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Abstract

We study the computational power of Piecewise Constant Derivative (PCD) systems. PCD systems
are dynamical systems defined by a piecewise constant differential equation and can be considered as
computational machines working on a continuous space with a continuous time. We show that the
computation time of these machines can be measured either as a discrete value, called discrete time,
or as a continuous value, called continuous time. We relate the two notions of time for general PCD
systems. We prove that general PCD systems are equivalent to Turing machines and linear machines in
finite discrete time. We prove that the languages recognized by purely rational PCD systems in dimension
d in finite continuous time are precisely the languages of the d− 2th level of the arithmetical hierarchy.
Hence the reachability problem of purely rational PCD systems of dimension d in finite continuous time
is Σd−2-complete.

1 Introduction

There has been recently an increasing interest in the community of control and verification theory about
hybrid systems. A hybrid system is a system that combines discrete and continuous dynamics. Several
models have been proposed in literature. Hybrid systems can also be considered as computational
machines [1, 2, 3, 8, 9]: they can be seen either as machines working on a continuous space with a
discrete time or as machines working on a continuous space with a continuous time.

Several theoretical models of machines working on a continuous space with a discrete time are known:
in [5], Blum, Shub and Smale introduced the real Turing machine. Many papers have been devoted to
the study of computability and complexity in this model. See [13] for an up-to-date survey. In [14],
Meer introduced a restricted class of real Turing machines called the linear machines. Meer proved that
P 6= NP in this class of systems. In [11, 12], Koiran characterized the boolean part of the languages
recognized by linear machines as P/poly in polynomial time and as unbounded in exponential time. In
[1, 2, 3] the attention is focused on a very simple type of hybrid systems: Piecewise Constant Derivative
Systems (PCD systems) are dynamical systems defined by a piecewise constant differential equation. It
is shown that the reachability problem for PCD systems is decidable in dimension d = 2 and undecidable
for dimensions d ≥ 3 [1, 3]. In [8], the computational power of Piecewise Constant Derivative systems is
characterized as P/poly in polynomial discrete time, and as unbounded in exponential discrete time.

However, hybrid systems are very interesting models since they provide natural computational ma-
chines working on a continuous space and with a continuous time. Studies of this type of machines are
only beginning. In [15], Moore proposed a recursion theory for computations on the reals in continuous
time . Recently, Asarin and Maler [2] showed, using Zeno’s paradox, that every set of the arithmetical
hierarchy can be recognized in finite continuous time by a PCD system of finite dimension: every set of
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the arithmetical hierarchy in Σk ∪ Πk can be recognized by a rational PCD system of dimension 5k + 1.
Unfortunately, no precise characterization of the sets recognizable by PCD systems is given in [2]: this
paper improves the results of Asarin and Maler and shows that the sets recognized by purely rational
PCD systems in dimension d in finite continuous time are precisely the sets of the d − 2th level of the
arithmetical hierarchy. For discrete time, we prove that PCD systems of dimension d are equivalent to
linear machines of dimension d− 1.

Section 2 is devoted to general definitions: PCD systems, computations on PCD systems, discrete
and continuous time and linear machines. In section 3, we study the links that exist between the discrete
and the continuous time: in dimension d, a finite continuous time can correspond to any discrete time
whose ordinal is bounded by ωd−1. Section 4 proves that PCD systems of dimension d are equivalent
to linear machines of dimension d− 1. In section 5 we focus on computations in finite continuous time:
we improve the bounds given by Asarin and Maler: any arithmetical set in Σk can be recognized in
dimension 2 + k by a purely rational PCD system. Then, we prove that this bound is optimal. No
other set can be recognized in that dimension by a purely rational PCD system. Hence, we get a full
characterization of the computational power of purely rational PCD systems: Σk = dimension k + 2.

2 Definitions

2.1 PCD systems

A convex polyhedron of Rd is any finite intersection of open or closed half spaces of Rd. A polyhedron of
Rd is a finite union of convex polyhedral of Rd. In particular, a polyhedron may be unbounded or flat.
For V ⊂ Rd, we denote by V the topological closure of V . We denote by d some distance of Rd.

Definition 2.1 (PCD System) • A dynamical system is a pair H = (X, f) where X = Rd and f
is a function from X to X. X is called the space and d is called the dimension of H. A trajectory
of H starting from x0 is a continuous solution to the differential equation ẋd = f(x), with initial
condition x0, where ẋd denotes the right derivative: that is Φ : D ⊂ R+ → X where D is an interval
of R+ containing 0, Φ(0) = x0, and ∀t ∈ D, Φ̇d(t) = f(Φ(t)). Trajectory Φ is said to continue for
ever if D = R+.

• A piecewise constant derivative (PCD) system [2, 3] is a dynamical system H = (X = Rd, f) where
the range of f is a finite set C ⊂ X, such that for any c ∈ C (c is called a slope) f−1(c) is a finite
union of convex polyhedral sets (called regions).

In other words a PCD system consists in partitioning the space into convex polyhedral sets, called
regions, and assigning a constant derivative c, called slope to all the points sharing the same region.
The trajectories of such systems are broken lines with the breakpoints occurring on the boundaries of
the regions [2]. See figure 1. The signature of a trajectory is the sequence of the regions that are crossed
by the trajectory.

Definition 2.2 (Rational and Purely rational PCD systems) • A PCD system is said to be
rational if all the slopes as well as all the polyhedral regions can be described using only rational
coefficients. A real PCD system is any PCD system: that is, any rational or non-rational PCD
system.

• A PCD system is called purely rational, if in addition, for all trajectories Φ starting from a rational
point, each time Φ enters a region in a point x, necessarily x has rational coordinates.

Some comments are in order: one must understand that a trajectory Φ can enter a region either by
a discrete transition or by converging to a point of the region: see figure 3. Thus, in other words, in a
purely rational PCD system any converging process converges to a point with rational coordinates. Note
that one can construct a rational PCD system of dimension 5 that is not purely rational [6].

We can say some words on the existence of trajectories in a PCD system: let x0 ∈ X. We say that
x0 is trajectory well-defined if there exists a ε > 0 such that f(x) = f(x0) for all x ∈ [x0, x0 + ε ∗ f(x0)].
It is clear that, for any x0 ∈ X, there exists a trajectory starting from x0 iff x0 is trajectory well-defined.
Given a rational PCD system H, one can effectively compute the set NoEvolution(H) of the points of
X that are not trajectory well-defined. Observe that a trajectory can continue for ever iff it does not
reach NoEvolution(H).

2



 Trajectory

Direction

Figure 1: A PCD system in dimension 2.

Let Φ be a trajectory. Assume that (ti)i ∈ I is a sequence of reals where Φ(ti) = xi is defined for all
i. Denote t∗ = supi∈Iti. Observe that if Φ is defined on D = [0, t∗), Φ can be extended to a continuous
function defined on all of [0, t∗] (by a well known result of real analysis, a continuous function on an open
interval with a bounded right derivative on this interval can be extended to a continuous function on the
cloture of the interval). Hence, for any sequence (ti)i ∈ I of reals, we can assume that Φ(supiti) = x∗ for
some x∗. We will use implicitly this fact several times in this paper to prove our assertions. Note that
from the continuity of Φ we have also x∗ = limixi.

2.2 Computations on PCD systems

Definition 2.3 (Computation [2]) • Let H = (X, f) be a PCD system of dimension d. Let I =
[0, 1] and let r : N → I be an injective coding function1 , let x1, x0 be two distinct points of
Rd. A computation of system Ĥ = (Rd, f, r, I, x1, x0) on input n ∈ N is a trajectory of H =
(X, f) starting from (r(n), 0, . . . , 0) that can continue forever. The computation is accepting if the
trajectory eventually reaches x1, and rejecting if it reaches x0. It is assumed that the derivatives at
x1 and x0 are zero.

• Language L ⊂ N is semi-recognized by Ĥ if, for every n ∈ N, there is a computation on input n and
the computation is accepting iff n ∈ L. L is said to be (fully-)recognized by Ĥ when, in addition,
this trajectory reaches x0 iff n 6∈ L.

2.3 Time and PCD systems

Two different notions of time are distinguished in this paper:

Definition 2.4 (TΦ) Let Φ(.) be a trajectory of PCD system H = (X, f). We denote by TΦ the subset
of the domain of Φ defined by TΦ = {t/Φ(t) enters a region at time t}.

Lemma 2.1 For any trajectory Φ, TΦ is a well-ordered set: TΦ does not contain any infinite decreasing
subsequence.

Proof: Assume that (tn)n is an infinite decreasing subsequence. Denote t∞ = infn(tn). Since Φ(t∞)
must be a point where the trajectory is well-defined, there must exist ε such that Φ does not change of
region at a time in (t∞, t∞ + ε) . This is a contradiction, since t∞ must be the limit of the (tn)n.

2

We are now ready to define:

1We assume r to be a “very easily computable” encoding function: we do no want to give a formal definition of what it
means. But using a function r that would encode all the solving power in the coding function has no interest for our discussion.
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Figure 2: Some examples of computations by a PCD system.

Definition 2.5 (Continuous and discrete time) Let Φn : R+ → X be an accepting computation on
input n ∈ E.

• The continuous time Tcont(n) of the computation is Tcont = min{t ∈ R+/Φn(t) = x1}

• The discrete time Tdiscr(n) of the computation is defined as the order type of well ordered set TΦn

(= the ordinal corresponding to TΦn
).

Language L ⊂ N is said to be recognized in polynomial (discrete) time, if L is recognized in discrete
time Tdiscr(n) such that Tdiscr(n) is polynomial in the bit size needed to represent integer n ∈ N.

Note that Zeno’s paradox appears: to a continuous finite time can correspond a transfinite discrete
time: see figure 3.

(−1,1/2)(−1,1)

(1,−1) (1,1)

xx/20
0

x/2

Figure 3: Zeno’s paradox: at finite continuous time 5x = 2.5(x+ x/2 + x/4 + . . .) the trajectory is in (0, 0),
but it takes a transfinite discrete time ω to reach this point.

2.4 Linear machines

We use in this paper a restriction of the real Turing machine defined in [5]: multiplications between
variables are forbidden. These machines are called linear machines and were first introduced in [14].
We will only consider in this paper finite dimensional linear machines with registers that stay in [−1, 1].
Note that the notion of polynomial time of [5] has no meaning in our context since we do not deal with
inputs on R∞ but with inputs on Rk for a given fixed k.

Definition 2.6 (Linear machine [14]) A (bounded finite dimensional) linear machine of dimension
d is a finite control part machine M with a finite number d of real registers x1, x2, . . . , xd that can contain
any real in [−1, 1] in unbounded precision. M has also a finite number of constants λ1, . . . , λk ∈ R. The
operations of type xi := xj + xk, xi := −xj , xi = λj ∗ xk, xi := λj and the tests of type xi = xj , xi < xj

are considered as admissible and are executed in time 1, independently of the bit size of the arguments.
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A program of M is made of all the usual instructions of a RAM-machine (if,while,goto,. . . ) with the
addition of the above-mentioned admissible operations. M starts a computation with the input n in its
first real register x1, evolves according to its program, and stops when it reaches a final state. The
computation time is defined as the number of operations done in the computation, independently of the
bit-size of the operands on which the operations were applied.

The computational power of linear machines has been investigated in [11, 12]. It has been proved
that the discrete languages recognized in polynomial time are precisely the languages belonging to the
complexity class P/poly, and that any discrete language L ⊂ N can be recognized in exponential time.
For a definition of P/poly see [4]. Note that linear machines with rational constants are equivalent to
Turing machines.

2.5 Arithmetical hierarchy

We recall:

Definition 2.7 (Arithmetical hierarchy [18]) The classes Σk,Πk,∆k, for k ∈ N, are defined induc-
tively by:

• Σ0 is the class of the languages that are recursive.

• For k ≥ 1, Σk is the class of the languages that are recursively enumerable in a set in Σk−1 (that
is semi-recognized by a Turing machine with an oracle in Σk−1)

• For k ∈ N, Πk is defined as the class of languages whose complement are in Σk, and ∆k is defined
as ∆k = Πk ∩ Σk.

The arithmetical hierarchy is well understood: the hierarchy is strict and complete problems are
known for each of the Σ and Π levels [17, 18].

Several different characterizations of the arithmetical sets are known: see [18, 17]. In particular
we will assume the reader familiar with Tarski–Kuratowski computations: assume a first order formula
F , over some recursive predicates, characterizing the elements of a set S ⊂ N, is given. Then S is in
the arithmetical hierarchy and the Tarski–Kuratowski algorithm on formula F returns a level of the
arithmetical hierarchy containing S: see [17, 18] for the full details.

Following standard notations, we fix a bijective recursive encoding of N × N into N: we denote by
< n,m > the integer encoding integers n,m [17, 18].

3 On the links between continuous and discrete time

We show in this section that, to a finite continuous time Tcont can correspond a transfinite discrete time
Tdiscr, but for any dimension d, the ordinal of Tdiscr is less than ωd−1.

3.1 Case d = 2

In [3], the authors mentioned that their results can be generalized to a more general class of dynamical
systems: we will use later this fact.

Definition 3.1 A planar PCD like system is a dynamical system H = (X = R2, f) where f is bounded
on X and the following property holds: any straight line of R2 can be divided into finitely many segments,
each of which can be traversed by any trajectory in at most one direction [3].

Of course, a planar PCD system is a PCD like system. From [3] we get:

Theorem 3.1 ([3]) • Let H = (X, f) be a planar PCD like system. Then, every trajectory of H is
ultimately either a contracting or an expanding spiral, or cyclic.

• Let H = (X, f) be any planar PCD system. Then every trajectory of H has an ultimately periodic
signature, i.e, a signature of the form F1, F2, . . . , Fi, (Fi+1, . . . , Fi+j)

ω for some finite i, j, where j
is at most the number of regions.

We are ready now to prove the result for d = 2.
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Corollary 3.1 Let H = (X, f) be a real PCD system in dimension d = 2. Let Φ be a trajectory of H of
finite continuous time Tcont.

• the discrete time Tdiscr of Φ is necessarily such that Tdiscr ≤ ω.

• If Tdiscr = ω, then Φ is ultimately a spiral contracting to a point at the intersection of at least three
edges.

Proof: First point is nothing but theorem 3.1. For second point, observe that any trajectory has
an ultimately periodic signature (Fi+1, . . . , Fi+j)

ω. Since Tcont is finite, the time to go from Fi to Fi+1

must converge to 0. As a consequence Φ must be ultimately a spiral contracting to a point x∗ and all
the (Fi)i∈{i+1,...,i+j} must intersect and must contain x∗.

2

The bound is sharp: figure 3 gives an example of a purely rational planar PCD system with a finite
continuous time trajectory of ordinal ω.

3.2 Case d ≥ 3

A PCD system H of dimension d can be made of a PCD system H′ of dimension d′ < d embedded into
dimension d. The following proposition shows that, if it is the case, we can restrict our attention to H′:
see figure 4. This proposition will be restated in different terms later on.

P

x*

Figure 4: Construction of the PCD projection when surfaces are organized as a pencil. See also figure 17

Proposition 3.1 Let H = (X, f) be a real PCD system in dimension d. Let x∗ be a point of X = Rd.
Assume that there exist polyhedral subset ∆ ⊂ X of dimension d − d′ (1 ≤ d′ ≤ d) and open convex
polyhedron V ⊂ X, with x∗ ∈ ∆ and x∗ ∈ V , such that, for any region F j of H, F j ∩ V 6= ∅ implies
∆ ⊂ F j.

Then, if d′ < d and if we call P the affine variety of dimension d′ which is the orthogonal of ∆ in
x∗, it is possible construct a PCD system H′ = (X ′ = Rd′

, f ′) in dimension d′ such that the trajectories
of H′ in a neighborhood of (0, . . . , 0) are precisely the projection on P of the trajectories of H in V .

We say in that case that H is made of the local embedding of H′ in V . If F j is a region of H, the
projection of F j on P is called its trace on H′: see figure 4.

Proof: Choose an affine basis of Rd of the form (x∗, e1, e2, . . . , ed′ , . . . , ed) with (x∗, e1, e2, . . . , ed′ )

taken as a basis of P and (x∗, ed′+1, . . . , ed) taken as a basis of ∆. Let p : Rd → Rd′

be the pro-
jection that sends (x1, x2, . . . , xd) to (x1, . . . , xd′). By hypothesis, in V the regions are organized as a
‘pencil of regions’: therefore speed in point (x1, x2, . . . , xd′ , . . . , xd) ∈ V does not depend on the coor-

dinates xd′+1, xd′+2, . . . , xd. The reader can check that H′ = (X ′ = Rd′

, f ′) where f ′(x1, x2, . . . , xd′) =
p(f(x1, x2, . . . , xd′ , 0, . . . , 0)) is a solution. See figure 4.

2

We are now ready to prove the main assertion of the section:
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Theorem 3.2 Let H = (X, f) be a real PCD system in dimension d. Let Φ be a trajectory of H of finite
continuous time Tcont. Denote by Tdiscr the discrete time of Φ.

• Assume d = 2, then necessarily Tdiscr ≤ ω.

• Assume d ≥ 3 then necessarily Tdiscr < ωd−1.

Proof: Case d = 2 is corollary 3.1. Assume d ≥ 3 and Tdiscr = ωd−1. Denote t1, t2, . . . , tω, tω+1, . . .,
tTdiscr=ωd−1 , . . . the elements of the well ordered set TΦ (see definition 2.4 for the definition of TΦ).
Sequence (tωd−2i)i∈N

is an increasing sequence bounded by tωd−1 . Apply lemma 3.1: there exists i0 ∈ N,

V0 such that for any region F of H, F ∩ V0 6= ∅ ⇒ F 3 x∗′ = Φ(tωd−1) and for any tωd−2i0
≤ t ≤ tωd−1

, Φ(t) ∈ V0. Consider now sequence (tωd−2i0+ωd−3j)j∈N. Using again lemma 3.1, there exists j0 ∈ N, V1

such that for any region F of H, F ∩ V1 6= ∅ ⇒ F 3 x∗ = Φ(tωd−2(i0+1)) and for all tωd−2i0+ωd−3j0
≤ t ≤

tωd−2(i0+1) Φ(t) ∈ V1.

Denote ∆ = [x∗, x∗′] and V = V0 ∩ V1. We get by convexity of the regions that F ∩ V 6= ∅ ⇒ ∆ ⊂ F .
We can apply proposition 3.1: there exits a PCD system H′ of dimension d− 1 such that H is made of
the local embedding of H′ in V . H′ have the projection Φ′ of Φ on the orthogonal P of ∆ in x∗ as one of
its trajectory, so H′ has a finite continuous time trajectory Φ′ of discrete time ωd−2 in dimension d− 1.

By induction, the only case we have to pay attention is the case d = 3. Assume d = 3. H must still be
made of the local embedding of a PCD system H′ in V . But H′ must be a planar PCD system that has
finite continuous time trajectory Φ′ of discrete time ω. By corollary 3.1 Φ′ must be a spiral converging
to x∗. Once on ∆, Φ must necessarily evolve with a slope collinear to ~x∗x∗′. That is, Tdiscr would be
equal to ω + 1 instead of ω2, which is a contradiction.

2

Lemma 3.1 Let (ti)i∈N be any bounded increasing subsequence of points of Tφ converging to t∞. Nec-
essarily there exists i0 ∈ N, a convex open polyhedron V such

• For any t ∈ [ti0 , t∞], Φ(t) ∈ V .

• For any region F of H, F ∩ V 6= ∅ ⇒ F 3 x∗ = Φ(t∞).

Proof: Let V be any convex polyhedral open subset containing x∗, of dimension d, included in the
ball centered in x∗ of radius

r = 1/2 ∗ infF region of H(R+ ∩ {d(x∗, F )})

By definition of V , we have immediately F ∩ V 6= ∅ ⇒ x∗ ∈ F j for all region F . Now, observe that by
continuity of φ and convergence of (ti) there exists a rank i0 such that t ≥ ti0 ⇒ Φ(t) ∈ V .

2

Figure 5: A PCD system with a finite continuous time trajectory of discrete time ω2. It is possible to
construct a PCD system of dimension 3 with a finite continuous time trajectory of discrete time ωp+ q, for
all p, q ∈ N, but it is not possible to construct a PCD system of dimension 3 with a finite continuous time
trajectory of discrete time ω2.

The bound given by theorem 3.2 is sharp: for any d ≥ 3, for any ordinal o < ωd−1 one can construct
a purely rational d-dimensional PCD system that has a trajectory of ordinal o. See figure 5.
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4 Computability in finite discrete time

We prove in this section that rational PCD systems are equivalent to Turing machines and that real PCD
systems are equivalent to linear machines.

4.1 Affine maps realized by some PCD systems.

Let H be a PCD system of dimension d. Assume that F is a polyhedral subset of dimension d− 1: that
is, F is a polyhedral subset of an affine hyper-plane A of Rd. Let k 6= 0 be a vector of Rd orthogonal to
A. Let Φ be a trajectory that enters F or that leaves F with slope k0. If the dot product of k and k0 is
positive (respectively: negative), we say that k (resp. −k) gives the moving orientation.

Trajectory

k0

k

Moving
Orientation

F

Figure 6: A trajectory leaving F of dimension d−1 in a PCD system of dimension d = 3 and a vector giving
the moving orientation

First, we show that any affine map realized by some regions of a PCD systems have a non-negative
determinant: see figure 7.

S’

O’

O
e1

e2

e1

S

PCD
e2

(y1,y2)=f(x1,x2)

Moving
Orientation

k

(x1,x2)

V

Figure 7: Some regions of a PCD system realizing a partial mapping f : R2 → R2 in dimension 3: f(x1, x2) =
(y1, y2) iff the trajectory starting from the point of coordinates (x1, x2) on S reaches S′ in the point of
coordinates (y1, y2) in finite discrete time. We assume that there exists k that gives the moving orientation
of any trajectories leaving S or reaching S ′. Lemma 4.1 proves that f restricted to some open subset V of R2

is an affine map with non-negative determinant. Lemma 4.2 shows that any affine map f with non-negative
determinant can be realized by some regions of a PCD system.

Lemma 4.1 Let H = (X, f) be a PCD system of dimension d. Let P and P ′ be two parallel affine hyper-
planes of Rd. Let S be a polyhedral convex subset of P and S ′ a polyhedral convex subset of P ′. Choose
O,O′, e1, . . . , ed−1 such that B = (O, e1, . . . , ed−1) is an affine basis of P and B′ = (O′, e1, . . . , ed−1)
is an affine basis of P ′. Denote by f : Rd−1 → Rd−1 the partial mapping such that f(x1, . . . , xd−1) =
(y1, . . . , yd−1) iff point x of coordinates (x1, . . . , xd−1) in basis B is in S, and the trajectory Φx starting
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from x reaches S′ at some finite discrete time in point y of coordinates (y1, . . . , yd−1) in basis B′. Denote
by Q the domain of f . Assume that Q have an non empty interior. Assume that there exists k ∈ Rd such
that for all x, Φx leaves S with moving orientation k and reaches S ′ with moving orientation k.

Then there exists a neighborhood V ⊂ Q such that f restricted to V is an affine map with non negative
determinant.

In particular, if f is an affine map or the restriction of an affine map, then f has a non negative
determinant.

Proof: Subdivide the regions of H if necessary such that all the regions of H are convex. Let γ
be a finite sequence of (convex) regions. Denote by Qγ ⊂ Q the subset of the points x ∈ S such that
Φx has signature γ between S and S′. Each Qγ 6= ∅ is a convex polyhedral subset of Q. We have
Q = ∪

γ finite sequence of regionsQγ . Since Q has an non empty interior, from Baire theorem [19], there

exists a γ0 such that Qγ0
has an non empty interior. Since Qγ0

6= ∅ is a convex polyhedral subset, Qγ0

has an non empty interior and contains a ball V . It is easy to observe that f restricted to V must be an
affine map.

Denote by F0, F1, . . . , Fl the successive convex boundaries of the regions intersected by the trajectories
starting from V . Without loss of generality, assume O ∈ V . The successive images B0, . . . , Bl of basis
B = (e1, . . . , ed−1) on F0, . . . , Fl are such that Bi+1 is the projection of Bi on Fi+1 with projection
direction given by the slope ki between Fi and Fi+1. If one of the Bi has a dimension < d − 1 the
determinant of f is 0 and the result is true. Assume that all the Bi are of rank d − 1. That implies
that each Fi is a convex polyhedral subset of some hyper-plane Hi of dimension d− 1 and that ki 6∈ Hi.
Observe by an easy induction on i that the sign of the determinant of (Bi, ki) is independent of i since
once on Fi+1 one can only leave by the side of hyper-plane Hi+1 opposite to the side the trajectory is
coming from. As a consequence, since k0 and kl−1 must make the trajectories to reach and leave P and
P ′ with same moving orientation, the determinant of f restricted to V is positive.

2

Observe now that any affine map of non-negative determinant can be realized by some regions of a
PCD system.

Lemma 4.2 Assume that f : [0, 1]d−1 → [0, 1]d−1 is (the restriction to [0, 1]d−1 of) an affine map
with non-negative determinant. Let S0 be a given polyhedral subset of dimension d − 1 and let B =
(0, e1, . . . , ed−1) be an affine basis of S0. Then it is possible to construct some regions R0, . . . , Rd in
dimension d, a polyhedral subset Sd of dimension d − 1 parallel to S0 and to find a point O′ ∈ Sd

such that any trajectory starting from point of coordinates (x1, . . . , xd−1) on B reaches the point of Sd

of coordinates f(x1, . . . , xd−1) in basis B′ = (O′, e1, . . . , ed−1). Moreover the trajectory leaves S0 and
reaches Sd with same moving orientation.

Proof: Let k be the dimension of the image of f . Choose a basis of S0 of type (0, b1, b2, . . . , bd−1)
such that (bk+1, . . . , bd−1) is a basis of the kernel of f . Let k0, k1, . . . , kd−1 be d vectors, still to be
determined, satisfying a set of d+ 1 inequalities (Dl)l=0,1,...,d. We want to find some polyhedral subsets
S1, S2, . . . , Sd of dimension d − 1. We will take Rl, for all l, as the region between Sl and Sl+1 and we
want each kl to be the slope in region Rl. Inequality Dd is det(k0, k1, . . . , kd−1) 6= 0. So we take the
(kl)l linearly independents. For all i ∈ {1, 2, . . . , k} denote b′i = f(bi). Then for each j ∈ {0, 1, . . . , d}
denote bji = bi + λ0

i k
0 + λ1

i k
1 + . . . + λj−1

i kj−1. We want bij to give the image of bi on Sj . We want

bdi = b′i for all i. Since (k0, k1, . . . , kd−1) is taken as a basis of Rd this implies that all the λj
i are given

by the Cramer rule as det(k0, k1, . . . , kj−1, b′i − bi, k
j+1, . . . , kd−1)/det(k0, k1, . . . , kd−1). Thus the (λj

i )i,j

are rational functions in the coordinates of the (kl)ls. Hence the coordinates of the (bj
i )i,j are also

rational functions in the coordinates of the (kl)ls. We write, for j = 0, 1, . . . , d − 1, inequality (Dj) as
kj 6∈ V ect(bj

1, b
j
2, . . . , b

j
k). For j ∈ {1, 2, . . . , d − 1}, it is easy to show that if all the previous (Dl)l<j

are verified then necessarily rank(bj
1, b

j
2, . . . , b

j
k) = k. Now, observe that (Dj), assuming the (Dl)l<j ,

can be written as the non-nullity of the sum of the squares of all the square sub-determinants of matrix
(kj , bj1, b

j
2, . . . , b

j
k), so as a polynomial inequality on the coordinates of the (kl)ls. And since bj1, b

j
2, . . . , b

j
k

are independent, this polynomial is non-null.
There must exist some (kl)l verifying all the inequalities D0, D1, . . . , Dd since the converse would

imply that the product P of all the polynomial inequalities (Dj)j , for j = 0, 1, . . . , d would be a non null
polynomial which is always null. Now, observe that if k0, k1, . . . , kj−1, kj , kj+1, . . . , kd−1 is a solution,
for all j, k0, k1, . . . , kj−1, −kj , kj+1, . . . , kd−1 is also a solution of the inequalities. Construct inductively
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S1, S2, . . . , Sd: assume Sl, l ≥ 0 is constructed. Let s− (respectively s+) be the side of Sl the trajectory
is coming from (resp. is going to). If kl is not going from s− to s+: replace kl by −kl. In any case, take
Sl+1 as any bounded polyhedral subset of any affine variety V whose induced vector space is the vector
space spanned by vectors bl+1

1 , bl+1
2 , . . . , bl+1

k , such that Sl+1 does not intersect the projection of [0, 1]d−1

on Sl and such that Sl+1 is big enough to contain the projection of [0, 1]d−1 on V (we call projection of
[0, 1]d−1 on Sl (respectively V ) the subset of the points of Sl (resp. V ) that are reached by a trajectory
starting from a point of S0 of coordinates in [0, 1]d on basis B.).

2

4.2 PCD systems and linear machines

Let M be a linear machine in dimension d. As usual for computational machines, at every time of the
evolution of M , we can write the global state of M as a tuple, called ID, ID = (q, x1, x2, . . . , xd), where q
is the internal state of the control part of M and the (xj)j=1...d ∈ R denote the values of the real registers
of M . The binary relation ` between IDs is defined by ID1 ` ID2 if when machine M is in the state
given by ID1 then M makes an immediate transition to the state given by ID2. Linear machine M is said
to have the connectivity property if for all IDs ID1, ID2, ID3 such that ID1 = (q1, x1

1, x
1
2, . . . , x

1
d) ` ID

3

and ID2 = (q2, x2
1, x

2
2, . . . , x

2
d) ` ID

3 with q1 6= q2 we have necessarily x1
d = x2

d = 0.

Theorem 4.1 • If language L is recognized by a PCD system in dimension d in discrete time T ,
then L is recognized by a linear machine in dimension d− 1 in time O(T ).

• If language L is recognized by a linear machine in dimension d in time T , then L is recognized by
a PCD system in dimension d+ 2 in discrete time O(T ).

• If language L is recognized by a linear machine M with the connectivity property in dimension d in
time T , then L is recognized by a PCD system in dimension d+ 1 in discrete time O(T ).

Proof: First point is straightforward since it is easy to simulate a PCD system by a linear machine.
Second point is immediate from third point, since one can always add a real register that stays equal to
0 to any linear machine.

Now for the third point, observe that we can suppose without loss of generality that linear machine M
does only linear operations of non-negative determinant: if it is not so, simulate M by a linear machine
M ′ that replaces any linear operation l of negative determinant by the composition of l with the operation
that changes xd in its opposite. M ′ stores at any time in its control part the information whether the
value of its last variable is equal or opposite to the corresponding variable in M at same time. M ′ is able
to simulate M and does only linear operations of non-negative determinant.

A k-dimensional box is a pair I = (P,B) where P is any polyhedral subset of an affine variety V of
Rd of dimension k, and B is a affine basis (O, e1, e2, . . . , ed) of Rd such that (O, e1, . . . , ek) is an affine
basis of V . The point of coordinates (x1, . . . , xd) on I denotes the point of P (if it exists) of coordinates
(x1, . . . , xd, 0, . . . , 0) in basis B.

Let l be the number of internal states of M . By renaming, we can assume that the set of the internal
states of M is {1, 2, . . . , l}. We work in Rd+1 with its canonical basis (e1, e2, . . . , ed+1). Denote by Q
the polyhedral subset [−1, 1] × [−1, 1] × . . . [−1, 1] × {0}. For i ∈ {1, 2, . . . , l}, denote Oi the point of
coordinates Oi = (4 ∗ (i − 1), 0, . . . , 0). Denote Pi = Oi +Q and Bi = (Oi, e1, e2, . . . , ed). So, for all i,
P̂i = (Pi, Oi) is a d-dimensional box. Denote P̃ = ∪i=1...lPi. Let P any polyhedral bounded subset of
the hyper-plane containing P̃ . We construct a PCD system H that has M as a ‘Poincare Map’[10]: see
figure 8. We want the trajectories of H to intersect again and again P in P̃ with direction xd+1 > 0.
We want the tth intersection of the trajectory with P to correspond to the ID of M at time t: if the
intersection happens in the point of coordinates (x1, x2, . . . , xd) on d-dimensional box P̂i then M has ID
(i, x1, x2, . . . , xd) at time t.

Let i ∈ {1, 2, . . . , l}. We can assume that in internal state i, M does first a linear operation fi

of non-negative determinant on its variables (set fi as the identity if needed), makes a linear test Ti

(assume Ti to be a trivial test if needed), and then makes a transition to some internal state δ(i)+ or
δ(i)− according to the result of test T . For any i, by lemma 4.2, it is possible to construct a sequence of
regions such that fi is computed with input port d-dimensional box P̂i and with output port a parallel
d-dimensional box P̂ ′

i = (P ′
i , B

′
i). Denote by P

′+
i and P

′−
i the polyhedral partition of P ′

i in the subset of
values (x′

1, x
′
2, . . . , x

′
d) that respectively satisfies and does not satisfy test T . It is easy to build for every
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P1

P2

Realization of the linear operation h Test T

P3

P4

P5

P

Path from P3’+ to P4

P3’+

P3’−

Figure 8: A PCD system simulating a linear machine. Only one path is represented.

P
′k
i , k ∈ {+,−}, a “path” that brings any trajectory crossing P

′k
i in coordinates x on d -dimensional

box (P
′k
i , B′

i) to cross Pδ(i)k on the point of same coordinates x on d-dimensional box ˆPδ(i)k . See figure
8.

We want to do the construction for all i. Unfortunately, it might happen that there exists i1 and i2,
k1, k2 ∈ {+,−}, i1 6= i2 or k1 6= k2 such that δ(i1)

k1 = δ(i2)
k2 . In this case, we need to realize the fusion

between the paths coming from P
′k1

i1
and P

′k2

i2
. If M is a linear machine with the connectivity property

this is always possible since this property asserts precisely that when a fusion is needed, the fusion is
between paths of dimension strictly less than d. See [3] or figure 9.

2

The above-mentioned simulations preserve constants: a PCD system that can be described using
rational and irrational constants γ1, . . . , γk ∈ R is simulated by a linear machine that has the constants
γ1, . . . , γk, and conversely.

We get:

Corollary 4.1 • The languages recognized in polynomial discrete time by real PCD systems in di-
mension d ≥ 3 are precisely the languages of P/poly. Every language L ⊂ N can be recognized by a
real PCD system in dimension d ≥ 3 in finite discrete exponential time.

• The languages recognized in polynomial (respectively: exponential) discrete time by rational PCD
systems in dimension d ≥ 3 are precisely the languages that are recognized by a Turing machine in
polynomial (resp. exponential) time.

Proof: These results have been proved for linear machine of dimension 2 in [11, 12]. They are already
proved using bounded finite dimensional linear machines. Now observe, that we can also assume that the
linear machines used have the connectivity property: replace the Turing machines in the simulation used
in [11, 12] by either some reversible machines [8] or by machines that empty one of their stacks before
making a non-reversible transition [3]. The results follow from theorem 4.1.

2
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Figure 9: Realizing a fusion between several paths in dimension d + 1. If the paths have dimension d they
can not be merged. Nevertheless, if they have dimension d− 1 they can be merged.

5 Computability in finite continuous time

5.1 Lower bounds

It was shown in [2] that every set of the arithmetical hierarchy can be recognized in finite continuous
time: more precisely, it is shown that L ∈ Σk ∪ Πk can be recognized by a PCD system of dimension
5k+ 1: see figure 10 for the general idea of the “Zeno construction”. Therefore, five dimensions are used

y=0

y=1

d+1
in ROriginal System

in R d

Homogenization

Figure 10: The general principle of the Zeno construction: assume that PCD system H = (Rd, f) semi-
recognizes L in finite continuous time. A pyramid H′ is constructed in dimension d + 1 from the original
system H in dimension d: in H′, when the variables are divided by two, the simulation of H by H′ goes
two times faster. The original system H is simulated by H′ during time 1 at speed 1, time 1/2 at speed 2,
etc... If H accepts, H′ is made such that the process stops and such that H′ accepts. If H never accepts,
the trajectory converges in finite continuous time to (0, . . . , 0) which is taken as the point of rejection of H′.
Thus, L is now fully recognized by H′. See lemma 5.1 for the full details.

in [2] to climb each level of the arithmetical hierarchy: one for a timer, one used for the divisions by 2,
one used to do the homogenization, and two dimensions used to go from quantifier elimination to semi-
recognition. We show here that only one dimension is needed (the one used to do the homogenization),
and that the construction only requires purely rational PCD systems. The proof is rather technical but
is detailed up to the end of this subsection.
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We shall use PCD systems with a special structure: see figure 11.

y1 y’1
y2

y’2

Input
Port

0

1

slope 

B Accepting
Point

Figure 11: A PCD system with the box property: there exists a “box” B of equation Πd

i=1[yi, y
′

i
] that

is crossed at regular time interval by any trajectory (The dot lines represent symbolically the trajectory
evolving somewhere in the space of the PCD).

Definition 5.1 We say that a PCD system H = (X, f) of dimension d has the box property if, in some
basis of Rd,

• there exists a region B of equation Πd
i=1[yi, y

′
i] for some y1, . . . , yd, y

′
1, . . . , y

′
d ∈ R, with for all

i ∈ {1, . . . , d}, yi < y′i.

• f has a constant value on B of type (v, 0, . . . , 0) for some v ∈ R+.

• Any trajectory of H crosses B at regular time intervals: there exists t0 ∈ R+ such for any t ∈ R+,
for any trajectory Φ, if Φ is defined up to time t + t0, then Φ crosses nt ∈ N, nt ≥ 1 times B on
time interval [t, t+ t0].

• The input port of H has equation {0} × [0, 1] × {0}d−2.

The main construction used in this subsection is contained in the following lemma: see figure 13 and
figure 12.

Lemma 5.1 Let H = (X, f, r, I, x1, x0) be a bounded PCD system with the box property in dimension
d ≥ 2 that semi-recognizes language L. Then there exists an bounded PCD system H′ = (X ′ = Rd+1, f ′)
in dimension d + 1, a point x′0 ∈ X ′, a segment J ′ = Πi=1...d{x

′1
i } × (1/2, 1] of X ′, for some given

(x′1
i )i=1...d ∈ R, such that:

• the trajectory Φ′ of H′ starting from x = (0, x2, 0, . . . , 0, xd+1) ∈ X ′ with xd+1 ∈ (1/2, 1] and
y = x2/xd+1 ∈ [0, 1] reaches x′0 (respectively: J ′) if and only if the trajectory Φ of H starting from
{0} × {y} × {0}d−2 ∈ I does not reach x1 (resp: reaches x1).

• When Φ′ reaches J ′, the intersection happens in (x′1
1 , x

′1
2 , . . . , x

′1
d , xd+1).

In particular, if I ′ denotes {0} × [0, 1] × {0}d−2 × {1}, if x′1 = (x′1
1 , x

′1
2 , . . . , x

′1
d , 1), then H′ =

(X ′, f ′, r, I ′, x′1, x′0) is a bounded PCD system in dimension d+ 1 that fully recognizes L.

Proof: We work in Rd+1 with its canonical basis and use the notations of definition 5.1. First we
start by modifying H: divide region B into d regions: for all i ∈ {2, . . . , d + 1}, set Bi = [y1 + (y′1 −
y1) ∗ (i− 1)/d, y1 + (y′1 − y1) ∗ i/d] × Πd

i=2[yi, y
′
i]. Build in each Bi, for i ∈ {2, . . . , d} two regions B1

i ,B
2
i

with respective slopes v1
i , v

2
i that makes xi to be divided by 2: take for example B1

i = {(x1, . . . , xd) ∈
Bi|y1 +(y′1−y1)∗(i−1)/d ≤ x1 < y1 +(y′1−y1)∗(i−1)/d+(xi−yi)/(y

′
i−yi)∗(y′1−y1)/d}, B

2
i = Bi−B1

i ,
v1

i = ((y′1 − y1)/(2d)), 0, . . . , 0, xi = −(y′i − yi)/2, 0, . . . , 0) and v2
i = (1, 0, . . . , 0).

We construct PCD H′ = (X ′ = Rd+1, f ′) as follows. Denote Z = X − Bd+1 ⊂ Rd. First H′ is
constructed as a pyramid of H on Z: formally f ′(x1, . . . , xd+1) is defined, for all x1, . . . , xd ∈ R, 0 <
xd+1 ≤ 1 with (x1/xd+1, x2/xd+1, . . . , xd/xd+1) ∈ Z, by f ′(x1, . . . , xd+1) = f(x1/xd+1, . . . , xd/xd+1).
The main property of this construction is that for any 0 < µ ≤ 1, y1, y2 ∈ Z, if there is a trajectory of
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y1 y’1
y2

0

1

B

y’2

(0,0,0)
e1

e2
e3

Division
by 2 of x2

Division
by 2 of x3

Plane x3=1

Input
Port
of H’

Output
Port of H’

1

1/2

Figure 12: PCD system H′ obtained by applying lemma 5.1 on PCD system H of figure 11. H′ simulates H,
but now each time a trajectory crosses box B all the variables are divided by 2. Then the simulation goes
on but two times faster.
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H from y1 to y2 of time t, then there is a trajectory of H′ from (µy1, µ) to (µy2, µ) of time µt. Hence,
for any k ∈ R+, H′ simulates H but goes k times faster when all the variables are divided by k.

Denote B′
d+1 = {(x1, . . . , xd+1)|0 < xd+1 ≤ 1 ∧ (x1/xd+1, . . . , xd/xd+1) ∈ Bd+1}. Now set f ′ to value

((y′1 − y1)/(2d), 0, . . . , 0,−1/2) on B′
d+1: see figure 12.

Denote by x′′1 the region {(x1, . . . , xd+1)|(x1/xd+1, . . .,xd/xd+1) = x1 ∧ 0 < xd+1 ≤ 1}. Add
to H′ some regions that bring the points of x′′1 of coordinates (x1, . . . , xd+1) to points of coordi-
nate (x′

1, 0, . . . , 0, xd+1) for some big enough x′
1. Add to H′ four regions as in figure 3: set f ′ to

(1/2, 0, . . . , 0,−1) on R1 = {(x1, . . . , xd+1)|0 < xd+1 ≤ 1/2 ∧ x′
1 ≤ x1 ≤ x′

1 + 1}, to (−1, 0, . . . , 0,−1)
on R2 = {(x1, . . . , xd+1)| − 1 ≤ xd+1 ≤ 0 ∧ x′

1 < x1 ≤ x′
1 + 1}, to (−1, 0, . . . , 0, 1) on R3 =

{(x1, . . . , xd+1)| − 1 ≤ xd+1 < 0 ∧ x′
1 − 1 ≤ x1 ≤ x′

1} and to (1, 0, . . . , 0, 1) on R4 = {(x1, . . . , xd+1)|0 ≤
xd+1 ≤ 1 ∧ x′

1 − 1 ≤ x1 < x′
1}.

By hypothesis, H is such that any non accepting trajectory Φ of H starting from (0, x2, . . . , 0) crosses
infinitely often B. Hence, for any 0 < µ ≤ 1, the trajectory Φ′ starting from (0, µx2, . . . , 0, µ) crosses
B′ = {(x1, . . . , xd+1)|0 < xd+1 ≤ 1 ∧ (x1/xd+1, . . . , xd/xd+1) ∈ B} infinitely often. Each time Φ′ crosses
B′ all the variables are divided by 2. Hence the simulation of H by H′ goes two times faster: see figure
12. As the time between two intersections of Φ with B is bounded by some t0, if Φ is non accepting, Φ
will cross an infinite number of time B and Φ′ will reach (0, . . . , 0) at a finite continuous time (Σkt0/2

k is
a convergent series). Take x′

0 = (0, . . . , 0). Assume now that trajectory Φ is accepting. Then Φ′ reaches
x′′1, hence is brought to regions R1, R2, R3, R4. These regions multiply xd+1 by 2 until the result falls
in (1/2, 1]. Take x′1

2 = x′1
3 = . . . ,= x′1

d = 0. We get a PCD that fulfills all the assertions.
2

Denote I ′′ = {(0, x2, 0, . . . , 0, xd+1)|x2/xd+1 ∈ [0, 1] ∧ xd+1 ∈ (1/2, 1]}. We say that I ′′ and J ′ are
respectively the input and output ports of H′: see figure 13.

Output
Port
of H’of H’

Port 
Input

H’

(x,z)-> if x/z not accepted by H then return z else converge

Figure 13: Symbolic representation of PCD system H′ obtained by lemma 5.1 from PCD system H: H′

simulates H: if H′ is started with x2 = x, xd+1 = z then H′ simulates H on input x/z. If H does not accept
then H′ converges to some limit point. If H accepts, then H′ returns z.

We now prove:

Lemma 5.2 There exists E : N → (1/2, 1] such that:

• E is injective and computable by a linear machine, and E−1 is computable by a linear machine on
all points of the range of E.

• There exists a linear machine M of dimension 2 that computes the function f : R2 → R2 that maps
(x, n), x ∈ R, n ∈ N, to (x ∗ E(n), E(n)).

Proof: For all n ∈ N, define E(n) as the unique point which is simultaneously in interval (1/2, 1] and
in the set {2k3n|k ∈ Z}. Clearly, E is injective and computable by a linear machine: compute 3n and
divide or multiply by 2 until it falls in (1/2, 1]. Now, observe that E−1(y), for y in the range of E , is also
computable by the following algorithm: for k = 1, 2, . . . ,∞, test if E(k) = y. if it so, return k and stop.
Since y is assumed to be on the range of E the algorithm stops.
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For the second assertion, consider linear machine M that on input x ∈ R, n ∈ N performs the following
algorithm:

Algorithm 1

1 y:=1
2 for k = 1, 2, . . . , n do
3 x:=x*3
4 y:=y*3
5 end for
6 while y 6∈ (1/2, 1] do
7 if y > 1 then
8 y:=y/2
9 x:=x/2
10 else
11 y:=2*y
12 x:=2*x
13 end if
14 end while

2

We are now ready to prove the main result of this section:

Theorem 5.1 • Any language L of Σk is semi-recognized by a purely rational PCD system in di-
mension 2 + k.

• Any language L of ∆k is fully-recognized by a purely rational PCD system in dimension 2 + k.

Proof: We prove the first assertion by induction on k ≥ 1: we prove that any language L of Σk can
be semi-recognized by a PCD system of dimension 2 + k with the box property.

The assertion for k = 1 is immediate from theorem 4.1 since a linear machine with the connectivity
property in dimension 2 can simulate any arbitrary Turing machine [11]. Observe in the proof of theorem
4.1, that we can easily choose all the paths such that the PCD system has the box property: take B as
the region between P − (0, . . . , 0, ε) and P .

Output
Port
of H’

n H0

H1

of H’
Port 

Input

n-> (<n,0>E<n,0>, E<n,0>)

H’

(x,z)-> if x/z not in L’? then z  else accept

E<n,m>->(<n,m+1>E<n,m+1>,E<n,m+1>)

Figure 14: The PCD system constructed in the proof of the first assertion of theorem 5.1.

Assume that the induction hypothesis is true at rank k. Let L be a language of Σk+1. There exists
L′ ∈ Πk such that n ∈ L if and only if there exist m ∈ N, such that < n,m >∈ L′ [18]. By induction
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hypothesis, the complement of L′ is semi-recognized by a PCD system H with the box property in
dimension 2 + k. By lemma 5.1, the complement of L′ is also fully-recognized by a PCD system H′

in dimension 3 + k. Consider function f : R → R2 that maps, for all n,m ∈ N, E(< n,m >) to
(< n,m + 1 > ∗E(< n,m + 1 >),E(< n,m + 1 >)). Function f is computable by a linear machine in
dimension 2: using lemma 5.2, first compute < n,m > from E(< n,m >), then compute < n,m + 1 >,
and then compute (< n,m + 1 > ∗E(< n,m + 1 >), E(< n,m + 1 >)). As a consequence, by theorem
4.1, there exists a PCD system H1 in dimension 4 that computes f . In a similar way, using theorem
4.1 there exists a PCD system H0 in dimension 4 that computes the function that maps n ∈ N to
(< n, 0 > ∗E(< n, 0 >),E(< n, 0 >)). Now connect the two dimensional output ports of H0 and H1 to
the input port of H′. Connect the output port of H′ to the input port of H1. We get a bounded purely
rational PCD system that semi-recognizes L. Its input port is the input port of H0 and its accepting
point is the rejecting point of H′: see figure 14. Now, since H1 has the box property, and since any
evolution in H′ takes a finite bounded continuous time, this PCD system also have the box property.
Therefore, the first assertion is proved.

H1

E<n,m>->(<n,m>E<n,m>,E<n,m>)

n H0

n-> (<n,0>E<n,0>, E<n,0>)

E<n,m>->(<n,m+1>E<n,m+1>,E<n,m+1>)

H2H’2

(x,z)-> if x/z not in L’’? then z  else reject

H’1

(x,z)-> if x/z not in L’? then z  else accept

Figure 15: The PCD system constructed in the proof of the second assertion of theorem 5.1.

For the second assertion, consider now L ∈ ∆k. We have to show that L is fully recognized in
dimension 2 + k. Case k = 1 has already been established in theorem 4.1. Assume k > 1. There
exists L′ ∈ Πk−1 and L′′ also in Πk−1 such that n ∈ L if and only if there exists m ∈ N such that
< n,m >∈ L′, and n 6∈ L if and only if there exists m ∈ N such that < n,m >∈ L′′ [18]. We
have already observed that it is possible to construct a PCD system H0 in dimension 4 that computes
n 7→ (< n, 0 > ∗E(< n, 0 >), E(< n, 0 >)). Using theorem 4.1 and lemma 5.2, construct also a PCD
system H1 that computes the map that sends E(< n,m >) to (< n,m > ∗E(< n,m >),E(< n,m >)).
Construct now a PCD system H2 of dimension 4 that computes the map that sends E(< n,m >) to
(< n,m + 1 > ∗E(< n,m + 1 >),E(< n,m + 1 >)). Using the first assertion, we also know that the
complement of L′ can be semi-recognized in dimension 1 + k by a PCD system with the box property.
By lemma 5.1, there exists a PCD system H′

1 that fully-recognizes the complement of L′ in dimension
2 + k. Similarly, using lemma 5.1, there exists a PCD system H′

2 that fully-recognizes the complement
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x*

x*

x*

Figure 16: From left to right: x∗ is of local dimension 1+, 2+, 3 in a PCD system of dimension 3.

of L′′ in dimension 2 + k. Now connect the output port of H0 and H2 to the input port of H′
1. Connect

the output port of H′
1 to the input port of H1, the output port of H1 to the input port of H′

2 and the
output port of H′

2 to the input port of H2: we get a PCD system in dimension 2+k that fully recognizes
L. Its accepting point is the rejecting point of H′

1 and its rejecting point is the rejecting point of H′
2: see

figure 15.
2

5.2 Upper bounds

5.2.1 Local dimension

We define:

Definition 5.2 (Local dimension) Let H = (X, f) be a PCD system in dimension d. Let x∗ be a
point of X. Let ∆ be a polyhedral subset ∆ ⊂ X of maximal dimension d − d′ (1 ≤ d′ ≤ d) such that
there exists an open convex polyhedron V ⊂ X, with x∗ ∈ ∆ ∩ V , and such that, for any region F of H,
F ∩V 6= ∅ implies ∆ ⊂ F (F is the topological closure of F ). In other words ∆ is the polyhedral subset of
maximal dimension d− d′ such that there exists V that makes the hypothesis of proposition 3.1 to hold.

If d′ < d then x∗ is said to be of local dimension d′
+
. If d′ = d then x∗ is said to be of local

dimension d′ and we can always choose V small enough such that x∗ is the only point of local dimension
d′ in V : see figure 16.

Note that given a rational PCD system H = (X, f) and k = d′ or k = d′
+

one can effectively compute
LocDim(H, k) defined as the set of the points x ∈ X that have a local dimension equals to k.

The idea is that if a point x∗ is of local dimension (d′)+ in a PCD of dimension d, to study the
trajectories in a neighborhood of x∗, one can restrict the attention to a PCD system of dimension d′.
Proposition 3.1 can be restated as:

Proposition 5.1 Let H = (X, f) be a PCD system in dimension d. Let x∗ be a point of local dimension
(d′)+ with d′ < d. Let P be the affine variety of dimension d′ which is the orthogonal of ∆ in x∗. It is

possible to construct a PCD system H′ = (X ′ = Rd′

, f ′) in dimension d′ such that the trajectories of H′

are the orthogonal projections on P of the trajectories of H in V .

For any point x∗, the corresponding V is denoted by Vx∗ . H′, ∆ are respectively denoted by Hx∗

and ∆x∗ . If d′ < d we denote by px∗ and qx∗ the functions that map all point x ∈ X onto its orthogonal
projection on P and onto its orthogonal projection on ∆ respectively. If d′ = d, we define px∗ and qx∗

as respectively the identity function and the null function. We assume the natural order 1 < 1+ < 2 <
2+ < . . ..

Lemma 5.3 Let H = (X, f) be a PCD system of dimension d. Let Φ be a trajectory of H that reaches
x∗ at finite continuous time Tcont. Assume that x∗ is of local dimension k = d′ or k = (d′)+. For any l,
denote by Sl the set of the points x ∈ X that are reached by Φ at some time 0 ≤ t < Tcont and that have
local dimension l. Assume Sl = ∅, for all l > k.

• Sk is a finite set.
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Figure 17: Proposition 3.1: if x∗ is of local dimension 2+ in a PCD of dimension 3, the projections of the
trajectories in neighborhood V of x∗ on P are precisely the trajectories of a PCD system of dimension 2.

• Assume Sk = ∅. Fix the origin in x∗. Then either S(d′−1)+ is a finite set or there exist y1, y2 ∈ X
that are reached by Φ, there exists 0 < λ < 1 such that px∗(y2) = λpx∗(y1) and such that, for
all n ≥ 1, Φ reaches at a time tn ≤ Tcont the point yn defined by px∗(yn) = λnpx∗(y1) and
qx∗(yn) = qx∗(y1) +

Pn

i=1 λ
i(qx∗(y2) − qx∗(y1)).

Proof: Let m ≤ k. We prove first that if Sm is not a finite set, then Φ reaches a point of local
dimension > m at some time ≤ Tcont: assume that Sm is not a finite set. Tm = {t|Φ(t) ∈ Sm} is a
well ordered set. Denote its elements by tm1 , t

m
2 , . . . , t

m
ω , . . .. Take tm∞ = supi∈Nt

m
i . We have tm∞ ≤ Tcont.

Consider xm
∞ = Φ(tm∞). By continuity of Φ, there exists tm < tm∞ such that t ∈ [tm, tm∞] ⇒ Φ(t) ∈ Vxm

∞
.

Take t ∈ [tm, tm∞] ∩ Sm. From considerations of dimensions about point Φ(t) of local dimension m in
Vxm

∞
, we get that the local dimension d′′ of xm

∞ is ≥ m. From the definition of tm∞, we get d′′ 6= m. Hence
d′′ > m and our claim is proved: if Sm is not a finite set then Φ reaches some xm

∞ of local dimension
> m.

The first assertion of the lemma is an easy consequence of this claim with m = k.
For the second assertion, take m = (d′ − 1)+, and assume that S(d′−1)+ is not a finite set. From

Sk = ∅, we must have xm
∞ = x∗ and tm∞ = Tcont. If k < d denote H′ = Hx∗ else take H′ = H. Define

Φ′ as px∗(Φ). From time tm up to time Tcont, Φ′ is a trajectory of H′ = (X ′, f ′) (apply proposition 3.1
for k < d), reaching px∗(x∗) at time Tcont. Let L be the set of the one-dimensional regions of H′ that
intersect V ′

x∗ = px∗(Vx∗). We claim that each time Φ′ reaches a point of S(d′−1)+ , Φ′ reaches an element

of L: if Φ′ reaches some point x∗′ ∈ X ′ of local dimension (d − 1)+ at some time t ∈ [tm, Tcont], then
px∗(∆x∗′ ) is an element of L and contains x∗′. See figure 18.

Since Φ′ converges to px∗(x∗), since L is a finite set, since S(d′−1)+ is infinite, px∗(Φ) reaches two
times the same element of L in px∗(y1) and px∗(y2) with px∗(y2) = λpx∗(y1) for some 0 < λ < 1, at
some times ty1

, ty2
with tm ≤ ty1

< ty2
< Tcont. Now observe that by definition of V ′

x∗ all the regions
of H′ intersecting V ′

x∗ contain px∗(x∗) in their topological closure. Hence we have f ′(x) = f ′(µx), for
all x ∈ V ′

x∗ , µ ∈ (0, 1]. If Φ′(t) is solution to differential equation ẋd = f ′(x), Ψ′(t) = λΦ′(t/λ) is also
solution. As a consequence trajectory Φ′ must reach λnpx∗(y1) for all n. From the definition of H′ this
implies that Φ reaches the yn of the lemma for all n : see figure 18.

2

5.2.2 Problems Reach and Conv

We will deal with the following problems up to the end of this section:

Definition 5.3 (Problems Reachd′ , Reachd′+) Let k be either of type k = d′ or of type k = d′
+
, where

d′ is an integer.

• Instance: A purely rational PCD system H = (X, f) of dimension d, a polyhedral convex subset
V ⊂ X, a rational polygon x1 ⊂ X, a rational number tsup ∈ Q, a rational number tinf ∈ Q, a
rational point x0 ∈ X.
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Figure 18: Proof of lemma 5.3: here d = d′ = 3. L is defined as the set of the one dimensional regions that
intersect px∗(Vx∗). L is made of a finite number of segments. Each time the trajectory reaches a point of
local dimension 2+, it reaches L. If the trajectory reaches two times L in a same segment then the trajectory
is ultimately cycling.

Question “Reachk(H, V, x0, x
1, tinf , tsup)”: “Do all the following conditions hold simultaneously:

– trajectory Φ starting from x0 reaches x1 at some finite continuous time Tcont

– tinf < Tcont ≤ tsup

– for any 0 ≤ t ≤ Tcont, x = Φ(t) is in V and is of local dimension ≤ k.”

• Instance: A purely rational PCD system H = (X, f) of dimension d, a polyhedral convex subset
V ⊂ X, a rational point x∗ ∈ X, a rational number tsup ∈ Q, a rational number tinf ∈ Q, a rational
point x0 ∈ X.

Question “Convk(H, V, x0, x
∗, tinf , tsup)”: “Do all the following conditions hold simultaneously:

– the trajectory Φ starting from x0 reaches point x∗ at some finite continuous time Tcont

– x∗ is of local dimension k and is in V

– tinf < Tcont ≤ tsup

– for any 0 ≤ t < Tcont, x = Φ(t) is in V and is of local dimension < k.”

5.2.3 Case d = 3

We start by some topological considerations:

Lemma 5.4 Let S be a sphere of space Rd of radius r centered in x∗, with d ≥ 2. Let t0, t1 be two reals.
Then any injective continuous mapping Ψ : [t0, t1) → S is not surjective.

Proof: For all n ∈ N, denote In = [t0, t1 − 1/n]. Ψ realizes an homeomorphism between In and
Jn = Ψ(In) for all n, since Ψ is continuous and injective on compact subset In [16]. With two exceptions
(the endpoints of In) the suppression of one point of In disconnect In, so the same must hold for Jn. As
a consequence Jn must have an empty interior in the induced topology on S [16]. Now observe that the
range J of Ψ is the enumerable union of the Jn, for n ∈ N. By Baire theorem [16, 19], J has also an
empty interior. Therefore, J can not be the whole sphere S.

2

Lemma 5.5 Let H = (X, f) be a PCD system of dimension d. Let Φ be a trajectory of H of finite
continuous time Tcont and discrete time Tdiscr ≥ ω converging toward x∗ = Φ(Tcont). Assume that x∗ is
of local dimension d′ ≤ 3+. Then necessarily the signature of Φ is ultimately cyclic.

Proof: Assume first d ≤ 3. Denote t1, t2, . . . , tω, . . . the elements of well ordered set TΦ = {t|Φ
crosses a boundary of a region at time t}. Denote by d0 the infimum of the distance of x∗ to all the
regions of H that are at a strictly positive distance of x∗. Take V as any convex open polyhedral included
in the ball centered in x∗ or radius d0/2. Since Φ is converging to x∗, there exists ti0 such that for all
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ti0 ≤ t ≤ Tcont, Φ(t) ∈ V . Let 0 < ε < d0/4. Denote by S the sphere centered in x∗ of radius ε. Denote
by θ the function that maps x ∈ R3 −{0} to θ(x) = x∗ +x∗x/‖x∗x‖ ∗ ε. θ is the central projection of R3

onto S.

x*

N

P

Trajectory of the PCD system

Projection on the ball

Stereographic projection on P

Figure 19: We first project the trajectory on sphere S by central projection θ. Then, we project the image
by stereographic projection ψ onto plane P. We get a trajectory of a PCD like system H′.

The key point is the following: from the definition of V , every region intersecting V contains x∗ in its
topological closure: two points x, x′ ∈ V with same image by θ belong necessarily to the same region of
H, and thus have same slope. As a consequence, the signature of trajectory Φ on [ti0 , Tcont) is identical
to the signature of trajectory Ψ = θ(Φ).

If we assume that Ψ is not injective on [ti0 , Tcont), Ψ is ultimately cyclic and thus have an ultimately
cyclic signature. Assume now that Ψ is injective on [ti0 , t∞). By lemma 5.4, there exists N ∈ S not in
the range of Ψ. Let P the affine plane orthogonal to x∗N in x∗. It is known that sphere S minus point
N is diffeomorphic to plane P . Denote by ψ the stereographic projection that sends S − {N} to P in
a diffeomorphic way: ψ(x) = N − (Nx∗.N)/(Nx∗.Nx)Nx. Now observe that ψ(Ψ) is a trajectory of
planar PCD like system H′ = (P = R2, f ′) defined by f ′(x) = f(ψ−1(x)). As a consequence, by lemma
3.1, ψ(Ψ) is ultimately either a contracting or an expanding spiral or cyclic. In any case, the signature
of Ψ, hence the signature of Φ is ultimately cyclic: see figure 19.

Assume now that d > 3. By proposition 5.1, there must exist a PCD system H′ of dimension 2 or
3 that has a projection Φ′ of Φ as a finite continuous time trajectory of discrete time Tdiscr ≥ ω. The
signature of Φ is given by the signature of Φ′ which is ultimately cyclic by the case d ≤ 3 applied on
PCD H′ and trajectory Φ′.

2

Following lemma is rather technical. Its proof is not very interesting and relies mostly on some
computations about the convergence of the iterates of a certain linear map A : R2 → R2 that describes
the evolution of the trajectory after each cycle.

Lemma 5.6 The following problem is decidable:
Instance: a rational PCD system H = (X, f) of dimension d, a finite sequence of distinct regions

(F0, F1, . . . , Fj) of H, a rational point x0 ∈ X.
Question: “Does the trajectory Φ starting from x0 have a periodic signature of type (F0, F1, . . . , Fj)

ω

and then reach a point x∗ ∈ X of local dimension d′′ ≤ 3+ at a finite continuous time t∗”
Moreover, given a positive instance, one can effectively computes t∗ and x∗ as a function of the

coordinates of x0.

Proof: Without loss of generality, by renaming of the regions, we can assume that F0 has a dimension
d0 < d. Use the following algorithm:
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Algorithm 2

1 compute ∆ = ∩0,...,jFj and denote by d∆ its dimension. Denote d′ = d − d∆ and d′0 = d0 − d∆. if
∆ = ∅ then reply “false”
/*the subsequence of the intersections of Φ with each Fk must converge toward x∗. Hence x∗ must belong to

∆*/.
2 if d′ > 3 then reply “false”

/*x∗ must be of local dimension d′ ≤ 3.*/
/*We have at this point d′0 = 1 or d′0 = 2*/.

3 Choose x∗
0 ∈ ∆. Choose an affine basis of Rd of typeB = (x∗

0, e1, . . . , ed) such that (x∗
0, ed′+1, . . . , ed) is

an affine basis of ∆ and B′ = (x∗
0, e1, . . . , ed′

0
, ed′+1, . . . , ed) is an affine basis of F0. For x = (x1, xd′

0
) ∈

Rd′

0 , denote by Φx the trajectory of H that starts from point x ∈ F0 of coordinates (x1, xd′

0
, 0, . . . , 0)

in basis B′. if Φx has a signature starting by F0, . . . , Fj then denote by (y1, yd′

0
, yd′+1, . . . , yd) the

coordinates in basis B′ of the next intersection of Φx with F0 and by Tx the time of this intersection.
Compute the coefficients of the linear maps A : Rd′

0 → Rd′

0 , T : Rd′

0 → R, Offk : Rd′

0 → R for
k ∈ {d′ + 1, . . . , d} that respectively map x = (x1, xd′

0
) ∈ Rd′

0 to (y1, yd′

0
), Tx and to yk.

Denote by x′
0 = (x0

1, x
0
d′

0
, x0

d′+1, . . . , x
0
d) the coordinates of x0 in basis B.

4 Check that the sequence of the iterates of A given by (xn
1 , x

n
d′

0
) = An(x0

1, x
0
d′

0
), is converging to 0

when n tends to infinity as follows: if A has a real or complex eigen value λ with |λ| > 1 and if x′
0 is

not a eigen vector of A with eigen value |λ′| < 1 return “false”
/*for 2× 2 matrices all these tests are easily computable. The determinant of A is always non-negative from

lemma 4.1*/.
5 Compute x∗ = (x∗

1, . . . , x
∗
d) ∈ Rd by x∗

i = 0, for i ≤ d′, x∗
i = x0

i + Σ∞
j=0Offi(x

j
1, x

j

d′

0

). Compute

t∗ ∈ R by t∗ = Σ∞
j=0T (xj

1, x
j

d′

0

)

/*If the signature of Φ is really (F0, F1, . . . , Fj)
ω then Φ must converge at time t∗ to the point x∗ with these

coordinates in basis B . These series are always computable by working in a basis where A is tridiagonal and

by using the identities Σλn = 1/(1 − λ) and Σnλn−1 = 1/(1 − λ)2). Check that all the x∗
i , 1 ≤ i ≤ d, are

rational numbers, and that t∗ is a rational number. */
6 Compute the subset Out ⊂ F0 of points z ∈ Rd such that the trajectory starting from z has not a

signature starting by F0, . . . , Fj , F0, . . . , Fj

/*Out is made of an union of polyhedral O1, . . . , Om.*/
7 Compute d′′ the local dimension of x∗. if d′′ > 3+ then return “false”
8 Choose a local dimension neighborhood V for x∗ that is also included in the ball centered in x∗ of

radius inf{d(x∗, Oj)|j ∈ {1, . . . ,m}∧d(x∗, Oj) > 0}. Compute n0 such that n ≥ n0 ⇒ (xn
1 , x

n
d′

0
) ∈ V .

If the signature of Φ does not start by (F0, . . . , Fj)
n0F0 then return “false”.

9 Construct H′ = (X ′, f ′) as a local dimension PCD system for x∗: that is, H′ = Hx∗ . For k ∈
{0, . . . , j}, let F ′

k = Fk ∩X ′ and d′′k the dimension of F ′
k. if there is a i ∈ {0, . . . , j} with d′′i = 1, and

the signature of Φ starts by F0, . . . , Fj then return “true”
/*in this case, Φ will always intersect F0 on segment [x0, x∗] and we will never reach Out by definition of

V .*/
/*We are now sure that d′′ = 3, and di = 2 for i ∈ {0, . . . , j}*/.

10 Choose an affine basis B′′ of F ′
0 of type B′′ = (x∗, e1, e2).

11 if there exists (x1, x2) ∈ F ′
0 − {x∗} with (−x1,−x2) ∈ F ′

0 then return “false”
/*by convexity of F0 that would imply that x∗ is in the topological interior of F0 and that at some rank big

enough, F0 would delimit the space in two, and that it would be impossible to get from one half of space to

the other.*/
12 Compute Out′ ⊂ R by Out′ = {z = x1/x2|(x1, x2) ∈ F ′

0 ∩Out}
/*since all the regions Fk that intersect V have x∗ in their topological cloture, testing if (x1, x2) is in Out

can be done by only considering the ratio x1/x2*/.
Computes the limit z∗ of the ratio zn = x′

1
2n
/x′

2
2n

where (x′
1

n
, x′

2
n
) is the sequence of the coordinates

in basis B′′ of the intersections of Φ with F ′
0

/*As before, (x′
1

n+1, x′
2

n+1) = A′(x′
1

n, x′
2

n) for some linear map A′. Since the determinant of A′ is non-

negative this limit always exists and zn is either decreasing or increasing*/
13 if z∗ is in the topological interior of Out′ then return “false”.
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14 if zn is an increasing (respectively: decreasing) subsequence then choose ε > 0 such that interval
I = (z∗ − ε, z∗) ⊂ Out′ (resp: I = (z∗, z∗ + ε) ⊂ Out′). Compute n1 such that n ≥ n1 ⇒ zn ∈ I.
Check that Φ has a signature starting by (F0, . . . , Fj)

n1 . if it so then return “true” else return
“false”.

2

With these lemmas, we prove:

Theorem 5.2 The problems Reach3 and Reach3+ are in Σ1.

Proof: Reach3+(H, V, x0, x
1, tinf , tsup) is answered by the following algorithm:

Algorithm 3

1 Compute V ′ as the union of the complement of V , of NoEvolution(H) and of the union of all the
LocDim(H, k) for all k > 3+.

2 Compute x1′ (respectively: x1′′) made of the union of all the points x ∈ X that are mapped to x1

(resp. to V ′) in discrete time less than 1.
/*x1′ and x1′′ are made of an union of polygons.*/

3 If tinf < 0 or tsup < tinf then return “false”
4 t0 := 0; i := 0.
5 while xi 6∈ x1′′ ∧ (xi 6∈ x1′ ∨ ti ≤ tinf ) do
6 i = i + 1.
7 Compute xi+1 and ti+1 corresponding respectively to the first intersection of Φi+1 with a region

of H and to the time of this intersection, where Φi+1 is the trajectory starting from xi at time
ti. Denote the region intersected by Fi.

8 if ti > tsup then stop and return “false”.
9 If i′ = sup{j < i|Fj = Fi} exists then using lemma 5.6, test if the trajectory Φi+1 has a cyclic

signature of type (Fi′+1 ∩ (x1′′ ∪x1′)c, Fi′+2 ∩ (x1′′ ∪x1′)c, . . . , Fi ∩ (x1′′ ∪x1′)c)ω and then reach
a point x∗ at a finite continuous time t∗. If it is so and t∗ ≤ tsup − ti, set xi = x∗ and ti = t∗.

10 end while
11 if xi ∈ x1′ ∧ ∀k > 3+xi 6∈ LocDim(H, k) then return “true” else return “false”.

By lemma 5.5 each point x∗ reached by Φ of local dimension less than 3+ is reached by an ultimately
cyclic signature. Hence each such point x∗ is detected and dropped by the algorithm. As a consequence,
if the answer should be positive, the algorithm always halt with a correct answer. Assume that this
algorithm does not halt: take t∗ = supiti. We have t∗ ≤ tsup. By continuity of Φ, Φ reaches at time t∗

the point x∗ = Φ(t∗). x∗ is necessary of local dimension d′ > 3+ since if it would not be so, x∗ would be
dropped by the algorithm. Hence the answer should be negative and the algorithm is correct.

2

5.2.4 Case d ≥ 4

We generalize theorem 5.2 to higher dimensions. We prove first:

Lemma 5.7 Let d′ ≥ 4. Assume that Reach(d′−1)+ ∈ Σp and that Reach(d′−2)+ ∈ Σq for some integers
p, q. Then

• Convd′ ∈ Σmax(p,q+2).

• Convd′+ ∈ Σmax(p,q+2).

Proof:
Denote by B(x∗, 1/n1) the ball of radius 1/n1 centered in x∗ for the norm of Rd defined by d(x, y) =

maxi|xi − yi|. For a subset U ⊂ X, denote its complement by U c. Let k = d′ or k = d′
+
. We claim:
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Convk(H, V, x0, x
∗, tinf , tsup)

⇔ x∗ ∈ LocDim(H, k) ∧ x∗ ∈ V ∧ tinf < tsup

∧ ∃y1 ∈ Qd ∃t1, t2 ∈ Q y1 ∈ Vx∗ ∧ Reach(d′−1)+ (H, V, x0, y1, t1, t2)

∧

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

∃y2 ∈ Qd ∃t3, t4 ∈ Q ∃λ ∈ R+

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Reach(d′−1)+(H, V ∩ Vx∗ , y1, y2, t3, t4)
px∗(y2) = λpx∗(y1)
λ < 1
t1 +

P∞
i=1 λ

it3 > tinf

t2 +
P∞

i=1 λ
it4 ≤ tsup

qx∗(y1) +
P∞

i=1 λ
i(qx∗(y2) − qx∗(y1)) = qx∗(x∗)

∨ ∀n1 ∈ N

Reach(d′−2)+ (H, V, y1, B(x∗, 1/n1), tinf − t1, tsup − t2)

Assume that we have a positive instance to formula Convk: use the notations of definition 5.3. Denote
by S the set of the points that are reached by Φ before time Tcont and that have a local dimension (d′−1)+.
Since Φ converges to x∗, there must exist an y1 = Φ(ty1

) ∈ Vx∗ , ty1
< Tcont that is reached by Φ, and

such that Φ stays in Vx∗ between time ty1
and time Tcont. y1 is reached using only points of local

dimension ≤ (d′ − 1)+. If S is not a finite set, by lemma 5.3 the first clause of the disjunction is true.
Assume now that S is a finite set: we can assume that ty1

is chosen big enough such that Φ does not
reach any point of S between time ty1

and time Tcont. For all n1 ∈ N we get that the trajectory starting
from y1 reaches B(x∗, 1/n1) using only points of local dimension ≤ (d′ − 2)+. Hence the second clause
of the disjunction is true.

Conversely, assume that the right hand side of the formula is true. If the first clause of the disjunction
is true, it is clear than the formula Convk should be true. Assume now that the second clause is true. For
all n1, we get that there exists tn1

such that Φ(tn1
) ∈ B(x∗, 1/n1). Denote Tcont = supn1∈Ntn1

. From
the continuity of Φ we get that Φ(Tcont) = x∗. Hence Φ reaches x∗ of local dimension k and formula
Convk must be true.

The result is now immediate by applying the Tarski-Kuratowski algorithm on the formula [18].
2

We also prove:

Lemma 5.8 Let d′ ≥ 4. Assume Reach(d′−1)+ ∈ Σp for some integer p. Then Convd′ ∈ Σp+1.

Proof: For a point x∗ ∈ X of local dimension d, define Outx∗ as the set of the points x ∈ X such
that the trajectory starting from x intersects the complement of Vx∗ at a discrete time less or equal to
one. We claim:

Convd′ (H, V, x0, x
∗, tinf , tsup)

⇔ x∗ ∈ LocDim(H, k)
∧ x∗ ∈ V ∧ tinf < tsup ∧ dimension(H) = d′

∧ ∃y1 ∈ Qd ∃t1, t2 ∈ Q y1 ∈ Vx∗ ∧ Reach(d′−1)+ (H, V, x0, y1, t1, t2)
8

>

>

>

>

<

>

>

>

>

:

Reach(d′−1)+ (H, X, y1, X, tinf − t1, tinf − t1 + 1)
∧ ¬Reach(d′−1)+(H, X, y1, V

c, 0, tsup − t2)
∧ ¬Reach(d′−1)+(H, X, y1, NoEvolution(H), 0, tsup − t2)
∧ ¬Reach(d′−1)+(H, X, y1, Outx∗ , 0, tsup − t2)
∧ ¬Reach(d′−1)+(H, X, y1, X, tsup − t2, tsup − t2 + 1)

Assume that we have a positive instance to formula Convk: use the notations of definition 5.3. Φ
reaches Vx∗ and does not reach V c∪ NoEvolution(H) ∪ Outx∗ . Φ must reach some points at a time
t > tinf but does not reach any point at a time t > tsup using only points of local dimension ≤ (d′ − 1)+.
Hence the right hand side of the formula is true.

Conversely, assume that the right hand side of the formula is true. That means that the dimension of
H is equals to d′. Define Tcont as the greatest t such that Reach(d′−1)+(H, X, x0, X, t, t+1) is true. Since
Φ is a continuous function, Φ reaches x∗′ = Φ(Tcont). Now observe that, by definition, x∗′ is necessarily
a point of local dimension > (d′ − 1)+. Now, since Φ does not reach Outx∗ , Φ must stay in Vx∗ . By
definition x∗ is the only point of local dimension > (d′ − 1)+ in Vx∗ . Hence x∗′ = x∗. We have clearly
tinf < Tcont ≤ tsup. As a consequence, Convd′ should be true.

The result is immediate by applying the Tarski-Kuratowski algorithm on the formula [18].
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We get:

Theorem 5.3 Let d′ ≥ 3.

• Reachd′ is in Σd′−2.

• Reachd′+ is in Σd′−1 if d′ is even.

• Reachd′+ is in Σd′−2 if d′ is odd.

Proof: We prove the assertion by recurrence over d′: cases d′ = 2, 3 are theorem 5.2. Assume d′ > 4
and assume the hypothesis at rank d′′ for all d′′ < d′. From lemma 5.3 we have, for k = d′ or k = d′

+
:

Reachk(H, V, x0, x
1, tinf , tsup)

⇔ Reach(d′−1)+ (H, V, x0, x
1, tinf , tsup)

8

>

>

>

>

<

>

>

>

>

:

x∗
0 = x0

∀0 ≤ i < n Convk(H, V, x∗
i , x

∗
i+1, ti, t

′
i)

Reach(d′−1)+ (H, V, x∗
n, x

1, tn, t
′
n)

t0 + t1 + . . .+ tn > tinf

t′0 + t′2 + . . .+ t′n ≤ tsup

The result is immediate by applying the Tarski-Kuratowski algorithm on this formula since

• If d′ is even, Reachd′ ∈ Σd′−2 from lemma 5.8 and the hypothesis at rank d′ − 1, and Reachd′+ ∈
Σd′−1 from lemma 5.7 and the hypothesis at ranks d′ − 1 and d′ − 2.

• If d′ is odd, Reachd′ ∈ Σd′−2 and Reachd′+ ∈ Σd′−2 from lemma 5.7 and the hypothesis at ranks
d′ − 1 and d′ − 2.

2

We get the main result of this section:

Corollary 5.1 • If L is semi-recognized by a purely rational PCD system of dimension d, then L ∈
Σd−2.

• If L is recognized by a purely rational PCD system of dimension d, then L ∈ ∆d−2.

Proof: With the notations of definition 2.3, we have

n ∈ L ⇔ ∃t1 ∈ N Reachd(H, X, r(n), x1, 0, t1)

The second assertion is immediate by considering the complement of L.
2

An by using theorem 5.1:

Corollary 5.2 • The languages that are semi-recognized by purely rational PCD systems of dimen-
sion d in finite continuous time are precisely the languages of Σd−2

• The languages that are recognized by purely rational PCD systems of dimension d in finite continuous
time are precisely the languages of ∆d−2
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[4] J. L. Balcázar, J. Diáz, and J. Gabarró. Structural Complexity I & II. EATCS Monographs on
Theoretical Computer Science, 1988.

25



[5] Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation and Complexity over
the Real Numbers: NP-completeness, Recursive Functions and Universal Machines. Bulletin of the
American Mathematical Society, 21(1):1–46, July 1989.

[6] Olivier Bournez. Achilles and the tortoise climbing up the hyperarithmetical hierachy. Technical
report, LIP ENS-Lyon, 1997.

[7] Olivier Bournez. Some bounds on the computational power of piecewise constant derivative systems.
In Proceedings of ICALP’97, pages 143–153, 1997. Lecture Notes in Computer Science, 1256.

[8] Olivier Bournez and Michel Cosnard. On the computational power of hybrid and dynamical systems.
Theoretical Computer Science, 168(2):417–459, 1996.

[9] Michael S. Branicky. Universal computation and other capabilities of hybrid and continuous dy-
namical systems. Theoretical Computer Science, 138:67–100, 1995.

[10] Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical Systems and Linear Alge-
bra. Accademic Press, San Diego, CA, 1974.

[11] P. Koiran. Computing over the reals with addition and order. Theoretical Computer Science,
133:35–47, 1994.

[12] Pascal Koiran. A Weak Version of the Blum Shub Smale Model. Technical Report 005, NeuroColt
Technical Report Series, August 1994. A preliminary version can be found in Proceedings of 34th
IEEE Symposium on Foundations of Computer Science, pages 486-495, 1993.

[13] K. Meer and C. Michaux. A Survey on real Structural Complexity Theory. To be published in
Bulletin of the Belgian Mathematical Society - Simon Stevin.

[14] Klaus Meer. A note on a P 6= NP Result for a Restricted Class of Real Machines. Journal of
Complexity, 8:451–453, 1992.

[15] Cristopher Moore. Recursion theory on the reals and continuous-time computation. Theoretical
Computer Science, 162:23–44, 1996.

[16] M. H. A. Newman. Elements of the Topology of Plane Sets of points. Greenwood Press, Publishers,
1985.

[17] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the foundations of
mathematics. Elsevier, 1992.

[18] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.

[19] Walter Rudin. Real and Complex Analysis, 3rd edition. McGraw Hills, 1987.

26


