm can be written as:

Lm(X) = Rm(X)

where

Lm(X) =

X∫
xm−1=0

X−xm−1∫
xm−2=0

. . .

X−xm−1−...−x2∫
x1=0

fm(x1, x2, . . . , xm−1)dx1dx2 . . . dxm−1

and

Rm(X) =
Xm−1

(m− 1)!
(
m−1∑
i=1

ci
X

m
+ cm)

Base step: m = 2. We have:

L2(X) =
∫ x1=X

x1=0
(c1x1 + c2)dx1

= c1X
2

2 + c2X

= X( c1X2 + c2)

= R2(X)
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Induction step: Hm ⇒ Hm+1. Consider

fm+1(x) = c1x1 + . . .+ cmxm + cm+1

=
∑m
i=1 cixi + cm+1

= fm(x)− cm + cmxm + cm+1

The left-hand side ofHm+1 is given by:

Lm+1(X) =
∫ xm=Y

xm=0
. . .

∫ x1=Y−xm−...−x2

x1=0
fm+1(x1, . . . , xm)dx1 . . . dxm

The m − 1 inner-most integrations can be resolved according to Hm. Replacing X by
Y − xm leads to:

Lm+1(Y ) =
∫ xm=Y

xm=0
Vm(Y−xm

m )fm+1(Y−xm

m , . . . , Y−xm

m )dxm

=
∫ xm=Y

xm=0
(Y−xm)m−1

(m−1)! (
∑m−1
i=1 ci

Y−xm

m + cmxm + cm+1)dxm

Replacing Y − xm by Z leads to:

Lm+1(Y ) =
∫ Z=Y

Z=0
Zm−1

(m−1)! (
∑m−1
i=1 ci

Z
m + cm(Y − Z) + cm+1)dZ

=
∫ Z=Y

Z=0
(( 1
m!

∑m−1
i=1 ci − cm

(m−1)! )Z
m + cmY+cm+1

(m−1)! Zm−1)dZ

= ( 1
(m+1)!

∑m−1
i=1 ci)Y m+1 − cm

(m−1)!(m+1)Y
m+1 + cm

m!Y
m+1 + cm+1

m! Y
m

= ( 1
(m+1)!

∑m−1
i=1 ci)Y m+1 + cm

(m+1)!Y
m+1 + cm+1

m! Y
m

= Ym

m! (
∑m
i=1 ci

Y
m+1 + cm+1) = Rm+1(Y )

This completes the proof for Theorem 5.8.

The next corollary follows immediately from Theorem 5.8 and from the definitions of
PMAP and PML.

COROLLARY 5.9. PtML(T ) = minζ∈A PMAP(Mζ(T ), ~πu)

We conclude this section with some properties of PMAP . Note that the same properties
hold also for PML on the uniform distribution, because PML(M,~πu) = PMAP(M,~πu).

The next proposition shows that the probabilities of error are concave functions with
respect to the space of matrices.

PROPOSITION 5.10. Consider a family of channels {(S,O,Mi)}i∈I , and a family
{ci}i∈I of convex coefficients, namely 0 ≤ ci ≤ 1 for all i ∈ I , and

∑
i∈I ci = 1.

Then:

PMAP(
∑
i∈I

ciMi, ~π) ≥
∑
i∈I

ci PMAP(Mi, ~π)
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PROOF. Consider ∀i ∈ I,Mi = (pi(o|s))s∈S,o∈O. Then:

PMAP(
∑
i ciMi, ~π) = 1−

∑
o maxs(

∑
i ci pi(o|s)πs)

≥ 1−
∑
o

∑
i ci maxs(pi(o|s)πs)

= 1−
∑
i

∑
o ci maxs(pi(o|s)πs) (since the summands are positive)

= 1−
∑
i ci

∑
o maxs(pi(o|s)πs)

=
∑
i∈I ci −

∑
i∈I ci

∑
o∈Omaxs(pi(o|s)πs) (since

∑
i∈I ci = 1)

=
∑
i∈I ci(1−

∑
o∈Omaxs(pi(o|s)πs))

=
∑
i∈I ciPMAP(Mi, ~π)

COROLLARY 5.11. Consider a family of channels {(S,O,Mi)}i∈I , and a family {ci}i∈I
of convex coefficients. Then:

PMAP(
∑
i∈I

ciMi, ~π) ≥ min
i∈I
PMAP(Mi, ~π)

The next proposition shows that if we transform the observables, and collapse the columns
corresponding to observables which have become the same after the transformation, the
probability of error does not decrease.

PROPOSITION 5.12. Consider a channel (S,O,M), where M has conditional prob-
abilities p(o|s), and a transformation of the observables f : O → O′. Let M ′ be the
matrix whose conditional probabilities are p′(o′|s) =

∑
f(o)=o′ p(o|s) and consider the

new channel (S,O′,M ′). Then:

PMAP(M ′, ~π) ≥ PMAP(M,~π)

PROOF. The result derives from:∑
o′∈O′ maxs(p′(o′|s)πs) =

∑
o′∈O′ maxs(

∑
f(o)=o′ p(o|s)πs)

≤
∑
o′∈O′

∑
f(o)=o′ maxs(p(o|s)πs)

=
∑
o∈Omaxs(p(o|s)πs)

The following propositions are from the literature.

PROPOSITION 5.13 [CHATZIKOKOLAKIS ET AL. 2007A]. Given S, O, let M be a
matrix indexed on S,O such that all the rows of M are equal, namely p(o|s) = p(o|s′) for
all o ∈ O, s, s′ ∈ S. Then,

PMAP(M,~π) = 1−max
s

πs

Furthermore PMAP(M,~π) is the maximum probability of error, i.e. for every other matrix
M ′ indexed on S, O we have:

PMAP(M,~π) ≥ PMAP(M ′, ~π)
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PROPOSITION 5.14 [BHARGAVA AND PALAMIDESSI 2005]. Given a channel (S,O,M),
the rows of M are equal (and hence the probability of error is maximum) if and only if
p(s|o) = πs for all s ∈ S, o ∈ O.

The condition p(s|o) = πs means that the observation does not give any additional
information concerning the hypothesis. In other words, the a posteriori probability of s
coincides with its a priori probability. The property p(s|o) = πs for all s ∈ S and o ∈ O
was used as a definition of (strong) anonymity by Chaum [1988] and was called conditional
anonymity by Halpern and O’Neill [2005].

6. SAFE CONSTRUCTS

In this section we investigate constructs of the language CCSp which are safe with respect
to the protection of the secrets.

We start by giving some conditions that will allow us to ensure the safety of the parallel
and the restriction operators.

Definition 6.1. Consider process terms T1, T2, and observables o1, o2, . . . , ok such that

(i) T1 does not contain any secret action, and

(ii) the observable actions of T1 are included in o1, o2, . . . , ok.

Then we say that T1 and o1, o2, . . . , ok are safe with respect to T2.

The following theorem states our main results for PtMAP . Note that they are also valid
for PtML, because PtML(T ) = PtMAP(T, ~πu).

THEOREM 6.2. The probabilistic choice, the nondeterministic choice, and a restricted
form of parallel composition are safe constructs, namely, for every input probability π, and
any terms T1, T2, . . . , Th, we have

(1) PtMAP( �
∑
i

pi Ti, ~π) ≥
∑
i

pi PtMAP(Ti, ~π) ≥ min
i

PtMAP(Ti, ~π)

(2) PtMAP(
�
i

oi.Ti, ~π) = min
i

PtMAP(Ti, ~π)

(3) PtMAP((νo1, o2, . . . , ok) (T1 | T2)) ≥ PtMAP(T2, ~π)

if T1 and o1, o2, . . . , ok are safe w.r.t. T2.

PROOF. (1) By definition PtMAP( ◦
∑
i pi Ti, ~π) = minζ∈A PMAP(Mζ( ◦

∑
i pi Ti), ~π).

Let ζm = minargA PMAP(Mζ( ◦
∑
i pi Ti), ~π). Hence

PtMAP( �
∑
i

pi Ti, ~π) = PMAP(Mζm
( �
∑
i

pi Ti), ~π)

Consider, for each i, the scheduler ζmi
defined as ζm on the i-th branch, except for

the removal of the first state and the first τ -step from the execution fragments in the
domain. It’s easy to see that

Mζm
( �
∑
i

pi Ti) =
∑
i

piMζmi
(Ti)
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From Proposition 5.10 we derive

PMAP(Mζm
( �
∑
i

pi Ti), ~π) ≥
∑
i

piPMAP(Mζmi
(Ti), ~π)

Finally, observe that ζmi
is still compatible with S, hence we have

PMAP(Mζmi
(Ti), ~π) = PtMAP(Ti, ~π) for all i

which concludes the proof in this case.

(2) Let ζm = minargA PMAP(Mζ(
�
i oi.Ti), ~π). Let Ai be the class of schedulers that

choose the i-th branch at the beginning of the execution, and define

ζni = minarg
Ai

PMAP(Mζ(
�
i

oi.Ti), ~π)

Obviously we have

PtMAP(
�
i

oi.Ti, ~π) = min
i
PMAP(Mζni

(
�
i

oi.Ti), ~π)

Consider now, for each i, the scheduler ζmi
defined as as ζni

, except for the removal of
the first state and the first step from the execution fragments in the domain. Obviously
ζmi

is still compatible with S, and the observables of Ti are i one-to one correspon-
dence with those of

�
i oi.Ti via the bijective function fi(oioj1 . . . ojk) = oj1 . . . ojk .

Furthermore, all the probabilities of the channel Mζni
(
�
i oi.Ti) are the same as those

of Mζmi
(Ti) modulo the renaming of o into f(o). Hence we have

PMAP(Mζni
(
�
i

oi.Ti), ~π) = PMAP(Mζmi
(Ti), ~π) = PtMAP(Ti, ~π)

which concludes the proof of this case.

(3) Let ζm = minargA PMAP(Mζ((νo1, o2, . . . , ok) (T1 | T2)), ~π). Hence

PtMAP((νo1, o2, . . . , ok) (T1 | T2), ~π) = PMAP(Mζm
((νo1, o2, . . . , ok) (T1 | T2)), ~π)

The proof proceeds by constructing a set of series of schedulers whose limit with
respect to the metric d in Definition 5.3 correspond to schedulers on the execution tree
of T2. Consider a generic node in the execution tree of (νo1, o2, . . . , ok) (T1 | T2)
under ζm, and let (νo1, o2, . . . , ok) (T ′1 | T ′2) be the new term in that node. Assume
α to be the execution history up to that node. Let us consider separately the three
possible kinds of transitions derivable from the operational semantics:
(a) (νo1, o2, . . . , ok) (T ′1 | T ′2) a−→ (νo1, o2, . . . , ok) (µ | T ′2) due to a transition

T ′1
a−→ µ. In this case amust be τ because of the assumption that T1 does not con-

tain secret actions and all its observable actions are included in {o1, o2, . . . , ok}.
Assume that µ =

∑
i pi δ(T

′
1i). Then we have (νo1, o2, . . . , ok) (µ | T ′2) =∑

i pi δ((νo1, o2, . . . , ok) (T ′1i | T ′2)). Let us consider the tree obtained by re-
placing this distribution with δ((νo1, o2, . . . , ok) (T ′1i | T ′2)) (i.e. the tree obtained
by pruning all alternatives except (νo1, o2, . . . , ok) (T ′1i | T ′2), and assigning to it
probability 1). Let ζmi be the projection of ζm on the new tree (i.e. ζmi is defined
as the projection of ζm on the hystories α′ such that if α is a proper prefix of α′
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then ατ(νo1, o2, . . . , ok) (T ′1i | T ′2) is a prefix of α′). We have

PMAP(Mζm
((νo1, o2, . . . , ok) (T1 | T2)), ~π)

=

PMAP(
∑
i pi Mζmi((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥ (by Proposition 5.10)∑
i pi PMAP(Mζmi

((νo1, o2, . . . , ok) (T1 | T2)), ~π)

In the execution tree of T2 the above transition does not have a correspondent, but
it obliges us to consider all different schedulers that are associated to the various
ζmi’s for different i’s.

(b) (νo1, o2, . . . , ok) (T ′1 | T ′2) a−→ (νo1, o2, . . . , ok) (T ′1 | µ) due to a transition
T ′2

a−→ µ, with a not included in {o1, o2, . . . , ok}. In this case, the corresponding
scheduler for T2 must choose the same transition, i.e. T ′2

a−→ µ.

(c) (νo1, o2, . . . , ok) (T ′1 | T ′2) τ−→ (νo1, o2, . . . , ok) δ(T ′′1 | T ′′2 ) due to the transi-
tions T ′1

a−→ δ(T ′′1 ) and T ′2
ā−→ δ(T ′′2 ). In this case a must be an observable

o because of the assumption that T2 does not contain secret actions. The corre-
sponding scheduler for T2 must choose the transition T ′2

ā−→ δ(T ′′2 ).

By considering the inequalities given by the transitions of type (a), we obtain

PMAP(Mζm((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥∑
i pi PMAP(Mζmi

((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥∑
i pi

∑
j qj PMAP(Mζmij ((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥∑
i pi

∑
j qj

∑
h rh PMAP(Mζmijh

((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥

. . .

Observe now that {ζm, ζmi, ζmij , ζmijh, . . .} is a converging series of schedulers whose
limit ζmijh... is isomorphic to a scheduler for T2, except that some of the observable
transitions in T2 may be removed due to the restriction on o1, o2, . . . , ok. This removal
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determines a (usually non injective) mapping f on the observables. Hence:

PMAP(Mζm
((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥∑
i pi

∑
j qj

∑
h rh . . .PMAP(Mζmijh...

((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥ (by Proposition 5.12)∑
i pi

∑
j qj

∑
h rh . . .PMAP(Mζmijh...

(T2), ~π)

≥∑
i pi

∑
j qj

∑
h rh . . .minζ∈A PMAP(Mζ(T2), ~π)

Finally, observe that
∑
i pi =

∑
j qj =

∑
h rh = . . . = 1, hence

PMAP(Mζm
((νo1, o2, . . . , ok) (T1 | T2)), ~π) ≥ min

ζ∈A
PMAP(Mζ(T2), ~π)

which concludes the proof.

Unfortunately the safety property does not hold for the secret choice. The following is a
counterexample.

Example 6.3. Let Sec = {s1, s2} and assume that S does not contain the empty se-
quence. Let T = o1.0

�
o2.0. Then PtMAP(T, ~π) is maximum (i.e. PtMAP(T, ~π) =

1 − max~π) because for every sequence s ∈ S we have p(o1|s) = p(o2|s). Let T ′ =
s1.T

�
s2.T . We can now define a scheduler such that, if the secret starts with s1, it selects

o1, and if the secret starts with s2, it selects o2. Hence, under this scheduler, p(o1|s1s) =
p(o2|s2s) = 1 while p(o1|s2s) = p(o2|s1s) = 0. Therefore PtMAP(T ′, ~π) = 1 − p1 − p2

where p1 and p2 are the maximum probabilities of the secrets of the form s1s and s2s,
respectively. Note now that either max~π = p1 or max~π = p2 because of the assumption
that S does not contain the empty sequence. Let ~π be such that both p1 and p2 are positive.
Then 1− p1 − p2 < 1−max~π, hence PtMAP(T ′, ~π) < PtMAP(T, ~π).

The reason why we need the condition (i) in Definition 6.1 for the parallel operator is
analogous to the case of secret choice. The following is a counterexample.

Example 6.4. Let Sec and S be as in Example 6.3. Define T1 = s1.0
�
s2.0 and

T2 = o1.0
�
o2.0. Clearly, PtMAP(T2, ~π) = 1 − max~π. Consider now the term T1 | T2

and define a scheduler that first executes an action s in T1 and then, if s is s1, it selects o1,
while if s is s2, it selects o2. The rest proceeds like in Example 6.3, where T ′ = T1 | T2

and T = T2.

The reason why we need the condition (ii) in Definition 6.1 is that without it the parallel
operator may create different interleavings, thus increasing the possibility of an adversary
discovering the secrets. The following is a counterexample.

Example 6.5. Let Sec and S be as in Example 6.3. Define T1 = o.0 and T2 =
s1.(o1.0 ⊕.5 o2.0)

�
s2.(o1.0 ⊕.5 o2.0). It is easy to see that PtMAP(T2, ~π) = 1 −

max~π. Consider the term T1 | T2 and define a scheduler that first executes an action
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s in T2 and then, if s is s1, it selects first T1 and then the continuation of T2, while if
s is s2, it selects first the continuation of T2 and then T1. Hence, under this scheduler,
p(oo1|s1s) = p(oo2|s1s) = .5 and also p(o1o|s2s) = p(o2o|s2s) = .5 while p(oo1|s2s) =
p(oo2|s2s) = 0 and p(o1o|s1s) = p(o2o|s1s) = 0. Therefore PtMAP(T, ~π) = 1− p1 − p2

where p1 and p2 are the maximum probabilities of the secrets of the form s1s and s2s,
respectively. Following the same reasoning as in Example 6.3, we have that for certain ~π,
PtMAP(T ′, ~π) < PtMAP(T, ~π).

7. A CASE STUDY: THE DINING CRYPTOGRAPHERS

In this section we consider the Dining Cryptographers (DC) protocol proposed by Chaum
[1988], we show how to describe it in CCSp, and we apply the results of previous section
to obtain a generalization of Chaum’s strong anonymity result.

In its most general formulation, the DC consists of a multigraph where one of the nodes
(cryptographers) may be secretly designated to pay for the dinner. The cryptographers
would like to find out whether there is a payer or not, but without either discovering the
identity of the payer, nor revealing it to an external observer. The problem can be solved
as follows: we put on each edge a probabilistic coin, which can give either 0 or 1. The
coins get tossed, and each cryptographer computes the binary sum of all (the results of)
the adjacent coins. Furthermore, it adds 1 if it is designated to be the payer. Finally, all the
cryptographers declare their result.

It is easy to see that this protocol solves the problem of figuring out the existence of a
payer: the binary sum of all declarations is 1 if and only if there is a payer, because all the
coins get counted twice, so their contribution to the total sum is 0.

The property we are interested in, however, is the anonymity of the system. Chaum
proved that the DC is strongly anonymous if all the coins are fair, i.e. they give 0 and 1
with equal probability, and the multigraph is connected, namely there is a path between
each pair of nodes. To state formally the property, let us denote by s the secret identity of
the payer, and by o the collection of the declarations of the cryptographers.

THEOREM 7.1 [CHAUM 1988]. If the multigraph is connected, and the coins are fair,
then DC is strongly anonymous, namely for every s and o, p(s|o) = p(s) holds.

We are now going to show how to express the DC in CCSp. We start by introducing a
notation for value-passing in CCSp, following standard lines.

Input c(x).T =
�
v

cv.T [v/x]

Output c̄〈v〉 = c̄v

The protocol can be described as the parallel composition of the cryptographers pro-
cesses Crypt i, of the coin processes Coinh, and of a process Collect whose purpose is to
collect all the declarations of the cryptographers, and output them in the form of a tuple.
See Table II. In this protocol, the secret actions are pay i. All the others are observable
actions.

Each coin communicates with two cryptographers. ci,h represents the communication
channel between Coinh and Crypt i if h is indeed the index of a coin, otherwise it repre-
sents a communication channel “with the environment”. We will call the latter external.
In the original definition of the DC there are no external channels, we have added them
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Crypti = ci,i1 (x1) . . . . . ci,ik (xk) . payi(x) . d̄i〈x1 + . . .+ xk + x〉

Coinh = c̄`,h〈0〉 . c̄r,h〈0〉.0 ⊕ph c̄`,h〈1〉 . c̄r,h〈1〉.0

Collect = d1(y1) . d2(y2) . . . . . dn(yn) . out〈y1, y2, . . . , yn〉

DC = (ν~c)(ν ~d)(
Q
i Crypti |

Q
h Coinh | Collect)

Table II. The dining cryptographers protocol expressed in CCSp.

to prove a generalization of Chaum’s result. They could be interpreted as a way for the
environment to influence the computation of the cryptographers and hence test the system,
for the purpose of discovering the secret.

We are now ready to state our generalization of Chaum’s result:

THEOREM 7.2. A DC is strongly anonymous if it has a spanning tree consisting of fair
coins only.

PROOF. Consider the term DC in Table II. Remove all the coins that do not belong to
the spanning tree, and the corresponding restriction operators. Let T be the process term
obtained this way. Let A be the class of schedulers which select the value 0 for all the
external channels. This situation corresponds to the original formulation of Chaum and
so we can apply Chaum’s result (Theorem 7.1) and Proposition 5.14 to conclude that all
the rows of the matrix M are the same and hence, by Proposition 5.13, PMAP(M,~π) =
1−maxi πi.

Consider now one of the removed coins, h, and assume, without loss of generality, that
c`,h(x), cr,h(x) are the first actions in the definitions of Crypt` and Cryptr. Consider
the class of schedulers B that selects value 1 for x in these actions. The matrix M ′ that
we obtain is isomorphic to M : the only difference is that each column o is now mapped
to a column o + w, where w is a tuple that has 1 in the ` and r positions, and 0 in all
other positions, and + represents the componentwise binary sum. Since this map is a
bijection, we can apply Proposition 5.12 in both directions and derive that PMAP(M ′, ~π) =
1−maxi πi.

We can conclude, therefore, that PtMAP(T, ~π) = 1 −maxi πi in the class of schedulers
A ∪ B.

By repeating the same reasoning on each of the removed coins, we can conclude that
PtMAP(T, ~π) = 1−maxi πi for any scheduler ζ of T .

Consider now the term T ′ obtained from T by adding back the coin h:

T ′ = (νc`,hcr,h)(Coinh | T )

By applying Theorem 6.2 we can deduce that

PtMAP(T ′, ~π) ≥ PtMAP(T, ~π)

By repeating this reasoning, we can add back all the coins, one by one, and obtain the
original DC . Hence we can conclude that

PtMAP(DC , ~π) ≥ PtMAP(T, ~π) = 1−max
i
πi
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and, since PtMAP(T, ~π) is maximum,

PtMAP(DC , ~π) = 1−max
i
πi

which concludes the proof.

Interestingly, also the other direction of Theorem 7.2 holds. We report this result for
completeness, however we have proved it by using traditional methods, not by applying
the compositional methods of Section 6.

THEOREM 7.3. A DC is strongly anonymous only if it has a spanning tree consisting
of fair coins only.

PROOF. By contradiction. Let G be the multigraph associated to the DC and let n be
the number of vertices in G. Assume that G does not have a spanning tree consisting only
of fair coins. Then it is possible to split G in two non-empty subgraphs, G1 and G2, such
that all the edges betweenG1 andG2 are unfair. Let (c1, c2, . . . , cm) be the vector of coins
corresponding to these edges. Since G is connected, we have that m ≥ 1.

Let a1 be a vertex in G1 and a2 be a vertex in G2. By strong anonymity, for every
observable o we have

p(o | a1) = p(o | a2) (1)

Observe now that p(o | a1) = p(o + w | a2) where w is a binary vector of dimension
n containing 1 exactly twice, in correspondence of a1 and a2, and + is the binary sum.
Hence (1) becomes

p(o+ w | a2) = p(o | a2) (2)

Let d be the binary sum of all the elements of o in G1, and d′ be the binary sum of all the
elements of o + w in G1. Since in G1 w contains 1 exactly once, we have d′ = d + 1.
Hence (2), being valid for all o’s, implies

p(d+ 1 | a2) = p(d | a2) (3)

Because of the way o, and hence d, are calculated, and since the contribution of the edges
internal to G1 is 0, and a2 (the payer) is not in G1, we have that

d =
m∑
i=1

ci

from which, together with (3), and the fact that the coins are independent from the choice
of the payer, we derive

p(
m∑
i=1

ci = 0) = p(
m∑
i=1

ci = 1) = 1/2 (4)

The last step is to prove that p(
∑m
i=1 ci = 0) = 1/2 implies that one of the ci’s is

fair, which will give us a contradiction. We prove this by induction on m. The property
obviously holds for m = 1. Let us now assume that we have proved it for the vector
(c1, c2, . . . , cm−1). Observe that p(

∑m
i=1 ci = 0) = p(

∑m−1
i=1 ci = 0)p(cm = 0) +
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p(
∑m−1
i=1 ci = 1)p(cm = 1). From (4) we derive

p(
m−1∑
i=1

ci = 0)p(cm = 0) + p(
m−1∑
i=1

ci = 1)p(cm = 1) = 1/2 (5)

Now, it is easy to see that (5) has only two solutions: one in which p(cm = 0) = 1/2, and
one in which p(

∑m−1
i=1 ci = 1) = 1/2. In the first case we are done, in the second case we

apply the induction hypothesis.

8. RELATION WITH THE METRIC OF DESHARNAIS ET AL.

In [Desharnais et al. 2002], Desharnais et al. have defined a metric m on probabilistic
processes that expresses “how close” two processes behave, and have shown that the ca-
pacity of the channel dermined by a process is a continuous function of this metric. Here
we prove an analogous result for the degree of protection, namely we prove that the dif-
ference between the minimum probability of error of the channels associated to two CCSp
processes T and T ′ goes to 0 as the distance between T and T ′ goes to 0.

We refer the reader to [Desharnais et al. 2002] for the definition of m (in the cited
paper the distance is denoted by d, but we use m here in order to avoid confusion with the
distance between schedulers of Definition 5.3).

In the following, given two channels (S,O,M) and (S,O,M ′), we will denote by
p(o|s) and p′(o|s) be the conditional probabilities of M and M ′, respectively.

LEMMA 8.1. Consider two channels (S,O,M) and (S,O,M ′). Assume that maxo,s |p(o|s)−
p′(o|s)| = δ. Then, for all ~π, |PMAP(M,~π) − PMAP(M ′, ~π)| ≤ n δ holds, where n is the
cardinality of O.

PROOF.

|PMAP(M,~π)− PMAP(M ′), ~π)| = |1−
∑
o maxi(p(o|si)πi)− 1 +

∑
o maxi(p′(o|si)πi)|

= |
∑
o maxi(p(o|si)πi)−

∑
o maxi(p′(o|si)πi)|

= |
∑
o(maxi(p(o|si)πi)−maxi(p′(o|si)πi))|

≤
∑
o maxi |p(o|si)πi − p′(o|si)πi|

≤
∑
o maxi |p(o|si)− p′(o|si)| (since πi ≤ 1)

≤
∑
o maxj,i |p(oj |si)− p′(o|si)|

= n maxj,i |p(oj |si)− p′(o|si)|

= n δ

We can now prove the continuity of the degree of protection with respect to the metric
on the defining processes. The proof follows the same lines as that of Theorem 5.6 in
[Desharnais et al. 2002].

THEOREM 8.2. Consider two terms T and T ′. Assume that m(T, T ′) < ε. Then
|PtMAP(T, ~π)− PtMAP(T ′, ~π)| < n ε, where n is the cardinality of O.
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PROOF. Let m(T, T ′) < ε. Following the construction of Lemma 6.5 in [Desharnais
et al. 2002], we can show that for every schedulers ζ for T there exists a scheduler ζ ′

for T ′ such that the channels (S,O,Mζ(T )) and (S,O,Mζ′(T ′)) satisfy the condition
maxo,s |p(o|s) − p′(o|s)| < ε, and viceversa. Let ζm = minargζ PMAP(Mζ(T ), ~π) and
ζ ′m = minargζ′ PMAP(Mζ′(T ), ~π). Hence:

PtMAP(T, ~π) = PMAP(Mζm(T ), ~π)

and

PtMAP(T ′, ~π) = PMAP(Mζ′m
(T ′), ~π)

Consider ζm and ζ ′m, and let ζ ′, ζ be the schedulers that, together with ζm and ζ ′m respec-
tively, satisfy the condition maxo,s |p(o|s)− p′(o|s)| < ε. Then we have, by Lemma 8.1,

−ε < PMAP(Mζm
(T ), ~π)− PMAP(Mζ′(T ′), ~π) < ε (6)

and

−ε < PMAP(Mζ(T ), ~π)− PMAP(Mζ′m
(T ′), ~π) < ε (7)

We show now the statement of the theorem, namely

−ε < PMAP(Mζm(T ), ~π)− PMAP(Mζ′m
(T ′), ~π) < ε

Assume, by contradiction, that

PMAP(Mζm
(T ), ~π)− PMAP(Mζ′m

(T ′), ~π) ≥ ε (8)

From (7) and (8) we derive

PMAP(Mζm
(T ), ~π) ≥ ε + PMAP(Mζ′m

(T ′), ~π) > PMAP(Mζ(T ), ~π)

which contradicts the fact that ζm gives the minimum probability of error for T .
Analogously, if we assume by contradiction that

−ε ≥ PMAP(Mζm(T ), ~π)− PMAP(Mζ′m
(T ′), ~π) (9)

From (6) and (9) we derive

PMAP(Mζ′m(T ′), ~π) ≥ ε + PMAP(Mζm(T ), ~π) > PMAP(Mζ′(T ′), ~π)

which contradicts the fact that ζ ′m gives the minimum probability of error for T ′.

9. CONCLUSION AND FUTURE WORK

In this paper we have investigated the properties of the probability of error associated to
a given information-hiding protocol, and we have investigated CCSpconstructs that are
safe, i.e. that are guaranteed not to decrease the protection of the protocol. Then we
have applied these results to strengthen a result of Chaum: the dining cryptographers are
strongly anonymous if and only if they have a spanning tree of fair coins.

In the future, we would like to extend our results to other constructs of the language.
This is not possible in the present setting, as the examples after Theorem 6.2 show. The
problem is related to the scheduler: the standard notion of scheduler is too powerful and
can leak secrets, by depending on the secret choices that have been made in the past. All
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the examples after Theorem 6.2 are based on this kind of problem. In [Chatzikokolakis and
Palamidessi 2007], we have studied the problem and we came out with a language-based
solution to restrict the power of the scheduler. We are planning to investigate whether such
approach could be exploited here to guarantee the safety of more constructs.
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