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Abstract

A temporal constraint language is a set of relations that has a first-order definition in
(Q;<), the dense linear order of the rational numbers. We present a complete complexity
classification of the constraint satisfaction problem (CSP) for temporal constraint languages:
if the constraint language is contained in one out of nine temporal constraint languages, then
the CSP can be solved in polynomial time; otherwise, the CSP is NP-complete. Our proof
combines model-theoretic concepts with techniques from universal algebra, and also applies
the so-called product Ramsey theorem, which we believe will useful in similar contexts of
constraint satisfaction complexity classification.
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1 Introduction

A constraint satisfaction problem is a computational problem where the task is, informally, to
decide for a given set of variables and constraints on the variables whether there exists an as-
signment of values to the variables that satisfies all constraints. Such problems appear naturally
and frequently in most areas of computer science, for example in Artificial Intelligence, Schedul-
ing, Computational Linguistics, Computational Biology, Combinatorial Optimization, Operations
Research, Computer Algebra, and Programming Languages.

We study the computational complexity of a large class of constraint satisfaction problems
where the variables denote time points. Formally, by a temporal constraint language Γ we mean
a relational structure (Q;R1, R2, . . . ) where each Ri has a first-order definition in (Q;<), the
rational numbers with the dense linear order. A temporal constraint language is finite if it contains
finitely many relations. The constraint satisfaction problem (CSP) for a finite temporal constraint
language Γ is the computational problem to decide for a first-order sentence Φ of the form

∃x1, . . . , xn. ψ1 ∧ · · · ∧ ψp ,

where ψ1, . . . , ψp are atomic formulas of the form R(xi1 , . . . , xik
), whether Φ is true or false in Γ.

Several famous polynomial-time solvable and NP-complete problems can be formulated as
temporal CSPs. For example, if Γ equals (Q;Betw) where Betw is the ternary relation Betw =
{(x, y, z) ∈ Q3 | (x < y < z)∨(z < y < x)}, then the corresponding CSP becomes the Betweenness
problem listed in the book of Garey and Johnson [24]. Similarly, the Cyclic Ordering problem [24]
can be formulated as the CSP for (Q; {Q3 | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)}).

One of the most fundamental temporal constraint languages is (Q;≤, <, 6=,=). The CSP
for this constraint language is known as the network consistency problem of the Point Algebra in
Artificial Intelligence, and is easily seen to be tractable [41,42]. Even simpler is the CSP for (Q;<)
itself, which can be viewed as the graph acyclicity problem for directed graphs. A considerably
larger temporal constraint language is the set of Ord-Horn relations, introduced by Nebel and
Bürkert [37]. The CSP for Ord-Horn relations can be solved by resolution in polynomial time.
Another temporal constraint language that is known to be tractable is the class of AND/OR
precedence constraints in scheduling [36]; also see [5]. It has been asked in [27] whether a subclass
of temporal CSPs called ordering CSPs can be classified with respect to their computational
complexity. Satisfiability thresholds for random instances of ordering CSPs have been studied
in [26].
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The class of temporal constraint languages is of fundamental importance for infinite domain
constraint satisfaction, since CSPs for such languages appear as important special cases in sev-
eral other classes of CSPs that have been studied, e.g., constraint languages about branching
time, partially ordered time, spatial reasoning, and set constraints [9, 22, 32]. Moreover, several
polynomial-time solvable classes of constraint languages on time intervals [21,34,37] can be solved
by translation into polynomial-time solvable temporal constraint languages.

In this paper we present a complete classification of the computational complexity of the con-
straint satisfaction problem for temporal constraint languages. The CSP can be solved in polyno-
mial time if the temporal constraint language Γ is contained in at least one out of nine temporal
constraint languages; otherwise, at least one out of six specific temporal constraint satisfaction
problems can be expressed by Γ, and the problem is NP-complete. Two of the polynomial-time
solvable temporal languages properly contain all Ord-Horn relations [5].

A similar classification result was obtained by Schaefer [39] for Boolean constraint languages,
i.e., relational structures over a two element set. Schaefer showed that the CSP for a Boolean
constraint language is tractable if the language is contained in one out of six Boolean constraint
languages; otherwise the CSP is NP-complete.

The question whether such a complexity dichotomy holds for all constraint languages over a
finite domain [23] is one of the major open research problems in constraint satisfaction complexity.
In the last decade, a strong connection of this problem to central and deep questions in universal
algebra has stimulated further activity [10–14, 20, 29, 30]; the starting point of this connection is
the observation that the complexity of the CSP is fully described by the so-called polymorphisms
of the constraint language.

The techniques that we apply to study temporal CSPs take their impetus from this algebraic
approach. In order to use polymorphisms for constraint languages over Q, we need fundamental
concepts from model theory, as in [1,3,6]. Another important ingredient is Cameron’s classification
of temporal constraint languages: up to first-order interdefinability, there are exactly five different
temporal constraint languages. Two structures that are first-order interdefinable might have CSPs
of different computational complexity (this is why we need polymorphisms and universal algebra),
but still Cameron’s result turns out to be useful in our proof of the complexity dichotomy. Finally,
in the combinatorial part of the proofs we also apply the so-called product Ramsey theorem; we
believe that Ramsey theory can be applied in a similar way for complexity classifications of other
classes of constraint languages over infinite domains.

2 Preliminaries

2.1 Model-theoretic preliminaries

A temporal constraint language Γ = (Q;R1, R2, . . . ) is a structure with a first-order definition in
(Q;<), the dense linear order of the rational numbers. That is, for every relation Ri of Γ of arity
ki there is a first-order formula φ(x1, . . . , xki) with ki free variables x1, . . . , xki that defines Ri

over (Q;<) in the usual way. Relations with a first-order definition in (Q;<) will also be called
temporal relations.

Temporal constraint languages have remarkable model-theoretical properties, which are im-
portant in this paper. The first-order theory of a relational structure is the set of all first-order
sentences that are true in Γ.

Definition 1. A relational structure Γ over a countable domain is called ω-categorical if all
countable models of the first order theory of Γ are isomorphic to Γ.

The structure (Q;<) is ω-categorical (see e.g. [16, 28]); this is due to Cantor [17].

Lemma 1 (see e.g. [28]). If Γ is ω-categorical, and ∆ has a first-order definition in Γ, then ∆ is
also ω-categorical.
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As a consequence, all temporal constraint languages are ω-categorical. There is also an
algebraic characterization of ω-categoricity. An automorphism of a relational structure Γ is
an isomorphism between Γ and Γ. The set of all automorphisms of Γ forms a permutation
group Aut(Γ) on the domain D of Γ. The orbit of a k-tuple (t1, . . . , tk) over D is the set
{(α(t1), . . . , α(tk)} | α ∈ Aut(Γ)}. A permutation group is called oligomorphic if for every k ≥ 1
there is only a finite number of distinct orbits of k-tuples over D. The following was indepen-
dently shown by Engeler, Svenonius, and Ryll-Nardzewski, and is of fundamental importance for
the universal-algebraic approach to constraint satisfaction.

Theorem 2 (see e.g. [16,28,35]). Let Γ be a relational structure. Then the following are equivalent:

1. Γ is ω-categorical.

2. The automorphism group of Γ is oligomorphic.

3. For all k, there are only finitely many inequivalent first-order formulas with k free variables.

4. Every k-ary first-order definable relation in Γ is the union of a finite number of orbits of
k-tuples of the automorphism group of Γ.

5. A relation is first-order definable over Γ if and only if it is preserved by the automorphisms
of Γ.

Corollary 3. A relation R ⊆ Qk is temporal if and only if it is preserved by Aut(Q;<).

Proof. Since (Q;<) is ω-categorical, this follows directly from Item 5 of Theorem 2.

Another important model-theoretic concept is homogeneity : a relational structure Γ is called
homogeneous1 if every isomorphism between induced substructures of Γ can be extended to an
automorphism of Γ. It is well-known that the structure (Q;<) is homogeneous [28].

2.2 Cameron’s theorem

In this subsection we recall the classical result of Cameron [15] that describes temporal constraint
languages up to first-order interdefinability. We say that two structures Γ and ∆ are first-order
interdefinable if Γ has a first-order definition in ∆, and ∆ has a first-order definition in Γ.

Theorem 4 (Relational version of Camerons theorem; see e.g. [33]). Let Γ be a temporal constraint
language. Then Γ is first-order interdefinable with exactly one out of the following five homogeneous
structures.

• The dense linear order (Q;<) itself,

• The structure (Q;Betw), where Betw is the ternary relation
{(x, y, z) ∈ Q3 | (x<y<z) ∨ (z<y<x)}

• The structure (Q;Cycl), where Cycl is the ternary relation
{(x, y, z) | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)},

• The structure (Q;Sep), where Sep is the 4-ary relation
{(x1, y1, x2, y2) | (x1 < x2 < y1 < y2) ∨ (x1 < y2 < y1 < x2) ∨ (y1 < x2 < x1 < y2) ∨ (y1 <
y2 < x1 < x2) ∨ (x2 < x1 < y2 < y1) ∨ (x2 < y1 < y2 < x1) ∨ (y2 < x1 < x2 < y1) ∨ (y2 <
y1 < x2 < x1)},

• The structure (Q; =).

1Sometimes also ultra-homogeneous, to distinguish it from other notions of homogeneity in model theory.
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The relation Sep is the so-called separation relation; note that Sep(x1, y1, x2, y2) holds for
elements x1, y1, x2, y2 ∈ Q iff all four points x1, y1, x2, y2 are distinct and the smallest interval over
Q containing x1, y1 properly overlaps with the smallest interval containing x2, y2 (where properly
overlaps means that the two intervals have a non-empty intersection, but one interval does not
contain the other).

Temporal constraint languages naturally arise in the theory of infinite permutation groups,
because these structures are precisely the structures with a largest possible degree of symmetry
on its subsets, which is formalized with the following definition. A subset of D is called a k-subset
if it has cardinality k; the orbit of a k-set S is the set {α(S) | α ∈ Aut(Γ)} where α(S) is the
image of the set S under α.

Definition 2. A structure Γ is called highly set-transitive if for all k ≥ 1 the structure Γ has
precisely one orbit of k-sets.

The next theorem was also shown by Cameron [15], and was his original motivation for the
investigation of structures with a first-order definition in (Q;<). It will not be used in the results
we present; however, we would like to state it here because it provides a fundamentally different
characterization of the class of temporal constraint languages.

Theorem 5. A relational structure Γ is highly set-transitive if and only if it is a temporal con-
straint language.

2.3 The constraint satisfaction problem

A first-order formula is called primitive positive if it is of the form

∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψp ,

where each formula ψ1, . . . , ψp is atomic, i.e., of the form R(xi1 , . . . , xik
), of the form xi1 = xi2 , or

false.
The constraint satisfaction problem for a constraint language Γ = (Q;R1, . . . , Rs) with finitely

many relations is the following computational problem, denoted by CSP(Γ). We are given a
primitive positive sentence Φ (i.e., a primitive positive formula without free variables) where all
relation symbols are relation symbols for the relations in Γ, and the question is whether Φ is true
in Γ. When Γ is (Q;R), we also write CSP(R) instead of CSP((Q;R)).

The conjuncts ψ1, . . . , ψp of an instance Φ of the CSP are also called constraints. Hence, in
this paper a constraint is a syntactic object (an atomic formula). Note that an instance of the
CSP is fully described by its set of constraints. It will later be notationally convenient to treat Φ
as a set of constraints. The set of variables that appears in a first-order formula Φ is denoted by
V (Φ). A solution for an instance Φ of the CSP is a mapping s : V (Φ) → Q that satisfies all the
constraints of Φ.

Note that for finite relational signatures the choice of the way in which the relation symbols
are represented in the input does not affect the computational complexity of the problem. This is
different when we consider infinite constraint languages Γ. For infinite constraint languages (i.e.,
for structures with an infinite relational signature), we fix a way how to represent the relation sym-
bols in the input, and then define the constraint satisfaction problem in the same way. However,
the computational complexity of CSP(Γ) might now depend on the choice of this representation.
Therefore, we follow a convention from finite domain constraint satisfaction and say that CSP(Γ)
is (locally) tractable if all reducts of Γ with a finite signature can be solved in polynomial time [14].
Similarly, we say that CSP(Γ) is in NP if all reducts of Γ with a finite signature are in NP. Clearly,
these two concepts do not depend on the choice of the representation of the relation symbols in
the input.

We would like to remark that there are natural ways to represent temporal relations for infinite
constraint languages such that the algorithmic results presented in this paper still hold when we
use these representations; these representations are discussed in detail in [5]. In the constraint
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satisfaction literature, constraint satisfaction problems that can be solved in polynomial time
under these representations of the input instances are called globally tractable. The necessary
modifications of the algorithms to deal with infinite constraint languages are not difficult, but
complicate the presentation, and are therefore omitted in this paper.

Proposition 6. For all temporal constraint languages Γ the problem CSP(Γ) is in NP.

Proof. Let Φ be an instance of CSP(Γ). Note that whether or not a mapping s from V (Φ) to Q
is a solution for Φ only depends on the weak linear order (i.e., the linear preorder) � defined on
the variables V (Φ) by (x � y) ⇔ (s(x) ≤ s(y)). Clearly, it is possible to verify in deterministic
polynomial time whether a given weak linear order on V (Φ) is the weak linear order of a solution
to Φ.

The following is an essential tool to establish hardness results for the CSP. A k-ary relation is
called primitive positive definable if there exists a primitive positive formula with k free variables
that defines R. Lemma 7 says that primitive positive definable relations can be ‘simulated’ in
constraint satisfaction problems. For finite D, this can be found in [14], and its (easy) proof also
works for infinite D.

Lemma 7. Let Γ = (D;R1, R2, . . . ) be a constraint language, and let R be a relation that has a
primitive positive definition in Γ. Then CSP(Γ) and CSP(D;R,R1, R2, . . . ) are polynomial-time
equivalent.

By 〈Γ〉 we denote the set of all temporal relations that are primitive positive definable in
Γ. Lemma 7 implies that the computational complexity of CSP(Γ) only depends on 〈Γ〉 (up to
polynomial-time reducibility).

2.4 Universal-algebraic preliminaries

Primitive positive definability can be characterized by preservation under so-called polymorphisms
– this is the starting point of the so-called (universal-) algebraic approach to constraint satisfaction
(see [14]).

When t = (e1, . . . , em) ∈ Dm is an m-tuple over D we write t[i] for the i-th entry ei of t. Let
t1, . . . , tk be m-tuples over D, and let f be a function f : Dk → D. Then we write f(t1, . . . , tk) for
the tuple obtained from the tuples t1, . . . , tk by applying f componentwise, i.e., for the m-tuple
(f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])).

We say that a k-ary function (also called operation) f : Dk → D preserves an m-ary relation
R ⊆ Dm iff for all t1, . . . , tk ∈ R the tuple f(t1, . . . , tk) is also contained in R. If an operation f
does not preserve a relation R, we say that f violates R. If f preserves all relations of a constraint
language Γ, we say that f is a polymorphism of Γ (it is also common to say that Γ is closed
under f). Note that the automorphisms of Γ are bijective unary polymorphisms that preserve all
relations and their complements. A unary polymorphism of Γ is also called an endomorphism of
Γ.

The set of all polymorphisms Pol(Γ) of a relational structure forms an algebraic object called
a clone [40], which is a set of operations defined on a set D that is closed under composition and
that contains all projections. Moreover, Pol(Γ) is also closed under interpolation (see Proposition
1.6 in [40]): we say that a k-ary operation f is interpolated by a set of k-ary operations F if for
every finite subset A of D there is some operation g ∈ F such that f(a) = g(a) for every a ∈ Ak.
We say that F locally generates an operation g if g is in the smallest clone that is closed under
interpolation and contains all operations in F . For a set F of operations defined on a set D the
set of all relations over D that are preserved by all operations in F is denoted by Inv(F ).

Proposition 8 (Corollary 1.9 in [40]). F locally generates g if and only if g preserves all relations
in Inv(F ).

Polymorphism clones can be used to characterize primitive positive definability over a finite
structure, by a result of [8] and [25]. In general, this is not true for infinite structures [6]. However,
the result remains true if the relational structure is ω-categorical.
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Theorem 9 (of [6]). Let Γ be an ω-categorical constraint language. Then the relations preserved
by the polymorphisms of Γ are precisely those that have a primitive positive definition in Γ, in
symbols, Inv(Pol(Γ)) = 〈Γ〉.

The following lemma holds for arbitrary relational structures Γ.

Lemma 10. Let Γ be a relational structure and let R be a k-ary relation that is a union of l orbits
of k-tuples of Aut(Γ). If R is violated by a polymorphism g of Γ of arity m ≥ l, then R is also
violated by an l-ary polymorphism of Γ.

Proof. Since R is violated by g there are k-tuples t1, . . . , tm from R such that g(t1, . . . , tm) is
not in R. Since R is the union of l orbits of k-tuples of Aut(Γ) and l < m, there are tuples in
t1, . . . , tm that are from the same orbit. In particular, we can without loss of generality assume
that for all tuples tl+1, . . . , tm there is a tuple from t1, . . . , tl that is in the same orbit. For
l + 1 ≤ j ≤ m, let ij ≤ l be an index such that tij and tj are in the same orbit. Then there are
automorphisms αl+1, . . . , αm of Γ such that αj(tij ) = tj . Therefore the l-ary operation f defined
as f(x1, . . . , xl) := g(x1, . . . , xl, αl+1(xil+1), . . . , αm(xim)) is a polymorphism of Γ and also violates
R.

We state an easy corollary of Theorem 5, Theorem 9 and Lemma 10.

Corollary 11. Suppose there is no primitive positive definition of < in a temporal constraint
language Γ. Then Γ has a endomorphism that violates <.

2.5 Polymorphism clones of temporal constraint languages

In this paper, we always deal with polymorphism clones of temporal constraint languages. Thus
it is convenient to make the following convention. We say that a set of operations F generates an
operation g if F together with all automorphisms of (Q;<) locally generates g. In case that F
contains just one operation f , we also say that f generates g.

Lemma 12. An operation f generates g if and only if every temporal relation that is preserved
by f is also preserved by g.

Proof. By definition, f generates g if and only if F = {f}∪Aut(Q;<) locally generates g. Propo-
sition 8 shows that this is the case if and only if g preserves all relations in Inv(F ). Since a
relation is preserved by Aut(Q;<) if and only if it is a temporal relation, we find that g preserves
all relations in Inv(F ) if and only if g preserves all temporal relations preserved by f , which is
what we had to show.

We now present an equivalent description of the polymorphism clone of a temporal constraint
language that is generated by a single operation. A k-ary operation f on Q defines a weak linear
order � on Qk, as follows: for x, y ∈ Qk, let x � y iff f(x) ≤ f(y). The following observation
easily follows from the properties of Aut(Q;<).

Observation 1. Let f and g be two k-ary operations that define the same weak linear order on
Qk. Then f generates g and g generates f .

We now define fundamental operations on Q. The unary operation − is defined as −(x) := −x
in the usual sense. Let c be any irrational number, and let e be any order-preserving bijection
between (−∞, c) and (c,∞). Then the operation cyc is defined by e(x) for x < c and by e−1(x) for
x > c. With these operations and the notion of generation, Cameron’s theorem can be rephrased
as follows.

Theorem 13 (Operational version of Camerons theorem; see e.g. [33]). Let Γ be a temporal
constraint language. Then exactly one of the following holds.

• The automorphisms of Γ are the permutations generated by (Q;<);
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• The automorphisms of Γ are the permutations generated by −;

• The automorphisms of Γ are the permutations generated by cyc;

• The automorphisms of Γ are the permutations generated by − and cyc;

• All permutations of Q are automorphisms of Γ.

If f is a k-ary operation on Q, then the operation −f(−x1, . . . ,−xk) is called the dual of f .
Note that if f preserves an m-ary relation R, then the dual of f preserves the relation −R, which
is defined to be the relation {(−t1, . . . ,−tm) | (t1, . . . , tm) ∈ R}. Clearly, if CSP(Q;R1, R2, . . . )
is tractable (is NP-complete), then also CSP(Q;−R1,−R2, . . . ) is tractable (is NP-complete, re-
spectively).

2.6 Hard temporal CSPs

In this subsection we discuss various important NP-complete temporal constraint satisfaction
problems. We have already mentioned in the introduction that the Betweenness and the Cyclic
Ordering problem in [24] can be formulated as temporal CSPs, and that these problems are
NP-complete. The corresponding relations Betw and Cycl re-appeared in Cameron’s theorem
(Theorem 4). Another relation that appeared in Theorem 4 is the separation relation Sep. The
corresponding CSP is again NP-complete.

Proposition 14. Let Γ be any constraint language such that Sep has a primitive positive definition
in Γ. Then CSP(Γ) is NP-hard.

Proof. By Lemma 7, it is enough to prove NP-hardness of CSP(Sep), which we do by reduction
from the problem CSP(Betw) listed in [24] as an NP-complete problem. So assume we are given
an instance Φ of CSP(Betw). We create an instance Ψ of CSP(Sep) as follows. The set of
variables is V (Φ) ∪ {z}, where z is a new variable. For each constraint φ ∈ Φ imposed on the
variables x1, x2, x3 ∈ V (Φ) we include the constraint Sep(z, x2, x1, x3) to Ψ. It is obvious that the
transformation can be performed in polynomial time.

We have to verify that Ψ has a solution if and only if Φ has a solution. If Φ has a solution
t, then for any constraint φ ∈ Φ imposed on the variables x1, x2, x3 either t(x1) < t(x2) < t(x3)
or t(x3) < t(x2) < t(x1). Therefore, if we extend t by mapping z to a value smaller than all the
values of t, all constraints in Ψ are satisfied.

For the other implication, suppose that Ψ has a solution. Because Sep is preserved by cyc, it
also has a solution t in which z gets the minimal value among all variables of Ψ. Now, consider
a constraint ψ ∈ Ψ imposed on the variables z, x2, x1, x3. Because z has the minimal value in t
either t(x1) < t(x2) < t(x3) or t(x3) < t(x2) < t(x1), and therefore the corresponding constraint
in Φ is satisfied. Hence, t restricted to V (Φ) is a solution of Φ.

An important relation for our classification is the relation S, defined as follows.

Definition 3. Let S be the ternary relation {(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y}.

This relation has an NP-complete constraint satisfaction problem.

Proposition 15. Let Γ be any constraint language such that S has a primitive positive definition
in Γ. Then CSP(Γ) is NP-hard.

Proof. By Lemma 7, it is enough to show that CSP(S) is NP-hard. We reduce the problem
positive 1-IN-3-3SAT [24] to the problem CSP(S). Let F be an input formula for 1-in-3-3SAT
with variables x1, . . . , xn. We create the following instance Φ of CSP(S):

• We introduce a new variable a.

• For each variable xi of F , we introduce two variables v1
i , v

2
i and a constraint S(a, v1

i , v
2
i ).
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• For each clause C of F with variables xi, xj , xk, we add a new variable vC and introduce
the constraints S(vC , v

1
i , v

1
j ) and S(a, vC , v

1
k).

We show that Φ has a solution if and only if F is 1-in-3 satisfiable. For the implication from
right to left suppose we have some 1-in-3 satisfying truth assignment s. We assign the value 0 to
a and for each variable xi of F , we assign 0 to v1

i and 1 to v2
i if xi is true in s, and i+ 1 to v1

i and
0 to v2

i if xi is false in s. Clearly, the constraints S(a, v1
i , v

2
i ) are satisfied for all i ∈ {1, . . . , n}.

For each clause C containing variables xi, xj , xk, exactly one of variables is true in s. If it is xk,
we assign min(i+ 1, j + 1) to vC and see that both constraints S(vC , v

1
i , v

1
j ) and S(a, vC , v

1
k) are

satisfied (as v1
k is assigned 0). If it is xi or xj , we assign 0 to vC and again see that both constraints

are satisfied.
For the implication from left to right, let s be a solution to Φ. Without loss of generality we

can assume that s(a) = 0 (otherwise we can apply an appropriate automorphism of (Q, <) to s).
Because of the constraints S(a, v1

i , v
2
i ), exactly one of v1

i , v
2
i is 0 and the other variable is greater

than 0 for all i ∈ {1, . . . , n}. We set variable xi to true if v1
i is 0, otherwise we set xi to false.

Now, we have to check that there is exactly one variable set to true in each clause. Let C be
some clause of F with variables xi, xj , xk. First, we check that at most one variable is true in each
clause. If xk is true, then v1

k is 0 and hence vC must be greater than 0. Consequently, both v1
i

and v1
j must be greater than 0 and so xi and xj are false. If xi or xj is true, then v1

i or v1
j must

be 0, respectively. From the properties of S it follows that at most one of these variables is 0 (and
thus at most one of xi, xj is true) and vC must be 0 too. Hence, v1

k must be greater than 0 and so
xk is false. What remains to be checked is that at least one variable is set to true in each clause.
If all variables xi, xj , xk are false, it means that v1

i , v
1
j , v

1
k are all greater than zero. Therefore vC

is greater than zero and the constraint S(a, vC , v
1
k) cannot be satisfied; a contradiction. So there

is exactly one variable set to true in each clause and so the specified truth assignment is 1-in-3
satisfying.

Our results (see Corollary 51) will show that if no relation among Betw, Cycl, Sep, S, −S, or
the relation {(x, y, z) ∈ Q3 | x = y 6= z ∨ x 6= y = z} is primitive positive definable in a temporal
constraint language Γ, then CSP(Γ) is tractable.

3 Endomorphisms

In this section we study the endomorphisms of temporal constraint languages. As an application,
we obtain a reduction of the complexity classification for temporal constraint satisfaction problems
to the classification for those languages that admit a primitive positive definition of the binary
relation <.

A self-embedding of a relational structure Γ with domain D is an injective mapping f : D →
D such that f preserves the relations in Γ and their complements. We can also think of self-
embeddings of Γ as isomorphisms between Γ and induced substructures of Γ. We will need the
following result of [7].

Theorem 16 (Theorem 5 in [7]). A formula is equivalent to an existential positive (existential)
formula over an ω-categorical structure Γ if and only if the formula is preserved by all endomor-
phisms (self-embeddings) of Γ.

To use Camerons result about automorphism groups of temporal constraint languages, we first
clarify when the self-embeddings are determined by the automorphisms2.

Proposition 17. Let Γ be a structure such that for every self-embedding e of Γ and every finite
tuple ā there is a self-embedding f such that f(e(ā)) = ā. Then the self-embeddings are generated
by the automorphisms of Γ.

2We thank Markus Junker for the proof idea of this result.
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Proof. Suppose for contradiction that the self-embeddings are not generated by the automorphisms
of Γ. Then by Proposition 8 there must be a relation R that is preserved by all automorphisms
but not preserved by the self-embeddings. Since Γ is ω-categorical, Theorem 2 shows that R is
first-order definable, and Theorem 16 shows that R is not existentially definable over Γ. Let φ be
a first-order definition of R in prenex normal form with a minimal number of quantifier blocks,
and let φ0 be the quantifier-free part of φ.

We claim that then there is an existential formula φ′ that is not equivalent to a universal
formula. If the innermost quantifier block of φ is existential with variables x1, . . . , xk, then φ′ =
∃x1, . . . , xk.φ0 cannot be equivalent to a universal formula ψ over Γ, otherwise we could replace
the subformula φ′ in φ by ψ and would obtain a formula that is equivalent to φ but has fewer
quantifier blocks. If the innermost quantifier block is universal with variables x1, . . . , xk, then
either φ′ = ∃x1, . . . , xk.¬φ0 is an existential formula that is not equivalent to a universal formula,
and the claim in the beginning of this paragraph is proved, or there exists a formula ψ equivalent
to φ′ of the form ∀y1, . . . , yl.ψ0 where ψ0 is quantifier-free. If we then replace the subformula
∀x1, . . . , xk.φ0 of φ by ∃y1, . . . , yl.¬ψ0 we obtain a formula that is equivalent to φ but has fewer
quantifier blocks. This shows the claim.

Since ¬φ′ is not equivalent to an existential formula, by Theorem 16 there must be a self-
embedding e and a tuple ā such that ā satisfies ¬φ′ and e(ā) satisfies φ′. By assumption there
exists a self-embedding f of Γ such that f(e(ā)) = ā. Since f preserves the existential formula φ′,
we have that ā satisfies φ′, contradiction.

Note that all temporal constraint languages have only one orbit of 2-sets (Theorem 5). For
structures with this property we can show that all endomorphisms are injective unless they have
a constant endomorphism.

Lemma 18. Let Γ be such that Aut(Γ) has only one orbit of 2-sets. If Γ has a non-injective
endomorphism f , then Γ also has a constant endomorphism.

Proof. Let D be the domain of Γ, and let f be an endomorphism of Γ such that f(b) = f(b′) for
two distinct values b, b′ ∈ D. Let a1, a2, . . . be an enumeration of D. We construct an infinite
sequence of endomorphisms e1, e2, . . ., where ei is an endomorphism that maps all of the values
a1, . . . , ai to a1. This suffices, since by local closure the mapping defined by e(x) := a1 for all x is
an endomorphism of Γ.

For e1, we take the identity map, which clearly is an endomorphism with the desired prop-
erties. To define ei for i ≥ 2, let α be an automorphism of Γ that maps {a1, ei−1(ai)} to {b, b′}
(such an automorphism exists because of the assumption on Aut(Γ)). Then the endomorphism
f(α(ei−1(x))) is constant on a1, . . . , ai (recall that a1 = ei−1(a1) = . . . = ei−1(ai−1)). It is known
that Aut(Γ) has one orbit of 1-sets (the number of orbits of n-sets is not smaller than the number
of orbits of (n− 1)-sets; this is 3.1 in [16]), and hence there is also an automorphism α′ that maps
f(b) to a1. Then ei(x) := α′(f(α(ei−1(x)))) is an endomorphism with the desired properties.

Proposition 19. Let Γ be a temporal constraint language. Then exactly one of the following cases
applies.

1. Γ has a constant endomorphism;

2. All endomorphisms of Γ preserve <;

3. The set of endomorphisms of Γ equals the set of unary operations generated by −;

4. The set of endomorphisms of Γ equals the set of unary operations generated by cyc;

5. The set of endomorphisms of Γ equals the set of unary operations generated by − and cyc;

6. The set of endomorphisms of Γ equals the set of all injective unary operations.
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Proof. First note that all the cases are indeed disjoint: A constant endomorphism violates <, and
cannot be generated by a set of injective unary operations; this shows that the first case is distinct
from all others. Disjointness of the remaining cases follows from Theorem 13.

If Γ has a non-injective endomorphism, then Lemma 18 shows that there is also a constant
endomorphism. Otherwise all endomorphisms of Γ are injective. We show that then all endomor-
phisms are self-embeddings. Suppose for contradiction that this is not the case, i.e., there is an
endomorphism e and an atomic formula that is true on (e(a1), . . . , e(al)) but not true on (a1, . . . , al)
in Γ. Because e is injective, there is an α ∈ Aut(Q;<) such that α(e({a1, . . . , al})) = {a1, . . . , al}.
For simplicity of notation, we write αe for the function obtained as a composition of α and e.
Then (αe)l!, i.e., the composition of (αe) . . . (αe) with l-factorial many terms of the form (αe),
maps ai to itself for all 1 ≤ i ≤ l. But since the operation (αe)l!−1α is an endomorphism, we have
that

(
(αe)l!−1α

)
(e(a1), . . . , e(al)) = (αe)l!(a1, . . . , al) = (a1, . . . , al) satisfies the atomic formula as

well, a contradiction.
In fact, the argument also shows that for any a1, . . . , al ∈ Q there exists a self-embedding f

of Γ into Γ such that f(e(ai)) = ai for all i ∈ {1, . . . , l}. Since this holds for all endomorphisms
e and in particular for all self-embeddings of Γ, Proposition 17 shows that the self-embeddings
and hence the endomorphisms are generated by the automorphisms of Γ. Now the claim of the
statement follows directly from Theorem 13.

The following theorem shows that we can focus on constraint languages where < is primitive
positive definable.

Theorem 20. Let Γ be a temporal constraint language. Then it satisfies at least one of the
following:

(a) There is a primitive positive definition of Cycl,Betw, or Sep in Γ.

(b) Pol(Γ) contains a constant operation.

(c) Aut(Γ) contains all permutations of Q.

(d) There is a primitive positive definition of < in Γ. Moreover, Γ contains a binary operation
that violates Betw.

Proof. If there is a primitive positive definition of Betw in Γ we are in case (a). Otherwise, since
Betw consists of two orbits of triples of the automorphism group of (Q;<), Lemma 10 shows that
there is a binary polymorphism of Γ that violates Betw. If there is a primitive positive definition
of < in Γ, we are in case (d). Otherwise, again by Lemma 10, there is a unary polymorphism of
Γ that violates <. Proposition 19 shows that Γ is preserved by a constant, −, or cyc. For each
of these three operations we show the claim of the statement separately in the following three
paragraphs.

If Γ is preserved by a constant we are in case (b), so we assume in the following that Γ is not
preserved by a constant.

If Γ is preserved by −, the relation Betw consists of only one orbit of triples, and Lemma 10
shows that there is an endomorphism that violates Betw. Proposition 19 then implies that Γ is
also preserved by cyc. Thus, the relation Sep consists of only one orbit of 4-tuples. Again, either
Sep has a primitive positive definition, and we are in case (a), or there is an endomorphism that
violates Sep. Proposition 19 now shows that Γ is preserved by all injective unary operations and
we are in case (c).

If Γ is preserved by cyc, then the relation Cycl consists of only one orbit of triples. If Cycl has
a primitive positive definition in Γ, we are in case (a). Otherwise, Lemma 10 shows that there is
an endomorphism that violates Cycl. Proposition 19 then shows that Γ is also preserved by −.
But the statement of the lemma has already been shown in the case that Γ is preserved by both
− and cyc in the previous paragraph, so we are done.

In case (a), the problem CSP(Γ) is NP-hard, as we have seen in Section 2.6. In case (b) it is
easy to see that CSP(Γ) is trivial. In case (c) the complexity of CSP(Γ) has been classified in [4].
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Figure 1: A visualization of pp (left) and dual-pp (right).

In the following, we therefore study only those temporal constraint languages where < is primitive
positive definable.

4 Shuffle closed languages

One important subclass of temporal constraint languages are shuffle closed constraint languages.
As we will see, there are NP-complete shuffle-closed constraint languages. However, in this section
we present three additional restrictions for shuffle-closed constraint languages, and in Section 5
we present polynomial time algorithms that solve the corresponding CSPs.

From now on, we denote the set {1, . . . , n} also by [n].

4.1 Shuffle closure

We define shuffle closure, and show how this property of temporal relations can also be described
by preservation under a certain binary operation on Q.

Definition 4. A k-ary relation R is called shuffle closed iff for all tuples t1, t2 ∈ R and all indices
l ∈ [k] there is a tuple t3 ∈ R such that for all i, j ∈ [k] we have t3[i] ≤ t3[j] iff

• t1[i] ≤ t1[l] and t1[i] ≤ t1[j], or

• t1[l] < t1[i], t1[l] < t1[j], and t2[i] ≤ t2[j].

Let pp be an arbitrary binary operation on Q such that pp(a, b) ≤ pp(a′, b′) iff one of the
following cases applies:

• a ≤ 0 and a ≤ a′

• 0 < a, 0 < a′, and b ≤ b′.

Clearly, such an operation exists. For an illustration, see the left diagram in Figure 1. In diagrams
for binary operations f as in Figure 1, we draw a directed edge from (a, b) to (a′, b′) if f(a, b) <
f(a′, b′). Unoriented lines in rows and columns of picture for an operation f relate pairs of values
that get the same value under f . The right diagram of Figure 1 is an illustration of the dual-pp
operation. The name of the operation pp is derived from the word ‘projection-projection’, since
the operation behaves as a projection to the first argument for negative first argument, and a
projection to the second argument for positive first argument.

Proposition 21. A temporal relation is shuffle-closed if and only if it is preserved by pp.

Proof. Let R be a shuffle-closed relation, and let t1 and t2 be tuples from R. We want to show that
t3 = pp(t1, t2) ∈ R. If t1 only contains positive values, then there clearly exists an α ∈ Aut(Q;<)
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such that t3 = α(t2), and since R is preserved by the automorphisms of (Q;<), we are done.
Otherwise, let l ∈ [k] be an index such that t1[l] is the largest entry in t1 that is not positive.
Because R is shuffle-closed, we know that there exists a tuple t′3 ∈ R such that t′3[i] ≤ t′3[j] iff
(t1[i] ≤ t1[l] and t1[i] ≤ t1[j]) or (t1[l] < t1[i], t1[l] < t1[j], and t2[i] ≤ t2[j]) for all i, j ∈ [k]. By
the definition of pp, and the choice of l, the tuple t3 satisfies the same property, and therefore
there exists β ∈ Aut(Q;<) such that t3 = β(t′3), and hence t3 ∈ R.

For the opposite direction, we assume that R is preserved by pp, and have to show shuffle
closure of R. Let t1, t2 be tuples in R, and let l ∈ [k]. Choose γ ∈ Aut(Q;<) such that γ maps
t1[l] to 0. Then t3 = pp(γ(t1), t2) is a tuple that satisfies the conditions specified in the definition
of shuffle-closure.

Due to Proposition 21, we use for constraint languages Γ the phrases ‘Γ is shuffle-closed’ and
‘Γ is preserved by pp’ interchangeably. The following lemma states an important property of
shuffle-closed languages that will be used several times in the next subsections.

Lemma 22. Let t1, . . . , tl be tuples from a k-ary relation R closed under pp, and let M1, . . . ,Ml ⊂
[k] be disjoint sets of indices such that

⋃l
i=1Mi = [k] and such that for all i, j ∈ [l] with i < j and

for all i′ ∈Mi, j′ ∈Mj it holds that ti[i′] < ti[j′]. Then there is a tuple t ∈ R such that

• for all i, j ∈ [l] with i < j and for all i′ ∈Mi, j
′ ∈Mj it holds that t[i′] < t[j′];

• for all i ∈ [l] and all i′, i′′ ∈Mi it holds that t[i′] ≤ t[i′′] iff ti[i′] ≤ ti[i′′].

Proof. Let β1, . . . , βl−1 ∈ Aut(Q;<) be such that βi maps max{ti[i′]|i′ ∈Mi} to 0. We set

t := pp(β1(t1), pp(β2(t2), . . . , pp(βl−1(tl−1), tl) . . . )) .

The tuple t clearly belongs to R.
We prove by induction on l that t satisfies the other conditions of the lemma. Observe that β1

maps all the entries of t1 at M1 to non-positive values. Thus for l = 2, it is easy to check from the
properties of pp that for each i ∈M1 and i′ ∈M2 we have t[i] < t[i′] as required by the statement
of the lemma. Also the second condition is immediate. For l > 2 let t′ be defined by

t′ := pp(β2(t2), pp(β3(t3), . . . , pp(βl−1(tl−1), tl) . . . )) .

Then we have t = pp(β1(t1), t′). Now we apply the same argument as for l = 2. Because the order
on [k] \M1 is preserved by the application of pp, we know that the conditions are satisfied for the
sets M2, . . . ,Ml. The argument also shows that the entries at M1 are smaller than the entries at
[k] \M1 and that their order is the same as in t1.

The following lemma is a simple criterion for showing that certain operations generate pp.

Lemma 23. Let f be a binary operation preserving < such that for some automorphisms α, β
of (Q;<) we have f(x, y) = α(x) for all x ≤ −1, 0 < y < 1, and f(x, y) = β(y) for all x > 1,
0 < y < 1. Then f generates pp.

Proof. It suffices to show that every relation preserved by f is also preserved by pp. Let R be
preserved by f , and let t1, t2 be two tuples from R. Let γ ∈ Aut(Q;<) be such that γ(x) = x+ 1
for all positive entries x of t2 and γ(x) = x− 1 for all other entries x of t2. Let δ ∈ Aut(Q;<) be
such that all entries of δ(t2) are larger than 0 and smaller than 1. Then f(γ(t1), δ(t2)) is in the
same orbit as pp(t1, t2), which is what we wanted to show.

It is easy to verify that the relation S, defined in Subsection 2.6, is shuffle-closed. Proposition 15
shows that CSP(S) is NP-complete. Hence, the property of shuffle-closure is not strong enough
to guarantee tractability.

13



Figure 2: Illustration of the operation min.

4.2 Operations providing min-union closure

This section introduces and studies a stronger property than shuffle-closure, namely preservation
under the binary operation min that maps two values x and y to the smaller of the two values;
see Figure 2 for an illustration of the operation min. We also present a sufficient condition that
implies that a temporal constraint language is preserved by min.

For constraint languages over a finite domain, min- and max-closed relations were studied
in [31]. An equivalent clausal description of such constraints is known; however, the equivalence
only holds for finite domains. The tractability of the CSP where the constraint language has such
a clausal description has also been shown for infinite domains [18]. But the algorithm presented
in [18] cannot be applied to all min-closed constraint languages over an infinite domain; it is
already not clear how to adapt this approach to deal with the relation {(x, y, z) | x > y ∨ x > z},
which is clearly min-closed. In Subsection 5.1 we describe an algorithm that efficiently solves the
CSP for temporal constraint languages that are preserved by min.

Definition 5. Let t be from Qk. The set of indices {i ∈ [k] | t[i] ≤ t[j] for all j ∈ [k]} is called
the min-set of t, and denoted by M(t).

Definition 6. A relation is called min-union closed if for all tuples t1, t2 in R there exists a
tuple t3 in R such that M(t3) = M(t1) ∪M(t2).

We now want to link min-union closure of the relations in the constraint language to the
existence of certain polymorphisms.

Definition 7. Let f be a binary operation preserving <. We say that f provides min-union closure
if f(0, 0) = f(0, x) = f(x, 0) for all integers x > 0.

The operation min mentioned above is an example of an operation providing min-union closure.
The following lemma connects Definition 6 and Definition 7.

Lemma 24. Let R be a temporal relation preserved by an operation f providing min-union closure.
Then R is min-union closed.

Proof. Let t1 and t2 be tuples in R, and let a1 and a2 be the minimal values among the entries
of t1 and t2, respectively. Then there are α1, α2 ∈ Aut(Q;<) such that α1(a1) = α2(a2) = 0, and
such that α1 and α2 map all other entries of t1 and t2 to integers. Observe that all entries at
M(t1) ∪M(t2) in the tuple t3 = f(α1(t1), α2(t2)) have the same value. Because f preserves <,
this value is strictly smaller than the values at all other entries in t3. Hence, M(t3) = M(t1) ∪
M(t2).

The following proposition implies that {f, pp} generates min for every operation f that provides
min-union closure.

Proposition 25. A temporal relation R is preserved by pp and an operation providing min-union
closure if and only if R is preserved by min.
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Proof. Clearly, min provides min-union closure. Also observe that the operation min satisfies the
conditions of Lemma 23, and hence min generates pp.

For the opposite direction, suppose that R is k-ary and preserved by pp and an operation f
providing min-union closure. We show that for any two tuples t1, t2 ∈ R the tuple t3 = min(t1, t2)
is in R as well. Let l be the number of distinct values in t3 and v1 < v2 < · · · < vl be these
values. We define Mi, i ∈ [l], to be the set of indices of t3 with the i-th lowest value, i.e.,
Mi = {j ∈ [k] | t3[j] = vi}.

Now let α1, . . . , αl ∈ Aut(Q;<) be such that αi(vi) = 0 and such that the entries of αi(t1)
and αi(t2) are integers. Using these automorphisms we define the tuples s1, . . . , sl by si =
f(αi(t1), αi(t2)). Clearly, these tuples belong to R. It also holds that si is constant at Mi because
for each j ∈ Mi at least one of the entries t1[j], t2[j] is equal to vi (the other one can be only
greater) which is subsequently mapped to 0 by αi and f maps all such pairs to the same value.
Furthermore, for each j′ ∈ Mi′ for i < i′ ≤ l we have that si[j′] is greater than the value of si at
Mi, because min(t1[j′], t2[j′]) = vi′ is greater than vi and f preserves <.

Now we can apply Lemma 22 to the obtained tuples s1, . . . , sl and the corresponding sets
M1, . . . ,Ml. The lemma gives us some tuple t′3 from R which is constant at each set Mi, i ≤ [l],
and such that for each i < j ≤ l the value of t′3 at Mi is lower than the value of t′3 at Mj . Thus
t′3 has the same order of entries as t3 which shows that t3 is in R as well.

4.3 Operations providing min-intersection closure

In this section, we study a different restriction of shuffle-closed constraint languages.

Definition 8. A relation R is called min-intersection closed if for all tuples t1, t2 in R, if
M(t1) ∩M(t2) 6= ∅, then there exists a tuple t3 in R such that M(t3) = M(t1) ∩M(t2).

Definition 9. Let f be a binary operation preserving <. We say that f provides min-intersection
closure if f(0, 0) < f(0, x) and f(0, 0) < f(x, 0) for all integers x > 0.

Lemma 26. Let R be a temporal relation that is preserved by an operation f that provides min-
intersection closure. Then R is min-intersection closed.

Proof. Let t1 and t2 be two tuples in R such that M(t1)∩M(t2) is non-empty, that is, it contains
an index i. Choose α1, α2 ∈ Aut(Q;<) such that α1(t1[i]) = α2(t2[i]) = 0, and such that α1

and α2 map all other entries of t1 and t2 to integers. Consider the tuple t3 = f(α1(t1), α2(t2)).
Because at the entries from M(t1) (from M(t2)) the tuple α1(t1) (α2(t2)) equals 0, and because
f(0, 0) < f(0, x) and f(0, 0) < f(x, 0) for all positive integers x, it follows that in t3 all entries at
M(t1) ∩M(t2) have a strictly smaller value than all values at the symmetric difference M(t1)4
M(t2). Because f preserves <, it also follows that all entries at M(t1) ∩M(t2) have a strictly
smaller value than the entries not at M(t1)∪M(t2). We conclude that M(t3) = M(t1)∩M(t2).

An example of an operation that provides min-intersection closure is the operation mi, defined
by

mi(x, y) :=

 α(x) if x < y
β(x) if x = y
γ(y) if x > y

where α, β, γ are unary operations that preserve < such that

β(x) < γ(x) < α(x) < β(x+ ε)

for all x ∈ Q and all 0 < ε ∈ Q (see Figure 3). Operations α, β, γ with these properties can
be constructed as follows. Let a1, a2, . . . be an enumeration of Q. Inductively assume that we
have already defined α, β, γ on {a1, . . . , an} such that β(ai) < γ(ai) < α(ai) < β(aj) whenever
ai < aj , for i, j ∈ [n]. Clearly, this is possible for n = 1. If an+1 > ai for all i ∈ [n], let aj be
the maximum of {a1, . . . , an}, and define α(aj) < β(an+1) < γ(an+1) < α(an+1). In the case
that an+1 < ai for all i ∈ [n] we proceed analogously. Otherwise, let i, j ∈ [n] such that ai is
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Figure 3: Illustration of the operation mi.

the largest possible and aj is smallest possible such that ai < an+1 < aj . In this case, define
α(ai) < β(an+1) < γ(an+1) < α(an+1) < β(aj). In this way we define unary operations α, β, γ on
all of Q with the desired properties.

In fact, the operation mi will be of special importance, because the following proposition shows
that pp together with any operation providing min-intersection closure generates the operation mi.

Proposition 27. A temporal relation R is preserved by pp and an operation f providing min-
intersection closure if and only if R is preserved by mi.

Proof. It is clear that mi provides min-intersection closure, and Lemma 23 shows that mi generates
pp.

For the opposite direction, suppose R is k-ary and preserved by pp and an operation f providing
min-intersection closure. We show that for any two tuples t1, t2 ∈ R the tuple t3 = mi(t1, t2) is in
R as well. Let α, β, γ be the mappings from the definition of the operation mi . Let v1 < · · · < vl

be the minimal-length sequence of rational numbers such that for each i′ ∈ [k] it holds that
t3[i′] ∈

⋃
j∈[l]{α(vj), β(vj), γ(vj)}. Let Mi be

{i′ ∈ [k] | t3[i′] ∈ {α(vi), β(vi), γ(vi)}} .

Observe that for each i′ ∈ Mi at least one of t1[i′] and t2[i′] is equal to vi and the other value is
greater or equal to vi. Let Mα

i be the set of those i′ ∈Mi where vi = t1[i′] < t2[i′], M
β
i the set of

those i′ ∈Mi where vi = t1[i′] = t2[i′], and Mγ
i the set of those i′ ∈Mi where vi = t2[i′] < t1[i′].

Let δ1, . . . , δl ∈ Aut(Q;<) be such that δi maps vi to 0 and such that the entries of δi(t1) and
δi(t2) are integers. Let η be a permutation from Aut(Q;<) that maps f(0, 0) to 0. For each i ∈ [l]
we define

si := pp(η(f(δi(t1), δi(t2))), pp(δi(t2), t1)) . (1)

We verify that for all i ∈ [l] the tuple si is constant on each of the sets Mα
i ,M

β
i ,M

γ
i , the value

at Mβ
i is lower than the value at Mγ

i which is lower than the value at Mα
i . Furthermore, for each

j ∈ [l], j > i, and each i′ ∈ Mi, j
′ ∈ Mj , it holds that si[i′] < si[j′]. Having this, we can apply

Lemma 22 and obtain a tuple from R with the same ordering of entries as in t3, which proves the
lemma.

Because δi maps vi to 0, the properties of pp imply that the tuple t′i = pp(δi(t2), t1) is constant
at Mβ

i ∪M
γ
i and at Mα

i , and the value at the first set is smaller than the value at the second set.
Because the values of t2 at Mα

i ∪
⋃l

j=i+1Mj are greater than vi and the values of t1 at
⋃l

j=i+1Mj

are also greater than vi (recall that for each j ∈ [l], j′ ∈ Mj it holds that min(t1[j′], t2[j′]) = vj)
we conclude that the values of t′i at

⋃l
j=i+1Mj are greater than those at Mi.

The application of f in (1) yields a tuple which is constant on Mβ
i and its value there (which

is consequently mapped to 0 by η) is smaller than the values at Mα
i ∪M

γ
i ∪

⋃l
j=i+1Mj . Thus it is

easy to verify from the properties of pp that the outer application of pp in (1) yields a tuple with
the desired properties.
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Example. An interesting example of a relation that is preserved by mi but not by min is the
4-ary relation I defined as follows.

I(a, b, c, d) ≡ (a = b ∧ b < c ∧ c = d)
∨ (a = b ∧ b > c ∧ c = d)
∨ (a = b ∧ b < c ∧ c < d)
∨ (a > b ∧ b > c ∧ c = d)

To see that I is preserved by mi , let t1 and t2 be two tuples from I. We have to show that
t3 := mi(t1, t2) ∈ I. First note that I(a, b, c, d) is equivalent to

(a ≥ b) ∧ (b 6= c) ∧ (c ≤ d) ∧ (a = b ∨ b > c) ∧ (b < c ∧ c = d) ,

and that mi preserves ≤ and 6=.
We distinguish the following cases.

1. t1[2] < t1[3] and t2[2] < t2[3]. Then t1[1] = t1[2] and t2[1] = t2[2], and hence t3[1] = t3[2].
Since mi preserves <, we have t3[2] < t3[3]. Since mi preserves ≤, we have that t3[3] ≤ t3[4],
and hence t3[1] = t3[2] < t3[3] < t3[4] or t3[1] = t3[2] < t3[3] = t3[4], which proves the claim.

2. t1[2] < t1[3] and t2[2] > t2[3]. Then t1[1] = t1[2] and t2[3] = t2[4]. We verify that t3 satisfies
the equivalent characterization of I given above; since mi preserves ≤ and 6=, this amounts
to proving that t3 satisfies the two clauses (a = b ∨ b > c) ∧ (b < c ∧ c = d).

The first sub-case we consider is t3[2] < t3[3]. Then by the assumptions on t1 and t2 and
by definition of mi we have that t1[2] < t2[2]. Therefore, t1[1] = t1[2] < t2[2] ≤ t2[1] and
thus t3[1] = t3[2] again by the properties of mi ; we see that both clauses are satisfied. The
second sub-case is that t3[2] > t3[3]. Then by the assumptions on t1 and t2 and by definition
of mi we have that t1[4] ≥ t1[3] > t2[3] = t2[4]. Thus t3[3] = t3[4] and again both clauses are
satisfied.

3. t1[2] > t1[3] and t2[2] > t2[3]. This is analogous to the first case.

4. t1[2] > t1[3] and t2[2] < t2[3]. This is analogous to the second case.

The relation I is not preserved by min since (0, 0, 1, 2) ∈ I and (2, 1, 0, 0) ∈ I but min((0, 0, 1, 2),
(2, 1, 0, 0)) = (0, 0, 0, 0) /∈ I.

Example. The following ternary temporal relation U is preserved by min (we omit the easy
proof), but not preserved by mi .

U(x, y, z) ≡ (x = y ∧ y < z)
∨ (x = z ∧ z < y)
∨ (x = y ∧ y = z)

To see that U is not preserved by mi , note that mi((0, 0, 1), (0, 1, 0)) has three distinct values
and hence is not in U , but (0, 0, 1), (0, 1, 0) ∈ U . An algorithm that solves constraint languages
preserved by mi can be found in Subsection 5.2.

4.4 Operations providing min-xor closure

We now introduce the last of the mentioned closure conditions.

Definition 10. A relation is called min-xor closed if for all tuples t1, t2 in R where the symmetric
difference M(t1)4M(t2) is nonempty there exists a tuple t3 in R such that M(t3) = M(t1)4M(t2).
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Figure 4: Illustration of the operation mx.

Definition 11. Let f be a binary operation preserving <. We say that f provides min-xor closure
if f(0, 0) > f(0, x) = f(y, 0) for all integers x, y > 0.

For an example of a binary operation that provides min-xor closure, consider the following
binary operation, which we denote by mx .

mx (x, y) :=
{
α(min(x, y)) if x 6= y
β(x) if x = y

where α and β are unary operations that preserve < such that α(x) < β(x) < α(x + ε) for all
x ∈ Q and all 0 < ε ∈ Q (see Figure 4). Similarly as for the definition of mi , such operations α, β
can be easily constructed. It is easy to see that the operation mx neither preserves the relation I
nor the relation U introduced in Subsection 4.3.

Lemma 28. Let R be a temporal relation that is preserved by an operation f providing min-xor
closure. Then R is min-xor closed.

Proof. Let t1 and t2 be tuples in R, and suppose that the symmetric difference M(t1) 4M(t2)
of M(t1) and M(t2) is non-empty. Let a1 and a2 be the minimal values of the entries of t1 and
of t2, respectively. Then there are α1, α2 ∈ Aut(Q;<) such that α1(a1) = 0 and α2(a2) = 0
and such that α1 and α2 map all other entries of t1 and t2 to integers. Consider the tuple
t3 = f(α1(t1), α2(t2)). Because α1(t1) is 0 for all entries at M(t1), α2(t2) is 0 for all entries
at M(t2), and f(0, 0) > f(0, x) = f(y, 0) for all x, y > 0, it follows that in t3 all entries at
M(t1)∩M(t2) have a strictly larger value than all entries atM(t1)4M(t2), which all have the same
value. Because f preserves <, all entries of t3 at M(t1)∩M(t2) have a smaller value than all entries
not at M(t1) ∪M(t2). We conclude that the tuple t3 ∈ R satisfies M(t3) = M(t1)4M(t2).

The following lemma implies that {f, pp} generates mx for any operation f that provides
min-xor closure.

Proposition 29. A temporal relation R is preserved by pp and an operation f providing min-xor
closure if and only if R is preserved by mx.

Proof. Clearly, mx provides min-xor closure. Lemma 23 shows that mx generates pp.
For the opposite direction, suppose that R is k-ary and preserved by pp and an operation f

providing min-xor closure. We show that for any two tuples t1, t2 ∈ R the tuple t3 = mx (t1, t2) is
in R as well. Let α, β be the mappings as in the definition of the operation mx . Let v1 < · · · < vl

be minimal set of rational numbers such that t3[i] ∈
⋃

j∈[l]{α(vj), β(vj)} for all i ∈ [k], and let Mi

be the set of indices {i′ ∈ [k]|t3[i′] ∈ {α(vi), β(vi)}}. Observe that for each i′ ∈Mi at least one of
t1[i′] and t2[i′] is equal to vi and the other value is greater or equal to vi. Let Mα

i be the set of
those i′ ∈Mi where t1[i′] 6= t2[i′] and Mβ

i the set of those i′ ∈Mi where vi = t1[i′] = t2[i′].
Let δ1, . . . , δl ∈ Aut(Q;<) be such that δi maps vi to 0 and such that the entries of δi(t1) and

δi(t2) are integers. For each i ∈ [l] we define si := f(δi(t1), δi(t2)). It is easy to see from the choice
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of δi and properties of f that for each i ∈ [l] the tuple si is constant at Mα
i ,M

β
i , and that the value

at Mα
i is lower than the value at Mβ

i . Furthermore, because f preserves <, because the values of
t1 at

⋃l
j=i+1Mj are greater than vi, and because the values of t2 at

⋃l
j=i+1Mj are greater than

vi, we see that for each j ∈ [l], j > i and each i′ ∈Mi, j
′ ∈Mj , it holds that si[i′] < si[j′]. Having

this, we can apply Lemma 22 and obtain a tuple from R with the same ordering of entries as in
t3, which proves the lemma.

An interesting example of a temporal relation that is preserved by mx is the ternary relation
X defined as follows.

X(x, y, z) ≡ (x = y ∧ y < z)
∨ (x = z ∧ z < y)
∨ (y = z ∧ y < x)

The relation is not preserved by min and by mi: the tuples t1 = (0, 0, 1), t2 = (0, 1, 0) are in
X, but min(t1, t2) = (0, 0, 0) /∈ R, and mi(t1, t2) has three distinct entries and hence is not in X
as well.

An algorithm that solves constraint languages preserved by mx can be found in Subsection 5.3.

4.5 Operations generating min, mi, mx

As we have seen in Proposition 15, if the relation S has a primitive positive definition in Γ, then
CSP(Γ) is NP-hard. We show that if a temporal constraint language is shuffle-closed and does not
admit a primitive positive definition of S, then it is preserved by min, mi, or mx.

If the relation S does not have a primitive positive definition in Γ, then Theorem 9 implies that
there is a polymorphism f of Γ that does not preserve S. By Theorem 20, it suffices to consider
languages Γ such that < has a primitive positive definition in Γ. We start with a sequence of
auxiliary lemmas.

Lemma 30. Let f be a binary operation preserving <, and suppose that there is an infinite
sequence x1 < x2 < . . . of elements of Q and y1 ∈ Q such that f(x1, y1) ≥ f(x2, y1) < f(xi, y1)
for all i > 2. Then f generates an operation providing min-intersection closure.

Proof. Because f preserves <, we have that for any infinite sequence y1 < y2 < . . . it holds
that f(x2, yi) > f(x1, y1). Hence, the binary operation defined by f(α(x), β(y)) provides min-
intersection closure, where α ∈ Aut(Q;<) maps 0, 1, . . . to x2, x3, . . . and β ∈ Aut(Q;<) maps
0, 1, 2, . . . to y, y1, y2, . . .

Lemma 31. Suppose f preserves < and generates a sequence of operations f1, f2, . . . such that
for each fk it holds that fk(0, 0) < fk(x, 0) and fk(0, 0) < fk(0, x) for all integers x ∈ [k]. Then f
generates an operation g providing min-intersection closure.

Proof. Fix an enumeration x1, x2, . . . of Q. For each k, we define an equivalence relation ∼ on
the set Sk of all restrictions of operations from {f1, f2, . . . } to {x1, . . . , xk}2. Define f ∼ f ′ for
two operations f, f ′ ∈ Sk iff there exists α ∈ Aut(Q;<) such that f(xi, xj) = α(f ′(xi, xj)) for all
i, j ∈ [k]. Clearly, ∼ is an equivalence relation, and for every k and every function f ∈ Sk there
are only finitely many weak linear orders of the set {f(xi, xj) | i, j ∈ [k]}. Hence, ∼ has only
finitely many equivalence classes on Sk.

We now define an infinite directed acyclic graph whose vertices are the equivalence classes of ∼
on all sets Sk and where (f, f ′) is an arc if f ∈ Sk, f ′ ∈ Sk+1, and f ′ restricted to {x1, . . . , xk}2 is
equivalent to f under ∼. We have already observed that this graph must have finite outdegree, and
since there are arbitrarily long paths starting at the equivalence class of the mapping g0 with the
empty domain, König’s tree lemma implies that the tree contains an infinite path of equivalence
classes starting at the equivalence class of g0.
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Now, we use this infinite path to define g(x, y) inductively as follows. The restriction of g to
{x1, . . . , xk}2 will be an element from the k-th node of the infinite path. Initially, this is trivially
true if g is restricted to the empty set. Suppose g is already defined on {x1, . . . , xk}2, for k ≥ 0.
By construction of the infinite path, we find representatives gk of the k-th and gk+1 of the k+1-st
element on the path such that gk is a restriction of gk+1. The inductive assumption gives us
α ∈ Aut(Q;<) such that α(gk(x, y)) = g(x, y) for all x, y ∈ {x1, . . . , xk}. We set g(xk+1, y) to be
α(gk+1(xk+1, y)) and g(y, xk+1) to be α(gk+1(y, xk+1)) for all y ∈ {x1, . . . , xk+1}. The restriction
of g to {x1, . . . , xk+1}2 will therefore be a member of the k+1-st element of the infinite path. The
operation g defined in this way is indeed generated by {f1, f2, . . .}. By assumptions on {f1, f2, . . .}
it also follows that g preserves < and g(0, 0) < g(0, x) and g(0, 0) < g(x, 0) for all integers x > 0,
and so g provides min-intersection closure.

Lemma 32. Let f be a binary operation preserving < such that there is an infinite sequence
x1 < x2 < . . . and y1 ∈ Q satisfying f(xi, y) > f(xj , y1) for all 1 ≤ i < j. Then {f, pp} generates
an operation providing min-intersection closure.

Proof. By Lemma 31, it suffices to show that there is a sequence of operations f1, f2, . . . , generated
by {f, pp} such that fk(0, 0) < fk(x, 0) and fk(0, 0) < fk(0, x) for all k ≥ 1 and all x ∈ [k].

So let k ≥ 0 be a fixed integer, and y1 < y2 < . . . be an arbitrary infinite sequence. Let αk

be from Aut(Q;<) mapping {f(x1, yi) | 1 ≤ i ≤ k} ∪ {f(xi, y1) | 1 ≤ i ≤ k} into {x2, . . . , x2k}
and β1, β2 ∈ Aut(Q;<) such that β1 maps 0, 1, 2, . . . to x1, x2, x3, . . . and β2 maps 0, 1, 2, . . . to
y1, y2, y3, . . . We define

fk(x, y) := f(αk(f(β1(x), β2(y))), β2(y)) ,

and show that fk has the required properties. It follows from the assumptions on f that for all
positive integers x we have f(β1(0), β2(0)) = f(x1, y) > f(β1(x), y1) = f(β1(x), β2(0)), and due
to the properties of αk it holds that fk(0, 0) < fk(x, 0) for all integers x ∈ [k].

We also have for every x ∈ [k] that β2(x) > y1 and αk(f(β1(0), β2(x))) > x1. Because
f preserves <, this shows that fk(0, x) = f(αk(f(β1(0), β2(x))), β2(x)) > f(x1, y1). Moreover,
fk(0, 0) = f(αk(f(x1, y1)), y1) < f(x1, y1) by the assumptions on f . Hence, fk(0, x) > f(x1, y1) >
fk(0, 0) for all x ∈ [k].

The following lemma contains a simple application of (a special case of) Ramsey’s theorem.
More substantial applications of Ramsey theory can be found in Section 6.3.

Theorem 33 (Infinite Version of Ramsey’s theorem; see e.g. Theorem 5.6.1 in [28]). Let D be a
countably infinite set, and let m, r be finite integers. When χ is a mapping from the m-element
subsets of D into [r], then there exists an infinite subset P of D such that χ is constant on all
m-element subsets of P .

Lemma 34. Let f be a binary operation preserving < such that there is an infinite sequence
x1 < x2 < . . . and y1 ∈ Q satisfying f(x1, y1) > f(xi, y1) = f(xj , y1) for all 1 < i < j. Then
{f, pp} generates an operation providing min-intersection or min-xor closure.

Proof. By the infinite pigeon-hole principle there must be an infinite sequence y2 < y3 < . . . of
elements of Q larger than y1 such that

1. f(x2, y1) = f(x1, yi) for all i ≥ 2, or

2. f(x2, y1) > f(x1, yi) for all i ≥ 2, or

3. f(x2, y1) < f(x1, yi) for all i ≥ 2.

In case 1, f generates an operation providing min-xor closure and we are done. In case 2, we
apply Ramseys theorem (Theorem 33) in the special case of m = 2, r = 3 as follows. Let D
be {y1, y2, . . . }. For i < j, define χ({yi, yj}) = 1 if f(x1, yi) = f(x1, yj), χ({yi, yj}) = 2 if
f(x1, yi) > f(x1, yj), and χ({yi, yj}) = 3 if f(x1, yi) < f(x1, yj). Then Theorem 33 applied to χ
shows that there exists an infinite subsequence z1 < z2 < . . . of y1 < y2 < . . . such that

20



x1 x2 x3 x4 x5 x6

y1

y2

y3

y4

. . .

...

Figure 5: Illustration for Case 3 of Lemma 34.

2a. f(x1, zi) = f(x1, zj) for all 1 ≤ i < j, or

2b. f(x1, zi) > f(x1, zj) for all 1 ≤ i < j, or

2c. f(x1, zi) < f(x1, zj) for all 1 ≤ i < j.

In case 2a, we swap arguments of f and proceed as in case 3. In case 2b, we swap arguments
of f , apply Lemma 32, and conclude that f generates an operation providing min-intersection
closure. In case 2c, note that f(x1, y1) > f(x2, y1) > f(x1, yi) for all i ≥ 2, and thus we can apply
Lemma 30 to conclude that f generates an operation providing min-intersection closure.

In case 3, we show that similarly as in Lemma 32 there is a sequence of operations f1, f2, . . .
generated by {f, pp} such that for each fk it holds that fk(0, 0) < fk(x, 0) and fk(0, 0) < fk(0, x)
for all integers x ∈ [k], and conclude by application of Lemma 31. See Figure 5 for an illustration.

Let αk be from Aut(Q;<) such that it maps f(x2, y1) to x1 and {f(x1, yi) | 1 ≤ i ≤ k}
to {x2, . . . , xk+1}. Furthermore let β1, β2 ∈ Aut(Q;<) be such that β1 maps 0, 1, 2, . . . to
x1, x2, x3, . . . and β2 maps 0, 1, 2, . . . to y1, y2, y3, . . . We define

fk(x, y) := f(αk(f(β1(x), β2(y))), β2(y)) .

Then fk(0, 0) = f(αk(f(x1, y1)), y1) = f(x2, y1) and fk(x, 0) = f(αk(f(β1(x), y1)), y1) = f(x1, y1)
for all integers x > 0. Hence fk(0, 0) < fk(x, 0) for all integers x > 0. Finally, as β2(x) > y1
and αk(f(x1, β2(x))) > x1 for all integers x > 0, we have that fk(0, x) > f(x1, y1) > f(x2, y1) =
fk(0, 0).

The previous two lemmas are combined in the following result.

Lemma 35. Let f be a binary operation that preserves < and violates the relation ≤. Then
{f, pp} generates an operation providing min-intersection or min-xor closure.

Proof. As f violates ≤, we can without loss of generality assume that there is y ∈ Q and x1, x2 ∈ Q,
x1 < x2, such that f(x1, y) > f(x2, y).

We claim that there are only three possibilities:

a) There is an infinite sequence x3 < x4 < . . . such that x2 < x3 and f(xi, y) > f(x2, y) for all
i > 2.

b) There is an infinite sequence x3 < x4 < . . . such that x2 < x3 and f(xi, y) > f(xj , y) for all
2 ≤ i < j.

c) There is an infinite sequence x3 < x4 < . . . such that x2 < x3 and f(xi, y) = f(x2, y) for all
i > 2.
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To show this claim, observe that by the infinite pigeon-hole principle there is an infinite sequence
x3 < x4 < . . . with x2 < x3 such that f(xi, y) > f(x2, y) for all i > 2, f(x′i, y) = f(x2, y) for all
i > 2, or f(xi, y) < f(x2, y) for all i > 2. In the first and the second case the claim holds. In the
third case, we repeat the argument with x2 < x3 instead of x1 < x2. Again, we distinguish three
cases, and as before in two of them we are immediately done. In the third case, we repeat again.
If we repeat this for infinitely many times we obtain a sequence x3 = x′3 < x′4 < . . . such that
x2 < x3 and f(x′i, y) > f(x′j , y) for all 2 ≤ i < j.

In a) the conditions of Lemma 30 are satisfied and we conclude that {f, pp} generates an
operation providing min-intersection closure. In b) Lemma 32 shows that {f, pp} generates an
operation providing min-intersection closure. In c) we apply Lemma 34 and conclude that {f, pp}
generates an operation providing min-intersection or min-xor closure.

The following is the main result of this subsection. Recall that the relation S was defined in
Definition 3 to be

{(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y } .

Lemma 36. Let f be a binary operation that preserves < and violates the relation S. Then {f, pp}
generates min, mi, or mx.

Proof. By Proposition 25, 27, and 29, it suffices to show that {f, pp} generates an operation
providing min-intersection, min-union, or min-xor closure. If f violates ≤, then we are immediately
done by Lemma 35. So we further assume that f preserves ≤.

Because f preserves < and violates S, we can assume without loss of generality (possibly
after swapping arguments) that there are x1, x2, y1, y2 ∈ Q such that x1 < x2, y1 < y2 and
t := (f(x1, y1), f(x2, y1), f(x1, y2)) 6∈ S. Because f preserves ≤ we have that f(x1, y1) ≤ f(x2, y1)
and f(x1, y1) ≤ f(x1, y2). Since t 6∈ S, there are only two possibilities:

1. t[1] < t[2] and t[1] < t[3]. In this case, choose infinite sequences x3 < x4 < . . . and
y3 < y4 < . . . such that x2 < x3, y2 < y3. Because f preserves ≤, we have for all i > 1 that
f(x2, y1) ≤ f(xi, y1) and f(x1, y2) ≤ f(x1, yi). Since t[1] = f(x1, y1) < t[2] = f(x2, y1) we
have that f(x1, y1) < f(xi, y1) for all i > 1, and since t[1] = f(x1, y1) < t[3] = f(x1, y2) we
have that f(x1, y1) < f(x1, yi) for all i > 1. Hence, f provides min-intersection closure.

2. t[1] = t[2] = t[3]. In this case we can choose infinite sequences x′2 < x′3 < . . . and y′2 < y′3 <
. . . such that x1 < x′2, y1 < y′2, and for all i > 1, x′i < x2 and y′i < y2. As f preserves ≤, we
see that f(x′i, y1) = f(x1, y1) = f(x1, y

′
i) for all i > 1 and thus f provides min-union closure.

5 Algorithms for shuffle-closed languages

In this section we present three algorithms, for the languages preserved by mi , by min, and by mx ,
respectively. All three algorithms follow a common strategy. They are searching for a variable that
can have the minimal value in a solution. If they have found such a variable, say x, the algorithms
add equalities and inequalities that are implied by all constraints under the assumption that x
denotes the minimal value in all solutions. Next, the algorithms recursively solve the instance
consisting of the projections of all constraints to the variables that do not denote the minimal
value in all solutions. We later show that for languages preserved by pp it is true that if the
instance has a solution, it also has a solution that satisfies all the additional constraints.

For the formulation of the algorithms and their correctness proofs it will be convenient to
work with an expanded constraint language, that contains the binary relation = for the equality
relation. We also add to the temporal constraint language Γ several other temporal relations that
are primitive positive definable in Γ.
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Definition 12. Let R be an n-ary temporal relation and L = {p1, . . . , pk} ⊆ [n] where p1 < · · · <
pk. Let {q1, . . . , ql} be [n] \L. Then the ordered projection of R to L is the k-ary relation R′ with
the primitive positive definition

R′(xp1 , . . . , xpk
) ≡ ∃xq1 , . . . , xql

.R(x1, . . . , xn) ∧
∧

i∈[n]\L, j∈L

xi < xj .

Note that if Γ is a finite temporal constraint language, then there are only finitely many
projections and ordered projections of relations in Γ. In case that there is a primitive positive
definition of < in Γ, ordered projections are primitive positive definable. By Lemma 7, we can
assume in this case that Γ contains all relations that can be defined by ordered projections from
relations in Γ.

To formally introduce our algorithms, we also need the concept of an ordered projection of
instances of the CSP.

Definition 13. Let Γ be a temporal constraint language that contains all ordered projections of
relations from Γ. Let Φ be an instance of CSP(Γ) and X ⊆ V (Φ). Then the ordered projection of
Φ to X is the instance of CSP(Γ) that contains for each constraint R(x1, . . . , xn) in Φ, with not
necessarily distinct variables x1, . . . , xn, the constraint R′(xk1 , . . . , xkl

) where k1 < · · · < kl are
such that {k1, ..., kl} = {k ∈ [n] | xk ∈ X}, and R′ is the ordered projection of R to {k1, . . . , kl}.

Let Φ be an instance of a temporal CSP.

Definition 14. If ψ = R(x1, . . . , xk) is a constraint from Φ, then a subset X of the variables of
ψ is called a min-set (of ψ) if there exists a k-tuple t satisfying ψ such that x ∈ X iff the value
for x in t is the minimum of all entries of t. A set of variables S ⊂ V (Φ) is called free iff it is
non-empty and for all constraints R(x1, . . . , xk) in Φ the set S ∩ {x1, . . . , xk} is either empty or a
min-set of R.

We will show how to use the concept of freeness to solve instances of CSP(Γ) for shuffle closed
temporal constraint languages.

Lemma 37. Let Φ be an instance of CSP(Γ) for some shuffle closed Γ, and let S be a free set of
variables of Φ. Then Φ has a solution if and only if the ordered projection Φ′ of Φ to V (Φ) \ S
has a solution.

Proof. First suppose Φ′ has a solution s′. Let ψ = R(x1, . . . , xm) be a constraint of Φ such that
V (ψ) ∩ S = {xp1 , . . . , xpk

} 6= ∅. Let {xq1 , . . . , xql
} = V (ψ) \ S for q1 < · · · < ql. By the definition

of an ordered projection, there is a tuple t1 ∈ R such that s′(xi) = t1[i] for all i ∈ {q1, . . . , ql}.
Since V (ψ) ∩ S is a min-set of R, there is a tuple t2 ∈ R such that M(t2) = {p1, . . . , pk}. Let
α ∈ Aut(Q;<) be such that α maps the minimal value of t2 to 0. Because R is preserved by pp,
the tuple t3 := pp(α(t2), t1) is in R. It is easy to verify that M(t3) = {p1, . . . , pk} and that there
is β ∈ Aut(Q;<) such that β(t3[i]) = s′(xi) for i ∈ {q1, . . . , ql}. Because we can find such a tuple
for all the constraints ψ in Φ where V (ψ) ∩ S 6= ∅, we conclude that a solution s′ of Φ′ can be
extended to a solution s of Φ by setting all the variables in S to some value that is smaller than
the smallest value in {s′(x) | x ∈ V (Φ′)}. Clearly, all the constraints ψ in Φ with V (ψ)∩S = ∅ or
V (ψ) ⊂ S are satisfied by s as well.

Now suppose that Φ has a solution s. Let x1, . . . , xn be the variables of Φ, and let {xr1 , . . . , xr|S|}
be S. Let s′ be a mapping from V (Φ) to Q such that M((s′(x1), . . . , s′(xn))) = {r1, . . . , r|S|},
and s′(x) = s(x) for x ∈ V (Φ) \ S. We claim that s′ is a solution for Φ′. Let ψ = R(y1, . . . , ym)
be a constraint of Φ such that V (ψ) ∩ S 6= ∅. Clearly, t1 := (s(y1), . . . , s(ym)) is in R since s
is a solution of Φ. Let {yp1 , . . . , ypl

} be S ∩ {y1, . . . , ym}. Since {yp1 , . . . , ypl
} is a min-set of R,

there is a tuple t2 ∈ R such that M(t2) = {p1, . . . , pl}. Let α ∈ Aut(Q;<) be such that α maps
the minimal value of t2 to 0. Because R is preserved by pp, the tuple t3 := pp(α(t2), t1) is in
R. It is easy to verify that M(t3) = {p1, . . . , pl}, and that there is an automorphism β such that
β(t3)[i] = s(yi) for i ∈ [m] \ {p1, . . . , pl}. Clearly, the restriction of s′ to V (Φ) \ S is a solution to
the ordered projection Φ′ of Φ to V (Φ) \ S since s′ also satisfies all the inequalities imposed by
the ordered projection. Therefore Φ′ is satisfied by s′.
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Solve(Φ) {
// Input: An instance Φ of CSP(Γ)
// for a shuffle closed temporal language Γ
// Output: A solution s to Φ, or false if there is no solution.
i := 0
while V (Φ) 6= ∅ do begin

S := FindFreeSet(Φ)
if S = false then return false

for each x ∈ S do s(x) := i
i := i+ 1
Φ := ordered projection of Φ to V (Φ) \ S

end
return s }

Figure 6: An algorithm that efficiently solves instances of a shuffle closed constraint language if
free sets can be computed efficiently.

The above lemma asserts that if we are able to identify a free set for instances of CSP(Γ) for
a shuffle-closed temporal language Γ in polynomial time, then we also have a polynomial time
algorithm that solves CSP(Γ). The running time of the algorithm is O(n · (m + t(n,m))), where
n = |V |, m is the number of constraints in Φ, and t(n,m) is the running time of the procedure
that computes the free set of an instance with n variables and m constraints.

5.1 An algorithm for languages preserved by min

Now, we concentrate on the problem to find a free set of Φ if Γ is preserved by the operation min.
Let ψ = R(x1, . . . , xk) be a constraint where R is from Γ and let L be a subset of {x1, . . . , xk}.

Let A1, . . . , Al be all min-sets of ψ that are contained in L. When l ≥ 1, i.e., when such min-sets
exist, there is a unique set Aj , j ∈ [l], with the property that Ai ⊆ Aj for all i ∈ [l], because R
is preserved by min, and thus min-union closed by Lemma 24. We call this min-set the maximal
min-set of ψ contained in L. Note that for some L it could be that l = 0, i.e., L does not contain
min-sets of R.

Figure 7 shows our procedure for finding a free set for a min-union closed constraint language.
It is straightforward to check that the procedure FindFreeSetUC has a running time O(nm), where
n is the number of variables and m is the number of constraints of Φ.

Lemma 38. The procedure FindFreeSetUC in Figure 7 returns a free set of Φ, or false. If it
returns false, Φ is unsatisfiable.

Proof. Suppose that the algorithm returns a (non-empty) set S. Then recheck must be set to
false. Therefore, for all constraints R(x1, ..., xk) of Φ such that S∩{x1, . . . , xk} 6= ∅ the maximal
min-set of ψ contained in S equals S ∩ {x1, . . . , xk}. We conclude that S is a free set of Φ.

We now have to argue that in case that Φ is satisfiable, the algorithm does not return false
(i.e., it finds a free set). If Φ has a solution, there is some set S′ of variables that have the minimal
value in this solution. At the beginning of the procedure, S is set to V and therefore S′ ⊆ S.
We show that S′ ⊆ S during the entire execution of the procedure. Let ψ = R(x1, . . . , xk) be a
constraint from Φ. Because S′∩{x1, . . . , xk} is a min-set of ψ that is contained in S, the maximal
min-set of ψ added to S \ {x1, . . . , xk} certainly contains S′ ∩ {x1, . . . , xk}. Therefore, after the
modification to S it still holds that S ⊇ S′. When the procedure terminates, it returns the set S,
because ∅ 6= S′ ⊆ S.

Theorem 39. If Γ is preserved by min there is an algorithm solving CSP(Γ) in time O(n2m).

Proof. We use the procedure FindFreeSetUC in Figure 7 for the subroutine FindFreeSet in Fig-
ure 6. Then Lemma 37 and Lemma 38 imply the correctness of the resulting algorithm.
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FindFreeSetUC(Φ) {
// Input: An instance Φ of CSP(Γ) with variables V
// for a temporal constraint language Γ preserved by min.
// Output: A free set S ⊆ V of Φ, or false.
// If the output is false, Φ is unsatisfiable
S := V
recheck := true

while recheck do begin
recheck := false

for all ψ ∈ Φ do begin
if S ∩ V (ψ) 6= ∅ then begin

S := (S \ V (ψ)) ∪ the maximal min-set of ψ contained in S ∩ V (ψ)
if S changed then recheck := true

end
end

end
if S 6= ∅ then return S
else return false

end }

Figure 7: A polynomial time algorithm that computes free sets for constraint languages preserved
by min.

5.2 An algorithm for languages preserved by mi

In this subsection we describe how to find free sets in instances of CSP(Γ) for languages Γ that
are preserved by mi . We define the notion of a minimal min-set: Let ψ = R(x1, . . . , xk) be a
constraint from an instance Φ of CSP(Γ), and let L ⊆ {x1, . . . , xk}. Let A1, . . . , Al be all min-
sets of ψ that contain L. Because R is preserved by mi , and thus is min-intersection closed by
Lemma 26, there is a min-set Aj of ψ that is a subset of every min-set containing L. We call Aj

the minimal min-set of R containing L.
The procedure for finding a free set for min-intersection closed constraint languages is given

in Figure 8. It is straightforward to verify that the above algorithm runs in time O(n2m) where
n is the number of variables and m is the number of constraints in Φ.

Lemma 40. The procedure FindFreeSetIC in Figure 8 returns a free set S of Φ, or false. If it
returns false, Φ is unsatisfiable.

Proof. Suppose that the algorithm returns a set S. The variable correct must then be equal to
true. When the while loop terminates, recheck equals false, and so for all constraints ψ ∈ Φ
such that V (ψ) ∩ S 6= ∅ the set S did not change. This implies that for all these constraints the
minimal min-set of ψ containing S ∩ V (ψ) is equal to S ∩ V (ψ). We conclude that S is a free set
of Φ.

We now have to argue that in case that Φ is satisfiable, the algorithm does not return false.
If Φ has a solution, then there is some set S′ of variables that have the minimal value in this
solution. Consider a run of the while loop in the procedure FindFreeIC for some variable x ∈ S′.
In the beginning, it holds that S = {x} ⊆ S′. For each constraint ψ from Φ we have that S′∩V (ψ)
is a min-set of ψ if S′ ∩ V (ψ) is non-empty. Therefore, the program variable correct cannot be
set to false while S ⊆ S′. Because we always add only variables of the minimal min-set of ψ
containing S ∩ V (ψ) to S, all these variables are always in S′. Therefore, S remains a subset of
S′ all the time, and the algorithm does not return false.

Theorem 41. If Γ is preserved by mi there is an algorithm solving CSP(Γ) in time O(n3m).

Proof. We use the procedure FindFreeSetIC in Figure 8 for the sub-routine FindFreeSet in
Figure 6. Lemma 37 and Lemma 40 imply the correctness of these algorithms.
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FindFreeSetIC(Φ) {
// Input: An instance Φ of CSP(Γ) where Γ is preserved by mi
// Output: A free set S ⊆ V (Φ) of Φ, or false

// If the output is false, Φ is unsatisfiable
for all x ∈ V (Φ) do begin

S := {x}
recheck := true; correct := true

while recheck ∧ correct do begin
recheck := false

for all constraints ψ of Φ such that (V (ψ) ∩ S) 6= ∅ do begin
if there is no min-set of ψ containing S ∩ V (ψ) then correct := false

else begin
S := S ∪ the minimal min-set of ψ containing S ∩ V (ψ)
if S changed then recheck := true

end
end

end
if correct then return S

end
return false}

Figure 8: A polynomial time algorithm that computes free sets for min-intersection and shuffle
closed constraint languages.

5.3 An algorithm for languages preserved by mx

Finally, we consider languages Γ preserved by mx . Let R be a relation from Γ. For a tuple t ∈ R,
we define χmin(t) to be a vector from {0, 1}k such that χmin(t)[i] = 1 if and only if t[i] is minimal
in t. We define χmin(R) to be {χmin(t) | t ∈ R}. Since R is preserved by mx and hence min-xor
closed by Lemma 28, the set χmin(R) is closed under addition of distinct vectors over GF (2) and
so χmin(R) ∪ {0k} is exactly the set of solutions of a system of linear equations; see e.g. [19].

Theorem 42. If Γ is preserved by mx there is an algorithm solving CSP(Γ) in time O(n4).

Proof. To find a free set of variables of an instance Φ of CSP(Γ) (if it exists), we first construct
a system S of linear equations over GF (2) with variable set {xv | v ∈ V } and linear equations as
described above for each constraint in Φ. It is well-known that a solution of S that is distinct from
0k can be computed in cubic time (by Gaussian elimination). If there is such a solution, then the
set of variables mapped to 1 is a free set of Φ. If the system has no such solution, then there is no
free set of variables, and there is no solution for Φ. Now the claim follows from Lemma 37 as in
Theorem 39 and Theorem 41.

6 The complete classification

Temporal constraint languages where not all first-order definable relations are primitive positive
definable can be divided into four (non-disjoint) groups: those preserved by a constant operation,
by pp, by dual-pp, or by an operation called lex, which will be introduced in the next subsection3.
None of the three polymorphisms pp, dual-pp, and lex alone guarantees tractablility of CSP(Γ). An
illustration of the classification result for the languages that preserve < can be found in Figure 15.

6.1 The operations lex and ll

An important class of temporal constraint languages are the languages preserved by the operation
lex. Let lex be a binary operation on Q such that lex(a, b) < lex(a′, b′) if either a < a′, or a = a′

3In the terminology of [2], the operations pp, dual-pp, and lex define maximal constraint languages.
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and b < b′. Clearly, such an operation exists; by Observation 1, all such operations generate the
same clone. For our definition of lex, we can choose an arbitrary operation with these properties.
Note that lex is injective. We also write

• lexy,x for the operation (x, y) 7→ lex(y, x),

• lexy,−x for the operation (x, y) 7→ lex(y,−x),

• lexx,−y for the operation (x, y) 7→ lex(x,−y),

• lexx,y for the operation (x, y) 7→ lex(x, y),

• px for the operation (x, y) 7→ x, and

• py for the operation (x, y) 7→ y.

Figure 9: Illustrations of the six basic operations lexx,y, lexx,−y, lexy,x, lexy,−x, px, py.

A k-ary operation f : Qk → Q is dominated by the i-th argument when f(a1, . . . , ak) ≤
f(b1, . . . , bk) if and only if ai ≤ bi. Examples of operations dominated by the first argument are
px, lexx,y, and lexx,−y, and examples of operations dominated by the second argument are py,
lexy,x, lexy,−x.

It is easy to see that the relation Betw is preserved by lex, and more generally by all operations
that are dominated by one argument. Therefore, we are interested in further restrictions of
languages preserved by lex that imply tractability of the corresponding CSP.

A large tractable temporal constraint language has been introduced in [5]. The language is
defined in terms of a binary polymorphism, denoted by ll, and again it has a dual version, which is
tractable as well. It was shown in [5] that the constraint language Inv(ll) strictly contains the class
of Ord-Horn constraints, a well-known tractable constraint language in temporal reasoning [37].

xy xy

Figure 10: A visualization of ll (left) and dual-ll (right).

Let ll be a binary operation on Q such that ll(a, b) < ll(a′, b′) if

• a ≤ 0 and a < a′, or

• a ≤ 0 and a = a′ and b < b′, or

• a, a′ > 0 and b < b′, or

• a > 0 and b = b′ and a < a′.

All operations satisfying these conditions are by definition injective, and they all generate the
same clone. For an illustration of ll and its dual, see Figure 10. It is easy to see that ll generates
lex.
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6.2 Operations generating ll, dual-ll, or lex

In this section we present operations that generate ll dual-ll, or lex.
To describe properties of an operation on restricted subsets of the domain Q, the following

concepts are useful: If S1, . . . , Sd are sets, we call a set of the form S1 × · · · × Sd a grid, and also
write Sd for a product of the form S×· · ·×S with d factors. A [k]d-subgrid of a grid S1×· · ·×Sd

is a subset of S1× · · · ×Sd of the form S′1× · · · ×S′d, where S′i is a k-element subset of Si. We say
that a k-ary operation f behaves like a k-ary operation g on a subgrid G of Qk if for all t, t′ ∈ G we
have f(t) ≤ f(t′) iff g(t) ≤ g(t′). That is, the weak linear order induced by f on the tuples from
G (in the sense as in Observation 1 in Section 2.5) is the same as the weak linear order induced
on these tuples by g. If f behaves like g on the entire set Qk, we simply say that f behaves like g.

Let Q+ denote the set of all positive rational numbers, and let Q−
0 denote Q \Q+.

Definition 15. Let f, g be from Q2 → Q. Then [f |g] denotes an arbitrary operation from Q2 → Q
with the following properties. For all x, x′, y, y′ ∈ Q,

• if x ≤ 0 and x′ > 0 then [f |g](x, y) < [f |g](x′, y′);

• [f |g] behaves like f on Q−
0 ×Q;

• [f |g] behaves like g on Q+ ×Q;

For example, if f = lexx,y and g = lexy,x, then [f |g] behaves like ll.

Lemma 43. Let f, g ∈ {lexx,y, lexx,−y, lexy,x, lexy,−x, px, py}, and let f ′ (g′) be lexx,y if f (g) is
dominated by the first argument, and lexy,x otherwise. Then {lex, [f |g]} generates [f ′|g′](x, y).

Proof. By Lemma 12 it suffices to show that every relation R preserved by lex and [f |g] is preserved
by [f ′|g′]. So let R be an arbitrary relation preserved by lex and [f |g], let k denote its arity, and
let t1, t2 be k-tuples from R. We have to show that t3 := [f ′|g′](t1, t2) is in R.

Let α ∈ Aut(Q;<) be such that for each entry x of t1 and for each entry y of t2, the value
of α(lex(x, y)) is negative when x ≤ 0, and positive otherwise. We will show that there is an
automorphism of (Q;<) that maps the tuple

s := [f |g](α(lex(t1, t2)), lex(t2, t1))

to t3, which proves that t3 is in R. It suffices to show for j1, j2 ∈ [k] that

s[j1] ≤ s[j2] if and only if t3[j1] ≤ t3[j2] . (2)

We can assume that t1[j1] ≤ t1[j2] by exchanging the name of j1 and j2 if necessary, and
distinguish three cases:

• t1[j1] ≤ 0, t1[j2] > 0. Then t3[j1] < t3[j2] by definition of [f ′|g′]. Since for j ∈ [k], the value
of α(lex(t1[j], t2[j])) is positive if and only if the value of t1[j] is positive, we have s[j1] < s[j2]
by definition of [f |g]. Thus we have verified (2) in this case.

• t1[j2] ≤ 0. Note that f(lex(x, y), lex(y, x)) behaves like f ′(x, y). Thus, writing a[j] for
lex(t1[j], t2[j]) and b[j] for lex(t2[j], t1[j]), we have the following equivalences.

t3[j1] ≤ t3[j2] iff f ′(t1[j1], t2[j1]) ≤ f ′(t1[j2], t2[j2])
iff f(a[j1], b[j1]) ≤ f(a[j2], b[j2])
iff f(α(a[j1]), b[j1]) ≤ f(α(a[j2]), b[j2])
iff s[j1] ≤ s[j2]

• t1[j1] > 0. This case is analogous to the previous one and left to the reader.
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xy y x

Figure 11: An illustration of the operation [py|py] (on the left) and the operation [lexy,x|lexy,x]
(on the right).

Lemma 44. For f, g ∈ {py, lexy,x} the operation [f |g] generates [lexx,y|g].

In particular, for f = g = lexy,x the lemma shows that [f |g] generates ll. For f = g = py, the
lemma shows that [f |g] generates [lexx,y|py] and in particular lexx,y. See Figure 11 for illustrations
of those two cases.

Proof of Lemma 44. We show that every relation R preserved by [f |g] is preserved by [lexx,y|g],
and conclude by Lemma 12 that [f |g] generates [lexx,y|g]. So let R be an arbitrary relation
preserved by [f |g], let k denote its arity, and let t1, t2 be k-tuples from R. We have to show that
t3 := [lexx,y|g](t1, t2) is in R.

Let l denote the number of non-positive values in t1. We take α1, . . . , αl from Aut(Q;<) such
that αi maps all but the i smallest values in t1 to positive values. We define a sequence of tuples
s1, . . . , sl as follows: s1 = t2, and for i ≥ 2

si := [f |g](αi(t1), si−1) .

Clearly, for all i ∈ [l] the tuple si is in R. We will show that there is an automorphism of
(Q;<) that maps sl to t3, which proves that t3 is also in R. By symmetry it is enough to show
for j1, j2 ∈ [k] with t1[j1] ≤ t1[j2] that

sl[j1] ≤ sl[j2] if and only if t3[j1] ≤ t3[j2] . (3)

We distinguish three cases:

• t1[j1] = t1[j2] ≤ 0. Since αi(t1[j1]) = αi(t1[j2]) for all i ∈ [l], we have sl[j1] ≤ sl[j2] if and
only if s1[j1] ≤ s1[j2]. Since s1 = t2 and t1[j1] ≤ 0, and because f is dominated by the
second argument, s1[j1] ≤ s1[j2] if and only if t3[j1] ≤ t3[j2], which proves (3).

• t1[j1] < t1[j2], t1[j1] ≤ 0. Let i ∈ [l] be such that αi(t1[j1]) ≤ 0 and αi(t1[j2]) > 0. By
definition of [f |g] we see that si[j1] < si[j2]. Because αi(t1[j1]) < αi(t1[j2]) for all i ∈ [l], and
because [f |g] preserves <, by induction on i′ ≥ i we have that si′ [j1] < si′ [j2]. In particular,
sl[j1] < sl[j2]. On the other hand, t3[j1] < t3[j2] by definition of lexx,y and [lexx,y|g], and so
(3) also holds in this case.

• t1[j1] > 0. Observe that by the choice of l we have αi(t1[j1]) > 0 for all i ∈ [l]. Thus (3)
holds, because both [f |g] and [lexx,y|g] behave like g on Q+ ×Q.

6.3 The product Ramsey theorem

In the proof of the classification result, we make essential use of the so-called product Ramsey
theorem (PRT), which can be easily derived from the classical infinite Ramsey theorem; see [38]
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Figure 12: All weak linear orders on [2]× [2] grids.

Figure 13: If f is a binary injective operation that preserves < and is homogeneous on S×T , then
all [2]× [2] subgrids of S × T have one out of the following four weak linear orders.

for a general introduction to Ramsey theory. Subsets of a set of cardinality m will be called
m-subsets in the following. Let

(
S
m

)
denote the set of all m-subsets of S. The classical Ramsey

theorem can be stated as follows.

Theorem 45 (Finite version of Ramsey’s theorem; see e.g. Theorem 5.6.2 in [28]). For all positive
integers r,m, k there is a positive integer l = R(r,m, k) such that for every every χ :

(
[l]
m

)
→ [r]

there exists a k-subset S of [l] such that χ is constant on
(

S
m

)
.

The following theorem is known; however, we give the short proof from the classical Ramsey
theorem for the convenience of the reader. We also refer to mappings f : S → [r] as a coloring of S
(with the r colors 1, . . . , k). The notion of grids and subgrids has been introduced in Section 6.2.

Theorem 46 (Product Ramsey Theorem). For all positive integers d, r, m, and k ≥ m, there is
a positive integer L = R(d, r,m, k) such that for every coloring of the [m]d subgrids of [L]d with r
colors there exists a monochromatic [k]d subgrid G of [L]d, i.e., G is such that all its [m]d subgrids
have the same color.

Proof. Let d, r, m, and k ≥ m be positive integers. We claim that we can choose L = R(d, r,m, k)
to be R(r, dm, dk). To verify this, let χ be a coloring of the [m]d subgrids of [L]d with r colors.
We have to find a monochromatic subgrid of [L]d.

We use χ to define an r-coloring ξ of the dm-subsets of [L] as follows. Let S = {s1, s2, . . . , sdm}
be a dm-subset of [L], with s1 < s2 < · · · < sdm. Then define

ξ(S) = χ({s1, . . . , sm} × · · · × {sm(d−1)+1, . . . , sdm}) .

By the second part of Theorem 45, there is a dk-subset {t1, t2, . . . , tdk} of [L] such that ξ is
constant on the dm-element subsets of {t1, . . . , tdk}. Suppose that t1 < t2 < · · · < tdk. Then
G = {t1, . . . , tk} × · · · × {tk(d−1)+1, . . . , tdk} is a subgrid of [L]d that is monochromatic with
respect to χ.

Since we use the above theorem for d = m = 2 and since r is always obvious from the context,
we use just R(k) instead of R(d, r,m, k).

Lemma 47. Let f be a binary operation that preserves <, and let S1, T1 ⊆ Q be sets of cardinality
at least R(k). Then there exist sets S2 ⊂ S1, T2 ⊂ T1 of cardinality k such that f behaves on S2×T2

like one out of the following operations.

• px or py (a projection to the first or to the second argument);

• lexx,y or lexy,x;

30



• lexx,−y or lexy,−x.

Proof. We apply the product Ramsey theorem for d = m = 2, and color the [2] × [2] subgrids of
S1 × T1 according to the weak linear order defined by f on these subgrids. The possible weak
linear orders on a [2]× [2] grid are shown in Figure 12. Because S1 and T1 have cardinality R(k),
we obtain subsets S2 ⊆ S1 and T2 ⊆ T1 of size k such that all the [2]× [2] subgrids of S2 × T2 are
colored by the same color. The only possible weak linear orders of a [2]× [2] subgrid that can be
present on all [2] × [2] subgrids of a large grid are the first two pictures in the first row and the
four first pictures in the second row of Figure 12. It follows that f behaves as one out of the six
operations stated in the lemma.

If f behaves on a grid G like one of the operations px, py, lexx,y, lexy,x, lexx,−y, or lexy,−x, we
say that f is homogeneous on G (or simply homogeneous if G = Q2).

6.4 Proof of the main result

In this subsection, we combine all the previous results to show that every temporal constraint
language has a polynomial-time constraint satisfaction problem, or is NP-complete.

Lemma 48. Let f be a binary operation violating Betw and preserving <. Then there are t1, t2 ∈
Betw such that f(t1, t2) has three distinct entries and f(t1, t2) 6∈ Betw.

Proof. Since f violates Betw, there are two triples t1, t2 ∈ Betw such that t := f(t1, t2) 6∈ Betw.
Because f preserves <, we can assume without loss of generality that t1[1] < t1[2] < t1[3] and
t2[1] > t2[2] > t2[3]. If t has three distinct entries (in this case, we also say that t is injective), we
are done. Otherwise we distinguish two cases:

1. t[1] = t[2] = t[3]: In that case, take a triple s1 such that s1[1] < t1[1], s1[2] = t1[2], and
s1[3] = t1[3]. We also choose a triple s2 such that t2[2] < s2[1] < t2[1], s2[2] = t2[2], and
s2[3] = t2[3]. It is straightforward to check that s1[1] < s1[2] < s1[3] and s2[1] > s2[2] > s2[3]
and thus both triples belong to Betw. Now, consider s := f(s1, s2). We have that s[2] = t[2],
s[3] = t[3], and s[1] < t[1] = s[2] = s[3] because f preserves <. Therefore s 6∈ Betw. Take s1
instead of t1, s2 instead of t2 and proceed with case 2.

2. If exactly two entries in t have the same value, let i, j be their indices and let k be the
index of the entry with the unique value. We assume that t[k] > t[i] (the other case is
symmetric). It is straightforward to verify that there is an entry in t such that making the
value of this entry smaller would make t injective and it would still not be in Betw. We can
assume without loss of generality that i is an index of such an entry. We choose s1 so that
s1[i] < t1[i], s1[j] = t1[j], s1[k] = t1[k], and s1[1] < s1[2] < s1[3]. We choose s2 such that
s2[i] < t2[i], s2[j] = t2[j], s2[k] = t2[k], and s2[1] > s2[2] > s2[3]. Note that s1, s2 ∈ Betw.
The tuple s := f(s1, s2) satisfies s[i] < t[i], s[j] = t[j], and s[k] = t[k]. By the choice of i we
conclude that s is injective, s 6∈ Betw and we are done.

We use the product Ramsey theorem (Theorem 46) to prove the following.

Lemma 49. Let f be a binary operation that preserves < and violates Betw. Then f generates
ll, dual-ll, pp, or dual-pp.

Proof. If f violates Betw and preserves <, then Lemma 48 asserts that there are t1, t2 ∈ Betw
such that t := f(t1, t2) 6∈ Betw and t is injective. As f preserves <, we can assume without loss of
generality that t1[1] < t1[2] < t1[3] and t2[1] > t2[2] > t2[3] (otherwise, we apply the argument to
f(y, x)).

Either the triple t satisfies t[1] > t[2] < t[3] or t[1] < t[2] > t[3]. In the first case, let
S1 := {x ∈ Q | t1[1] < x < t1[2]}, S2 := {x ∈ Q | t1[3] < x}, T1 := {y ∈ Q | t2[3] < y < t2[2]},
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Figure 14: Grids chosen for the application of the product Ramsey theorem. The depicted ordering
on the values of f follows from the choice of t1, t2 and because f preserves <.

and T2 := {y ∈ Q | t2[1] < y}. In the second case, let S1 := {x ∈ Q | t1[2] < x < t1[3]},
S2 := {x ∈ Q | x < t1[1]}, T1 := {y ∈ Q | t2[2] < y < t2[1]}, and T2 := {y ∈ Q | y < t2[3]}. See
Figure 14 for an illustration of these sets.

For each k ∈ N, we define sets S(k)
1 , T

(k)
1 , S

(k)
2 , T

(k)
2 as follows. We apply Lemma 47 to the grid

S1 × T1 (both S1 and T1 are infinite and in particular larger than R(R(k))), and obtain subsets
U (k) ⊆ S1 and V (k) ⊆ T1 such that |U (k)| ≥ R(k), |V (k)| ≥ R(k), and f is homogeneous on
U (k) × V (k). Similarly, we apply Lemma 47 to the grid U (k) × T2 and obtain subsets S(k)

1 ⊆ U (k)

and T (k)
2 ⊆ T2 of cardinality at least k such that f is homogenous on S(k)

1 ×T (k)
2 . We finally apply

Lemma 47 to the grid S2 × V (k) and obtain subsets S(k)
2 ⊆ S2 and T

(k)
1 ⊆ V (k) of cardinality at

least k such that f is homogeneous on S
(k)
2 × T

(k)
1 . Note that f is in particular homogeneous on

S
(k)
1 × T

(k)
1 .

There are just 63 possibilities for how f behaves on those grids for given k. Hence, there is an
infinite set K ⊆ N such that f behaves in the same way on S(k)

1 × T
(k)
1 for all k ∈ K, in the same

way on S(k)
1 × T

(k)
2 for all k ∈ K, and in the same way on S(k)

2 × T
(k)
1 for all k ∈ K.

The following observations will be obvious by inspection of Figure 14, left side. In case that
S

(k)
1 is before S(k)

2 (that is, all elements in S
(k)
1 are smaller than all elements in S

(k)
2 ) and T

(k)
1 is

before T (k)
2 , then by the choice of S(k)

1 , S(k)
2 , T (k)

1 , and T (k)
2 , and because f preserves <, we have

f(x, y) < f(t1[2], t2[2]) < f(t1[1], t2[1]) < f(x′, y′)

for all (x, y) ∈ S(k)
1 × T

(k)
1 and (x′, y′) ∈ (S(k)

1 × T
(k)
2 ). Similarly,

f(x, y) < f(t1[2], t2[2]) < f(t1[3], t2[3]) < f(x′′, y′′)

for all (x, y) ∈ S(k)
1 × T

(k)
1 and (x′′, y′′) ∈ (S(k)

2 × T
(k)
1 ). The other case is that S(k)

2 is before S(k)
1

and T
(k)
2 is before T (k)

1 (see the right side of Figure 14 for an illustration). In this case f(x, y) >
f(t1[2], t2[2]) > f(x′, y′) for all (x, y) ∈ S(k)

1 × T
(k)
1 and (x′, y′) ∈ (S(k)

1 × T
(k)
2 ) ∪ (S(k)

2 × T
(k)
1 ).

First suppose that f is dominated by the same argument on all the grids S(k)
1 ×T (k)

1 , S(k)
1 ×T (k)

2 ,
and S

(k)
2 × T

(k)
1 for all k ∈ K. We can assume that f is dominated on these grids by the second

argument; otherwise we swap the arguments of f . Let g, h ∈ {lexy,x, lexy,−x, py} be such that f
behaves like g on S(k)

1 × T (k)
1 and like h on S(k)

2 × T (k)
1 . Then by the above observations and local

interpolation f generates [g|h] if S1 is before S2, and [h|g] if S2 is before S1. Moreover, we show
that f also generates lex.

• If g or h is lexx,y or lexy,x, then f clearly generates lex.

• If g or h is lexx,−y or lexy,−x, then f generates lex as well, because lex(x,−lex(x,−y)) behaves
like lex(x, y).

32



• If g is py and h is py, then f generates lex by Lemma 44.

Note that the operation [g|h] satisfies the conditions in Lemma 43, and hence {lex, [g|h]} generates
[lexy,x|lexy,x]. By Lemma 44, f generates ll.

Now we consider the case that f is dominated by different arguments on the grids S(k)
1 × T (k)

1

and S(k)
1 × T (k)

2 , or by different arguments on the grids S(k)
1 × T (k)

1 and S(k)
2 × T (k)

1 , for all k ∈ K.
We only consider the first case; the second case is symmetric under swapping the arguments of
f . Let g, h be from {lexx,y, lexx,−y, lexy,x, lexy,−x, px, py} such that f behaves like h on the grids
S

(k)
1 × T

(k)
1 and like g on the grids S(k)

2 × T
(k)
1 . Again, by local interpolation f generates [h|g] if

S1 is before S2, and [g|h] if S2 is before S1. We assume without loss of generality that f generates
[h|g] (in the other case we can exchange the names of h and g and proceed in the same way).

If h is py and g is px, then [h|g] behaves like pp; hence f generates pp and we are done.
Dually, if h is px and g is py, then f generates dual-pp. In all other cases, either h or g is from
lexx,y, lexy,x, lexx,−y, or lexy,−x, and thus f generates lex as we have already seen before. But then
Lemma 43 shows that f generates ll or dual-ll.

min mx mi max dual mx dual mi ll dual ll

pp dual pp lex

Aut(Q,<)

tractable

NP-complete

Figure 15: An illustration of the classification result for constraint languages that contain <.

We are now ready to prove our classification result.

Theorem 50. A temporal constraint language Γ has a tractable CSP if Γ is preserved by at
least one of the following nine operations: ll,min,mi ,mx, their duals, or a constant operation.
Otherwise, CSP(Γ) is NP-complete.

Proof. If Γ is preserved by a constant operation, then assigning the same value to every variable
of an instance of CSP(Γ) is a solution to this instance, unless there is a constraint for false in the
instance, in which case we simply reject. Therefore, CSP(Γ) can trivially be solved in polynomial
time. In case that Γ is preserved by ll or dual-ll, there is a quadratic-time algorithm that solves
CSP(Γ), see [5]. If Γ is preserved by min,mi ,mx or one of their duals, tractability is shown in
Section 5.

Theorem 20 asserts that one of the following cases is true:

1. CSP(Γ) is NP-complete, because there is a primitive positive definition of some relation with
an NP-complete CSP,

2. Pol(Γ) contains a constant operation. In this case CSP(Γ) is tractable as we have argued
above),

3. Pol(Γ) contains all permutations of Q, or

4. there is some binary f ∈ Pol(Γ) that preserves < and violates Betw.

In the third case, Γ is an equality constraint language, and the statement follows easily from
Theorem 13 and Theorem 15 in [4]. In the fourth case, Lemma 49 implies that the operation
f generates pp, dual-pp, ll, or dual-ll. If f generates ll or dual-ll we are in one of the described
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tractable cases. If f generates pp then Lemma 36 shows that either f preserves S and thus CSP(Γ)
is NP-hard by Proposition 15, or Γ is preserved by min, mi , or mx . Dually, if f generates dual-pp
then either f preserves −S and CSP(Γ) is NP-hard, or Γ is preserved by one of the duals of min,
mi , or mx , which completes the proof.

By inspection of all the temporal relations that were used to show hardness, we can also
describe the main result relationally as follows.

Corollary 51. If there is a primitive positive definition of Betw, Cycl, Sep, S, −S, or {(x, y, z) ∈
Q3 | x = y 6= z ∨ x 6= y = z} in Γ, then CSP(Γ) is NP-complete. Otherwise, CSP(Γ) is tractable.

Proof. The result follows from the proof of the previous theorem and the theorems referenced
therein, and the observation that temporal languages that are preserved by all permutations
either have a primitive positive definition of {(x, y, z) ∈ Q3 | x = y 6= z ∨ x 6= y = z}, or are
tractable (this follows easily from Theorem 13 and Theorem 15 in [4]).

7 Concluding remarks

We have completely classified the complexity of the constraint satisfaction problem for temporal
constraint languages. By Theorem 5, temporal constraint languages are precisely the highly set-
transitive structures; hence, we have obtained a complexity classification for the CSP of those
templates that have in a certain sense that largest possible degree of symmetry.

See Figure 16 for an overview over the nine largest tractable temporal constraint languages;
the entries also mention typical relations for the respective language, i.e., a set of relations that
is contained in the language, but not contained in any other of the nine languages – hence, these
relations show that all the languages are distinct.

Polymorphism Typical Relations Complexity Reference
min {U,<} O(n2m) Theorem 39
mi {I} O(n3m) Theorem 41
mx {X} O(n4) Theorem 42
max = dual min {−U,<} O(n2m)
dual mi {−I} O(n3m)
dual mx {−X} O(n4)
ll {(u 6= v) ∨ x > y ∨ x > z} O(nm) See [5]
dual ll {(u 6= v) ∨ x < y ∨ x < z} O(nm)
constant {(x ≤ y ≤ z) ∨ (z ≤ y ≤ x)} O(m)

Figure 16: Summary of the various tractable languages. For the last three operations, the typical
relations are given by their first-order definition; in all other cases, see Section 4.

Finally, we would like to remark that it follows from the descriptions of the constraint lan-
guages via the polymorphisms given in the paper that the so-called meta-problem for tractability
is decidable; this is formally stated in the following corollary.

Corollary 52. Let (Q;R1, . . . , Rn) be a finite temporal constraint language and let φ1, . . . , φn be
quantifier-free first-order formulas that define R1, . . . , Rn over (Q;<), respectively. There is an
algorithm that, given φ1, . . . , φn, decides whether Γ is tractable or has an NP-complete CSP.

Proof. Theorem 50 shows that it suffices to test for each of the nine (at most binary) poly-
morphisms whether all relations R1, . . . , Rn are preserved by this polymorphism. Suppose that
Ri is k-ary. Recall the observation from Proposition 6 that whether or not a k-tuple t ∈ Qk

is in Ri only depends on the weak linear order � of the entries of t. Now observe that for
f ∈ {min,mi ,mx ,max , dual-mi, dual-mx} the weak linear order of the k-tuple f(t1, t2) is deter-
mined by the weak linear order of the 2k-tuple (t1, t2). Hence, to test whether Ri is preserved by f
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it suffices to verify for a finite number of weak linear orders whether they satisfy φi. A procedure
that decides whether Ri is preserved by ll or dual-ll has been described in [5]. Testing whether
Ri is preserved by a constant polymorphism is trivial, we only have to verify whether the k-tuple
(0, . . . , 0) satisfies φi.
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[8] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for post algebras,
part I and II. Cybernetics, 5:243–539, 1969.

[9] M. Broxvall and P. Jonsson. Point algebras for temporal reasoning: Algorithms and complexity.
Artif. Intell., 149(2):179–220, 2003.

[10] A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of LICS’03, pages
321–330, 2003.

[11] A. Bulatov. A graph of a relational structure and constraint satisfaction problems. In Proceedings of
LICS’04, Turku, Finland, 2004.

[12] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal
of the ACM, 53(1):66–120, 2006.

[13] A. Bulatov, P. Jeavons, and A. Krokhin. The complexity of constraint satisfaction: An algebraic
approach (a survey paper). In: Structural Theory of Automata, Semigroups and Universal Algebra
(Montreal, 2003), NATO Science Series II: Mathematics, Physics, Chemistry, 207:181–213, 2005.

[14] A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of constraints using finite
algebras. SIAM Journal on Computing, 34:720–742, 2005.

[15] P. J. Cameron. Transitivity of permutation groups on unordered sets. Math. Z., 148:127–139, 1976.

[16] P. J. Cameron. Oligomorphic Permutation Groups. Cambridge Univ. Press, 1990.
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