
Maximal Infinite-Valued

Constraint Languages

Manuel Bodirsky a Hubie Chen b Jan Kára c Timo von Oertzen d

aLIX, École Polytechnique, Greater Paris
bDepartament de Tecnologies de la Informació i les Comunicacions, Universitat

Pompeu Fabra, Barcelona
cDepartment of Applied Mathematics, Charles University, Prague

dMax-Planck-Institute for Human Development, Berlin

Abstract. We systematically investigate the computational complexity of
constraint satisfaction problems for constraint languages over an infinite do-
main. In particular, we study a generalization of the well-established notion
of maximal constraint languages from finite to infinite domains. If the con-
straint language can be defined with an ω-categorical structure, then maximal
constraint languages are in one-to-one correspondence to minimal oligomor-
phic clones. Based on this correspondence, we derive general tractability and
hardness criteria for the corresponding constraint satisfaction problems.

1 Introduction

One of the research goals in constraint satisfaction is to determine the con-
straint languages whose constraint satisfaction problem (CSP) can be solved
by a polynomial time algorithm (we will call such languages tractable), and
the languages for which the constraint satisfaction problem is NP-hard. In the
last decade, a lot of progress was made in this direction for the case where
the domain D of the constraint language is finite. An important stimulant of
this research progress has been the observation that for finite D the compu-
tational complexity of a constraint satisfaction problem is determined by a
set of closure operations, which forms an object known as polymorphism clone
in universal algebra. The line of research that uses this connection to univer-
sal algebra is known as the algebraic approach to constraint satisfaction; see
e.g. [8] for a recent account.

The complexity classification of CSPs for finite domains D is still not com-
plete. However, based on the algebraic approach, the complexity classification

This is a post-print of a paper published in TCS (410), p. 1684-1693, 2009

for maximal constraint languages has been completed recently [6,7]. Roughly
speaking, a constraint language is maximal if it is as large as possible without
expressing all relations on D. Hence, tractability results for maximal con-
straint languages are the broadest ones that one can hope for. The notion of
a maximal constraint language was previously only used for finite domains D.

Compared to constraint satisfaction with finite domains, there are not as many
systematic results for infinite-valued CSPs. One of the outstanding exceptions
is the complexity classification for the tractable sub-languages of Allen’s in-
terval algebra. Allen’s interval algebra is a (binary) constraint language that
allows to specify relative positions of intervals over the rational numbers, and
is in its unrestricted form NP-complete [1]. However, there are many tractable
sub-languages, which were determined in a series of papers, most notably
in [18,19].

Many constraint languages in temporal and spatial reasoning, but also con-
straint languages studied in computational linguistics and computational biol-
ogy, are ω-categorical. The CSPs for the fragments of Allen’s interval algebra,
for instance, can all be formulated with ω-categorical constraint languages.
The concept of ω-categoricity is of central importance in model theory. It
turns out that the algebraic approach to constraint satisfaction can be ap-
plied not only to constraint languages over a finite domain, but also to ω-
categorical constraint languages [3, 5, 14]. From the model-theoretic point of
view, ω-categoricity is a severe restriction. However, the class of CSPs that
can be formulated with ω-categorical structures is very rich. It contains for
instance all CSPs (for a constraint language over an arbitrary infinite domain)
in MMSNP [3], a fragment of existential second order logic, which was intro-
duced in the context of constraint satisfaction in [11]. We will later also see
how ω-categorical structures can be used to model problems about solving
equations over infinite-dimensional vector spaces.

Contributions. In this paper, we introduce and investigate a notion of
maximal constraint languages that applies to infinite domains. For finite do-
mains, our definition of maximal constraint languages essentially coincides
with the well-established notion of maximal constraint languages in [6,7]. We
will use the fact that maximal ω-categorical constraint languages are in one-to-
one correspondence to minimal oligomorphic clones, and prove that maximal
constraint languages are either NP-hard, or have a polymorphism that has
one out of three types: either a unary constant operation, an oligopotent quasi
majority operation, or an oligopotent essential binary operation. If the poly-
morphism is of the first type, the constraint satisfaction problem is trivial
and tractable. If the polymorphism is of the second type, tractability follows
from a result in [3]. Therefore, all maximal constraint languages of unknown
computational complexity are preserved by an essential binary operation.

2

Another main contribution is a strong tractability criterion which shows that
ω-categorical constraint languages with a certain binary polymorphism can
be solved in polynomial time. This class contains many maximal constraint
languages. As demonstrated in Section 8, our condition also captures and
extends tractability results in qualitative spatial reasoning, and it provides an
universal-algebraic perspective on these results.

2 The Constraint Satisfaction Problem

We first recall fundamental concepts and notation used throughout the text;
the book of Hodges [15] might serve as an introduction. A relational signature τ
is a (here always at most countable) set of relation symbols Ri, each associated
with an arity ki. A (relational) structure Γ over the relational signature τ (also
called τ -structure) is a set DΓ (the domain) together with a relation Ri ⊆ Dki

Γ

for each relation symbol of arity ki. If necessary, we write RΓ to indicate
that we are talking about the relation R belonging to the structure Γ. For
simplicity, we denote both a relation symbol and its corresponding relation
with the same symbol. For a τ -structure Γ and R ∈ τ it is convenient to
say that R(u1, . . . , uk) holds in Γ iff (u1, . . . , uk) ∈ R. We sometimes use the
shortened notation x for a vector x1, . . . , xn of any length. Sometimes we do
not distinguish between the symbol for a relational structure Γ and its domain
DΓ. If we add relations to a given structure Γ, we call the resulting structure
Γ′ an expansion of Γ, and we call Γ a reduct of Γ′.

Let Γ and Γ′ be τ -structures. A homomorphism from Γ to Γ′ is a function f
from DΓ to DΓ′ such that for each n-ary relation symbol RΓ in τ and each
n-tuple a, if a ∈ RΓ, then (f(a1), . . . , f(an)) ∈ RΓ′

. In this case we say that the
mapping f preserves the relation R. If there is a homomorphism from Γ to Γ′

and a homomorphism from Γ′ to Γ, we say that Γ and Γ′ are homomorphically
equivalent. Homomorphisms from Γ to Γ are called endomorphisms. A homo-
morphism is called a strong homomorphism if it satisfies the stronger condition
that for each n-tuple a, a ∈ RΓ if and only if (f(a1), . . . , f(an)) ∈ RΓ′

. An
injective strong homomorphism is called an embedding. An isomorphism is a
surjective embedding. Isomorphisms from Γ to Γ are called automorphisms.
The set of all automorphisms Aut(Γ) of a structure Γ is a group with respect
to composition.

The constraint satisfaction problem. Let Γ be a structure with the
relational signature τ . The constraint satisfaction problem (CSP) for Γ is the
following computational problem:

3

CSP(Γ)
INSTANCE: A finite structure S of the same relational signature τ as the
template Γ.
QUESTION: Is there a homomorphism from S to Γ?

The structure Γ is called the template or the constraint language of CSP(Γ).
The elements of the finite input structure S are also called the variables of
the CSP. In order to study the computational complexity of this problem, we
have to encode the input structure S as a finite string over the alphabet {0, 1}.
However, if we assume that the signature τ is finite, the exact choice of the
representation of the relation symbols does not matter (since the relational
signature is fixed and in particular does not grow with the size of the input).
For infinite signatures τ , we say that CSP(Γ) is tractable if and only if CSP(Γ′)
is tractable for all all reducts Γ′ of Γ having a finite signature. This definition
is also commonly used for constraint satisfaction over finite domains [8].

To study the computational complexity of the CSP, reductions from one con-
straint language to another can be described conveniently using the notion of
primitive positive definability from logic. A first-order formula is called primi-
tive positive (pp), if it has the form ∃x1 . . . xk.ψ1∧· · ·∧ψl, where ψi is atomic (it
might be of the form x = y, i.e., we always include equality in first-order logic).
The atomic formulas might contain free variables and existentially quantified
variables from x1, . . . , xk. As usual, every formula with k free variables defines
a k-ary relation on a structure Γ. Primitive positive definability of relations
is an important concept in constraint satisfaction, because pp-definable rela-
tions can be ‘simulated’ by the constraint satisfaction problem. The following
is frequently used in hardness proofs for constraint satisfaction problems; see
e.g. [8].

Lemma 1 Let Γ be a relational structure, and let R be a relation that has a
primitive positive definition in Γ. Then the constraint satisfaction problems of
Γ and of the expansion of Γ by R have the same computational complexity up
to logspace reductions.

The (universal-) algebraic approach to constraint satisfaction relies on the
fact that pp-definability can be characterized by preservation under so-called
polymorphisms ; we introduce these concepts in Section 4.

3 Preliminaries from Model Theory

We first recall fundamental concepts from model theory, which are standard,
see e.g. [15]. A relational structure over a countably infinite domain is called

4

ω-categorical if the first-order theory of Γ, i.e., the set of first-order sentences
that is true in Γ, has only one countable model up to isomorphism. The fol-
lowing deep theorem discovered independently by Engeler, Ryll-Nardzewski,
and Svenonius (see [15]) describes these structures in algebraic terms.

An orbit of a k-tuple (t1, . . . , tk) ∈ Dk under a permutation group G is the
set of all tuples of the form (π(t1), . . . , π(tk)), where π is a permutation from
G. A permutation group G is called oligomorphic, if for each k ≥ 1, there are
finitely many orbits of k-tuples under G.

Theorem 2 (Engeler, Ryll-Nardzewski, Svenonius; see [15]) A count-
able relational structure is ω-categorical if and only if the automorphism group
of Γ is oligomorphic. A relation R has a first-order definition in an ω-categorical
structure Γ if and only if R is preserved by all automorphisms of Γ.

An ω-categorical structure Γ is called model-complete if every embedding from
Γ into Γ preserves all first-order formulas. It is called homogeneous (in the lit-
erature sometimes also ultra-homogeneous), if all isomorphisms between finite
induced substructures of Γ can be extended to automorphisms of Γ. It is
well-known [15] that an ω-categorical structure is homogeneous if and only if
it has quantifier-elimination, i.e., every first-order formula is equivalent to a
quantifier-free formula over Γ. Homogeneous ω-categorical structures are al-
ways model-complete [15]. We say that an ω-categorical structure Γ is a core,
if every endomorphism of Γ is an embedding. We say that ∆ is a core of Γ if
∆ is a core and homomorphically equivalent to Γ.

Theorem 3 (from [14]) Every ω-categorical structure Γ has a model-complete
core ∆, which is unique up to isomorphism, and which is either finite or ω-
categorical. Every relation consisting of a single orbit of k-tuples under the
automorphism group of a model-complete core ∆ has a primitive positive def-
inition in ∆.

Since a model-complete core ∆ of Γ is unique up to isomorphisms, we call ∆
the core of Γ. Clearly, Γ and ∆ have the same constraint satisfaction problem,
and we can therefore always assume that templates of constraint satisfaction
problems are model-complete cores. One of the reasons why it is convenient
to assume that Γ is a model-complete core is the following.

Lemma 4 (from [14]) Let Γ be a model-complete ω-categorical core, and let
Γ′ be the expansion of Γ by finitely many unary singleton relations, i.e., re-
lations of the form C = {c}. Then CSP(Γ) and CSP(Γ′) are polynomial-time
equivalent.

5

4 Preliminaries from Universal Algebra

To explore the expressive power of a constraint language, we make use of
universal algebraic techniques. We give a very short but self-contained intro-
duction to clones on infinite domains.

Let D be an infinite set, and let O(k) be the set of functions from Dk to
D, for k ≥ 1. The symbol O denotes

⋃∞
k=1O

(k). The elements of O will be
called operations in the following. An operation π ∈ O(k) is called a projection
if for some fixed i ∈ {1, . . . , k} and for all k-tuples x we have the identity
π(x1, . . . , xk) = xi. The composition of a k-ary operation f and k operations
g1, . . . , gk of arity n is the n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

We say that an operation f ∈ O(k) is interpolated by a set F ⊆ O if for every
finite subset B of D there is some operation g ∈ F such that f(t) = g(t) for
every t ∈ Bk. The set of all operations that are interpolated by F is denoted
by I(F).

A subset F of O is called a clone if it contains all projections and is closed
under composition. The smallest clone that contains F as a subset is called
the clone generated by F , and denoted by G(F). A clone F is called a local
clone (or locally closed) if I(F) = F . The smallest local clone that contains
a set of operations F is called the clone locally generated by F , and denoted
by L(F). If g is an operation in L(F), we also say that F locally generates g.
The following fact is mentioned in [22].

Proposition 5 For all F ⊆ O we have that L(F) = I(G(F)).

Note that L(F) = G(I(F)) is in general not true. The connection to the expres-
sive power of constraint languages is as follows. The (direct–, categorical–, or
cross–) product Γ1×Γ2 of two relational τ -structures Γ1 and Γ2 is a τ -structure

on the domain DΓ1 ×DΓ2 . For all relations R ∈ τ the relation R
(
(x1, y2), . . . ,

(xk, yk)
)

holds in Γ1 ×Γ2 iff R(x1, . . . , xk) holds in Γ1 and R(y1, . . . , yk) holds

in Γ2. Homomorphisms from Γk = Γ× . . .× Γ to Γ are called polymorphisms
of Γ. The set of all polymorphisms of a relational structure Γ with domain D,
denoted by Pol(Γ), is a local clone (with domain D).

The algebraic approach is based on the following observation, which shows
together with Lemma 1 that the computational complexity of a constraint
satisfaction problem with template Γ is determined by the polymorphisms of
Γ. If F is a clone, we denote by Inv(F) the set of relations that are preserved
by F .

6

Theorem 6 (from [5]) Let Γ be an ω-categorical structure. Then a relation
is primitive positive definable in Γ if and only if it is preserved by all polymor-
phisms of Γ. In other words, Inv(Pol(Γ)) is the set of all primitive positive
definable relations of Γ.

This motivates the study of polymorphism clones of ω-categorical structures.
A clone F on a countable setD is called oligomorphic, if the permutations ofD
that are contained in F form an oligomorphic permutation group. Theorem 2
asserts that the polymorphism clones of ω-categorical structures are oligo-
morphic. Conversely, a locally closed oligomorphic clone is the polymorphism
clone of an ω-categorical structure; see [2].

An operation of an oligomorphic clone F is called elementary if it is locally
generated by the permutations in F . Clearly, for finite clones, the elementary
operations are the operations that are composed of a projection with a permu-
tation. Note that all endomorphisms of a model-complete ω-categorical core
are elementary.

Proposition 7 (from [2]) If all polymorphisms of an ω-categorical structure
Γ are locally generated by the automorphisms of Γ, then every first-order for-
mula is equivalent to a primitive positive formula in Γ.

We now define several other important properties of k-ary operations. A k-ary
operation f is

• idempotent iff f(x, . . . , x) = x;
• oligopotent iff g(x) := f(x, . . . , x) is elementary
• essentially unary iff there is a unary operation f0 such that f(x1, . . . , xk) =
f0(xi) for some i ∈ {1, . . . , k};

• essential iff f is not essentially unary;
• a quasi near-unanimity operation (short, qnu-operation) iff f(x, . . . , x) =
f(x, . . . , x, y) = · · · = f(x, . . . , x, y, x, . . . , x) = · · · = f(y, x, . . . , x);

• a quasi majority operation iff f is a ternary quasi near-unanimity operation;
• a quasi semiprojection iff k ≥ 3 and there is an essentially unary operation
g such that f(x1, . . . , xk) = g(x1, . . . , xk) whenever |{x1, . . . , xk}| < k.

An idempotent quasi majority, quasi near-unanimity, and quasi semiprojec-
tion is known as majority, near-unanimity operation, and semiprojection, re-
spectively. If all operations of a clone are elementary, essentially unary, or
oligopotent, then we say that the clone is elementary, essentially unary, or
oligopotent, respectively. Note that elementary clones are essentially unary.

Minimal Clones. Important questions in universal algebra and useful tools
for constraint satisfaction arise from the notion of minimal clones. A (proper)
subclone F ′ of a clone F is a clone on the same domain as F such that the

7

operations of F ′ form a (proper) subset of the operations of F . An oligo-
morphic clone F is called minimal, if it is non-elementary and every proper
oligomorphic subclone is elementary. The following is the oligomorphic analog
of a result proved by Rosenberg [21] for clones with a finite domain 1 .

Theorem 8 (of [2]) Every minimal oligomorphic clone F is locally generated
by the permutations from F and a non-elementary operation that is of one of
the following types

(1) a unary operation f such that f(f) and the permutations in F locally
generate f ;

(2) a binary oligopotent operation;
(3) a ternary oligopotent quasi majority operation;
(4) a k-ary oligopotent quasi semi-projection, for k > 2.

We also need the following.

Theorem 9 (of [2]) Let Γ be an ω-categorical model-complete core. If the
polymorphism clone F of Γ contains a non-elementary operation, then F also
contains a minimal oligomorphic clone.

5 Hardness Criteria for CSPs

We show that if a constraint language is not preserved by polymorphisms
of a special kind, the corresponding constraint satisfaction problem must be
NP-hard.

Theorem 10 Let Γ be an ω-categorical structure. Then either Γ has a finite
core, CSP(Γ) is NP-hard, or Γ has a polymorphism f of one of the following
types.

• an essential binary operation
• a ternary quasi majority operation
• a k-ary quasi semi-projection, for k ≥ 3

PROOF. Let ∆ be the (up to isomorphism unique) model-complete core of
Γ, and let h be a homomorphism from Γ to ∆ (both ∆ and h exist due to

1 Note that one of the five cases presented by Rosenberg can not occur for minimal
oligomorphic clones, essentially because ω-categorical model-complete cores can not
have a ternary polymorphism that satisfies the identities f(y, x, x) = f(x, x, y) =
f(y, y, y); see [2].

8

Theorem 3). If ∆ is a finite τ -structure, there is nothing to show. Otherwise,
∆ is ω-categorical (again Theorem 3).

Let F be the polymorphism clone of ∆. If F is elementary, i.e., if F is lo-
cally generated by the automorphisms of ∆, then all first-order formulas are
equivalent to a pp-formula in ∆ (Proposition 7). In particular, this holds for
the ternary relation defined by (x = y ∧ y 6= z) ∨ (x 6= y ∧ y = z), which
has an NP-complete CSP [4] (also see Subsection 8.1). Lemma 1 implies that
CSP(∆) and thus also CSP(Γ) is NP-hard.

Otherwise, F is not elementary, and Theorem 9 implies that F contains a
minimal subclone F ′. Now, by Theorem 8, the clone F ′ is locally generated by
an operation f that has one out of four types. We can exclude the first case,
because ∆ is a model-complete core, and therefore all endomorphisms are ele-
mentary. For the remaining three cases of Theorem 8, suppose that f is k-ary,
and consider the operation g defined by g(x1, . . . , xk) = f(h(x1), . . . , h(xk)).
It is straightforward to verify that it has again one of the three types, and
that it is a polymorphism of Γ. This completes the proof. 2

It was shown in [16] that for constraint languages over finite domains the
semiprojections alone do not guarantee tractability. The same holds even for
ω-categorical constraint languages and quasi semiprojections.

Proposition 11 Let Γ be an ω-categorical core. If all polymorphisms of Γ are
locally generated by quasi semiprojections and the automorphisms of Γ, then
CSP(Γ) is NP-hard.

PROOF. We show this by reducing the problem positive 1-IN-3-3SAT [13] to
CSP(Γ). Consider the expansion Γ′ of Γ by the two unary singleton relations
A := {a} and B := {b}, where a and b are two distinct elements of Γ. Lemma 4
shows that Γ and Γ′ have polynomial time equivalent constraint satisfaction
problems, so it suffices to show that CSP(Γ′) is NP-hard. Since Γ′ has strictly
fewer polymorphisms than Γ, we have that all the polymorphisms of Γ′ are
locally generated by quasi semiprojections.

First note that the unary relation C := {a, b} is preserved by all quasi semipro-
jections. Since all quasi semiprojections are at least ternary, every application
f(c1, . . . , ck) of a quasi semiprojection f with arguments c1, . . . , ck from {a, b}
must have two arguments with the same value, and hence f acts like an es-
sentially unary operation on {a, b}. That is, there is an i ∈ {1, . . . , k} and a
unary operation f0 such that f(c1, . . . , ck) = f0(ci) for all c1, . . . , ck ∈ {a, b}.
Since the unary operation f0 must preserve A and B, it must map a to a and b
to b, and hence f0 and f preserve the set C. By Theorem 6 the unary relation
C is primitive positive definable in Γ′.

9

Also consider the ternary relationN = {(a, a, b), (a, b, a), (b, a, a)}. Similarly to
the argument before, we can show that N has a primitive positive definition
in Γ′ (essentially because all semiprojections behave on the set {a, b} like
essentially unary operations). By Lemma 1, it suffices to show hardness of
CSP(Γ′′) where Γ′′ is the expansion of Γ′ by the relation C and the relation
N .

We show hardness of CSP(Γ′′) by reduction from 1-IN-3-3SAT. Let S be an
instance of positive 1-IN-3-3SAT. We construct an instance of CSP(Γ′′) as
follows. For each variable in S we introduce a variable x and impose the
constraint C on x, i.e., we add x to the unary relation C in the instance we
construct. Then every clause in S can be translated to a ternary constraint
involving the relation N in the straightforward way, and it is easy to verify
that this indeed is a reduction of 1-IN-3-3SAT. 2

6 Maximal Constraint Languages

A constraint language Γ is called complete, if every first-order definable rela-
tion in Γ also has a primitive positive definition in Γ. We call an incomplete
constraint language maximal, if adding any relation to the language that was
not primitive positive definable before turns the constraint language into a
complete constraint language. We will see that for ω-categorical structures,
maximal constraint languages precisely correspond to minimal locally closed
clones.

This definition of maximality coincides with the well-established notion of
maximality of constraint languages for finite templates (see [7,8]), if we assume
that the constraint language additionally contains for every element a ∈ D
a symbol Ra that denotes the unary relation {a}. Every CSP with a finite
domain is polynomial-time equivalent to the CSP where the language has
been expanded by all singleton relations as described above; see [8].

We briefly recall the definition of maximality given in [7]. For finite domains
D a constraint language is called complete if every relation over D has a prim-
itive positive definition over the constraint language. As before, an incomplete
constraint language is called maximal if adding any relation to the language
that was not primitive positive definable before turns the constraint language
into a complete constraint language. Once we have singleton relations for all
elements in our constraint language, this definition of completeness coincides
with the definition shown above, because in such constraint languages every
relation has a first-order definition, which is easy to see. Therefore, our defi-
nition and the standard definition of maximality essentially coincide on finite
templates.

10

Proposition 12 (of [2]) Let Γ be an ω-categorical constraint language that
is not complete, and let F be the polymorphism clone of Γ. Then the following
are equivalent:

(1) Γ is maximal;
(2) F is minimal, i.e., every proper oligomorphic subclone of F is elementary;
(3) Every non-elementary operation in F , together with the permutations in

F , locally generates F .

Theorem 10 now specializes to the following.

Theorem 13 Let Γ be ω-categorical and maximal. Then one of the following
cases applies.

(1) CSP(Γ) is NP-hard;
(2) Γ has a constant polymorphism, and CSP(Γ) is tractable;
(3) The polymorphism clone of Γ is locally generated by the automorphisms

of Γ and an oligopotent essential binary operation;
(4) The polymorphism clone of Γ contains an oligopotent quasi majority op-

eration, and CSP(Γ) is tractable.

PROOF. Suppose that Γ is not a core, i.e., Γ has an endomorphism e that
is not an embedding. In particular, e is not elementary. If e is a constant
endomorphism, then the following algorithm solves the corresponding trivial
CSP. The algorithm first tests whether the instance contains a symbol for
an empty relation. If this is the case, the algorithm rejects. Otherwise it can
accept the instance, because setting all variables to the constant value of the
unary polymorphism e satisfies all constraints.

Proposition 12 implies that the polymorphism clone F of the structure ∆
induced by the image of e in Γ is elementary. If the domain of ∆ is finite and
has more than one element, then NP-completeness of CSP(∆) follows from
results in [8] (because all polymorphisms of ∆ are essentially unary). For the
case where the domain of ∆ is infinite we consider the ternary relation defined
by (x = y ∧ y 6= z) ∨ (x 6= y ∧ y = z), which has an NP-complete CSP [4]
(also see Subsection 8.1). Since F preserves this relation, Theorem 6 implies
that this relation has a pp-definition in ∆. By Lemma 1 the problem CSP(∆)
is NP-hard. Thus, CSP(Γ) is also NP-hard.

We now assume that Γ is a core. Theorem 10 shows that if CSP(Γ) is not NP-
hard, then Γ has a polymorphism g that is an essential binary operation, a
ternary quasi majority, or a k-ary quasi semi-projection. Since Γ is a maximal
constraint language, Proposition 12 implies that g together with the automor-
phisms of Γ locally generates all polymorphisms of Γ. Since Γ is a core, g is
oligopotent.

11

In the case of a quasi semiprojection, Proposition 11 shows that CSP(Γ) is
NP-hard. In the case of a quasi majority operation, Theorem 8 in [3] shows
that CSP(Γ) can be solved in polynomial time (since a quasi majority is a
ternary near-unanimity operation, and languages closed under a quasi near
unanimity operation are tractable by Datalog). 2

Note that all the maximal ω-categorical constraint languages of unknown com-
putational complexity are from the third case of Theorem 13.

7 Horn Tractability

In this section we present a general tractability criterion based on preservation
under a binary polymorphism, and discuss maximal constraint languages that
can be shown to be tractable because they satisfy the criterion.

7.1 Tractability

If Γ = (D;R1, . . .) is a relational structure, we denote by Γ̂ the expansion of
Γ that also contains the complement for each relation in Γ. We say that a
relation R has a quantifier-free Horn definition in Γ if R can be defined by a
quantifier-free first-order formula over the signature of Γ that is in conjunctive
normal form in which every clause contains at most one positive literal.

Proposition 14 Let Γ be an ω-categorical homogeneous structure, and let ∆
be a structure with a first-order definition in Γ. If ∆ has a polymorphism i
which is a strong homomorphism from Γ2 to Γ, and if CSP(Γ̂) is tractable,
then CSP(∆) is tractable as well.

PROOF. Let R be a relation from ∆. Because R has a first-order defini-
tion in Γ, and because Γ is ω-categorical and homogeneous, it has quantifier-
elimination. Therefore, there is a first-order definition φ of R in Γ that is
quantifier-free. We assume that φ is written in conjunctive normal form, and
that φ is reduced in the following sense: whenever we remove a literal or a
clause from φ, we obtain a formula that is inequivalent to φ over Γ. Clearly,
we can assume that such a reduced first-order definition φ of R exists.

We claim that in this case φ is necessarily Horn, i.e., each clause of φ contains
at most one positive literal. Suppose for contradiction that φ contains a clause
α that has two positive literals α1 and α2. Let φ′ be the formula φ without
the literal α1, and let φ′′ be the formula φ without the literal α2. Because φ is

12

reduced, there is a tuple a in R that satisfies φ but not φ′, and a tuple b that
satisfies φ but not φ′′. Then the tuple i(a, b) does not satisfy α1, because i is a
strong homomorphism from Γ2 to Γ and b does not satisfy α1. Similarly, i(a, b)
does not satisfy α2 and also does not satisfy all other literals in α. Hence, i
violates φ. This contradicts the assumption that i is a polymorphism of ∆.

Finally, we show that if CSP(Γ̂) is tractable, then CSP(∆) is tractable as
well. We only have to show the tractability of CSP(∆) for structures ∆ with
a finite signature. As shown in the first part of the proof, each relation in
∆ has a reduced first-order definition in Γ, which is Horn. Consider the set
of all relations from Γ that are involved in all these definitions; this is again
a finite set of relations. Let Γ′ be the smallest reduct of Γ that contains all
these relations and such that all complements of relations in Γ′ are in Γ′. We
assume that the relations of the input instances S of CSP(∆) are represented
by quantifier-free Horn formulas in reduced form. Note that we can make this
assumption because the constraint language ∆ is fixed and finite, and also
because the constraint language Γ′ is fixed and finite.

Now, let S be an instance of CSP(∆) with n variables. The algorithm proceeds
as follows.

(1) We consider the instance S ′ that contains all the clauses from formulas of
constraints in S that do not contain negative literals. Note that S ′ is an
instance of CSP(Γ′). By assumption, we can decide in polynomial time
whether S ′ has a solution. If S ′ does not have a solution, the algorithm
terminates and reports that S does not have a solution.

(2) We select the negative literals ¬β in formulas of constraints from S one
by one, and let S ′′ be the instance of CSP(Γ′) obtained from S ′ by adding
¬β (here we use that Γ′ also contains the complements of all its relations).
We solve S ′′ with the polynomial-time algorithm for CSP(Γ′); if it does
not have a solution, we remove ¬β from all clauses in the formulas of all
the constraints in S. Note that it might be that clauses become empty,
and in this case the algorithms reports that S does not have a solution.

(3) We return to the first step of the algorithm, until no literals can be deleted
from clauses any more.

(4) The algorithm reports that there is a solution for S.

Clearly, this algorithm works in polynomial time, since there is only a poly-
nomial number (in fact, since the language Γ′ and ∆ is finite, only a linear
number) of literals that can be deleted from formulas defining the constraints
in S. It is easy to show by induction that if the algorithms reports that there
is no solution for S, then indeed there is no homomorphism from S to ∆. The
reason is that whenever a literal ¬β is removed from all clauses, then in fact
β is implied by the other clauses in S, and therefore removing ¬β from all
clauses does not affect the solution space of S.

13

The interesting part is that the final answer in Step 4 of the algorithm is
correct. Let n be the number of variables in S, and let Φ be the set of all clauses
from formulas of constraints in S at the very final stage of the algorithm. Also
consider the negative literals ¬γ1, . . . ,¬γm that are finally in the clauses for
the constraints in S. For each ¬γi, let tk ∈ Dn be an n-tuple that satisfies
all clauses without negative literals and where ¬γk is true, i.e., where γk is
false. These tuples must exist, since otherwise γk would have been true in
all solutions, and our algorithm would have jumped from Step 3 to Step 1.
The mapping j : (x1, x2, . . . , xm−1, xm) 7→ i(x1, i(x2, . . . , i(xm−1, xm) . . .)) is
a strong homomorphism from Γm to Γ. It is straightforward to verify that
(j(t1[1], . . . , tm[1]), . . . , j(t1[n], . . . , tm[n])) is a solution for S: negative literals
¬γk are satisfied because tk does not satisfy γk, and hence γk is not satisfied
in Γm as well. Positive literals from Φ are clearly preserved by j because they
hold in all tk. 2

To illustrate this result, we present a simple application for a constraint lan-
guage over the Boolean domain. Many examples for infinite-valued constraint
languages will be presented in Section 8.

Let Γ be the constraint language over the domain {0, 1} that contains only
the unary relation {1}. Obviously, CSP(Γ̂) is tractable, and the binary min-
inum operation min is a strong homomorphism from Γ2 to Γ. The proof of
Proposition 14 shows that all relations that are preserved by min have a Horn
definition in Γ (which are precisely the Boolean relations that have a propo-
sitional Horn definition in the usual sense). Thus, Proposition 14 implies the
well-known fact that the Horn satisfiability problem can be solved in polyno-
mial time.

7.2 Maximality

If Γ2 is isomorphic to Γ, then the isomorphism i is in particular a strong homo-
morphism from Γ2 to Γ, and we have already one condition for the tractability
result of Proposition 14. In this case, and if Γ is model-complete, we can show
that the set of all relations preserved by i forms a maximal constraint language
(and hence, expanding Γ by any first-order definable relation that does not
have a primitive positive definition in Γ results in a constraint language with
an NP-hard constraint satisfaction problem). We first observe the following
universal algebraic properties of the binary operation i and the endomorphisms
of Γ.

Lemma 15 Let i be an isomorphism between Γ2 and Γ. Then the following
statements hold.

14

T1 for all α, β ∈ Aut(Γ) we have γ ∈ Aut(Γ) such that γ(x) = α(β(x))
T2 for all α ∈ Aut(Γ) we have β ∈ Aut(Γ) such that i(α(x), y) = β(i(x, y))
T2’ for all α ∈ Aut(Γ) we have β ∈ Aut(Γ) such that i(x, α(y)) = β(i(x, y))
T3 there is α ∈ Aut(Γ) such that i(i(x, y), z) = α(i(x, i(y, z)))
T3’ there is α ∈ Aut(Γ) such that i(x, i(y, z)) = α(i(i(x, y), z))
T4 there is α ∈ Aut(Γ) such that i(x, y) = α(i(y, x))

PROOF. The proof of the first property is trivial (the set of automorphisms
of any structure is a group). For the second property, observe that the opera-
tion j defined by i(α(x), y) is an isomorphism from Γ2 to Γ as well; let j−1 be
its inverse. Then i(j−1) is an isomorphism between Γ and Γ, and its inverse
β = j(i−1) is an automorphism β of Γ such that i(α(x), y) = β(i(x, y)). The
other properties can be verified similarly. 2

To show that i and the automorphisms of Γ locally generate a minimal oligo-
morphic clone, we need the following lemma.

Lemma 16 Let Γ be a model-complete ω-categorical structure, and let i be an
isomorphism between Γ2 and Γ. Then for every k-ary operation g generated
by {i} ∪ Aut(Γ) and every finite subset A of the domain of Γ either

(1) there exists an l ∈ {1, . . . , k} and an α ∈ Aut(Γ) such that g(x1, . . . , xk) =
α(xl) for all x1, . . . , xk ∈ A, or

(2) there are distinct l1, l2 ∈ {1, . . . , k}, s1, . . . , sk ∈ {l1, l2}, and an α ∈
Aut(Γ) such that g(xs1 , . . . , xsk

) = α(i(xl1 , xl2)) for all xl1 , xl2 ∈ A.

PROOF. Let F be {i} ∪ Aut(Γ). Since g ∈ G(F), there is a composition
T (x1, . . . , xk) of the operations in F that defines g(x1, . . . , xk). We can apply
T2 and T2’ until T (x1, . . . , xk) has been transformed to an expression of the
form α1(α2(. . . αs(T

′(x1, . . . , xk)) . . .)) where T ′(x1, . . . , xk) does not contain
unary function symbols. Then we repeatedly apply T1 and rewrite the ex-
pression to β(T ′(x1, . . . , xk)) for some β ∈ Aut(Γ). In the same way, we move
unary function symbols to the front during the following transformations, and
β will always denote the resulting unary function symbol at the front.

Let A be any finite subset of the domain of Γ. If there is only one variable
xl that appears in T ′, then g is essentially unary, and it is clear that g is an
embedding of Γ into Γ. Because Γ is model-complete, g must be elementary.
Therefore, there exists an automorphism α of Γ such that g(x1, . . . , xk) = α(xl)
for all x1, . . . , xk ∈ A.

Otherwise, assume without loss of generality that both variables x1 and x2 do
appear in T ′ (otherwise we permute arguments of g), and consider the equa-

15

tion g(x, y, . . . , y) = β(T ′(x, y, . . . , y)), which is implied by the previous equa-
tion. We can apply T3 (and T1,T2,T2’) until we obtain an expression of the
form β(i(u1, i(u2, . . . i(us−2, i(us−1, us)) . . .))) where u1, u2, . . . , us−2, us−1, us ∈
{x, y}.

We now prove the statement of the lemma by induction on s. We first make a
case distinction to deal with the inductive step for s > 2. Note that because the
unary operation defined by i(x, x) is elementary, there exists an automorphism
α of Γ such that

α(x) = i(x, x) for all x ∈ A . (1)

If us−1 = us = x or us−1 = us = y, we replace i(us−1, us) by α(us−1), and after
moving the automorphisms to the front we obtain an expression of the form
β(i(u1, i(u2, . . . i(us−2, us−1) . . .))), which is equal to g(x, y, . . . , y) for all x, y ∈
A. If us−1 6= us, then either us−2 = us−1 or us−2 = us. In the first case, we apply
T3’ and Equation 1 and after moving automorphisms to the front obtain a term
of the form β(i(u1, i(u2, . . . i(us−2, us) . . .))) . In the second case, we first apply
T4, then T3’, and finally Equation 1, and after moving automorphisms to the
front obtain a term of the form β(i(u1, i(u2, . . . i(us−2, us−1) . . .))). For the base
case where s = 2, we have either g(x, y, . . . , y) = α(i(x, y)) or g(x, y, . . . , y) =
α(i(y, x)). In the second case, we apply T4 a last time, and have shown that
(2) holds in both cases. 2

Proposition 17 Let Γ be an ω-categorical model-complete structure. 2 If there
is an isomorphism i between Γ2 and Γ, then the constraint language of all re-
lations preserved by i and by the automorphisms of Γ is maximal.

PROOF. Let F ′ be {i} ∪ Aut(Γ), and let F be the clone that is locally
generated by F ′, i.e., F = L(F ′). Since i is essential, Γ is not complete. By
Proposition 12, we have to show that every operation in F is either locally
generated by the automorphisms of Γ or, with the automorphisms of Γ, locally
generates F .

Let f be a k-ary operation in F . By Proposition 5, f ∈ I(G(F ′)). Hence, for
every finite subset of elements A there is a k-ary operation g ∈ G(F ′) such
that f(x) = g(x) for all x ∈ Ak, and g satisfies either (1) or (2) in Lemma 16.

Note that if A has at least two elements, then either all operations g ∈ G(F ′)
with f(x) = g(x) for all x ∈ Ak satisfy Property (1), or all such operations
satisfy (2) (because if g satisfies Property (1) then |g(Ak)| = |A|, whereas if g

2 In the published version of the paper, the statement of this proposition by mistake
assumes that Γ is also a core; as we show here, this assumption is not necessary.

16

satisfies Property (2) then |g(Ak)| > |A|). In the first case, we will say that f
satisfies (1) on A, and in the second that f satisfies (2) on A.

It can not be that there are finite subsets A,B of cardinality larger than one
such that f satisfies (1) on A and satisfies (2) on B. Otherwise, consider the
finite set A ∪ B. If f satisfies (1) on A ∪ B, then it satisfies (1) also on B, a
contradiction, and if it satisfies (2) on A ∪ B, then it also satisfies (2) on A,
also a contradiction.

If f satisfies (1) for all finite subsets A, then f is locally generated by the
automorphisms of Γ. If f satisfies (2) for all finite subsets A, we claim that
f and the automorphisms of Γ locally generate i. Let B be a finite subset
of the domain of Γ. As we have seen, there exist distinct l1, l2 ∈ {1, . . . , n},
s1, . . . , sk ∈ {l1, l2}, and α ∈ Aut(Γ) such that f(xs1 , . . . , xsk

) = α(i(xl1 , xl2))
for all xl1 , xl2 ∈ B. But then α−1(f(xs1 , . . . , xsk

)) = i(xl1 , xl2) for all xl1 , xl2 ∈
B, and therefore f locally generates i. Proposition 12 shows that F = L(F ′) =
I(G(F ′)) is a minimal oligomophic clone. 2

Combining Proposition 14 and Proposition 17, we obtain the following result.

Theorem 18 Let Γ be an ω-categorical homogeneous structure. If there is an
isomorphism i between Γ2 and Γ, then

• the binary operation i : D2 → D and the automorphisms of Γ locally gen-
erate a minimal oligomorphic clone F ; hence, ∆ = Inv(F) is a maximal
constraint language;

• all relations in ∆ have a quantifier-free Horn definition in Γ;
• if CSP(Γ̂) is tractable, then CSP(∆) is tractable as well.

Aplications of Theorem 18 for concrete constraint languages and computa-
tional problems can be found in Section 8. We would like to remark that our
tractability result is a new application of the universal-algebraic approach to
constraint satisfaction, and indeed we have linked tractability of constraint
languages to the existence of a binary polymorphism that locally generates a
minimal oligomorphic clone. Note that the maximality result as stated in The-
orem 18 is specific to infinite domains, because for constraint languages Γ over
a finite domain Γ2 cannot possibly be isomorphic to Γ. For infinite structures
Γ the situation that Γ is isomorphic to Γ2 is not so rare; it is e.g. well-known
that the set of models of a universal first-order Horn theory is preserved under
direct products [15].

17

8 Applications

8.1 Equality Constraint Languages

Our first example is a restricted subclass of constraint languages, called equal-
ity constraint languages [4], which are all constraint languages that are pre-
served by all permutations of the domain. In this class, there are two maximal
languages, which are both tractable, and are hence the largest tractable lan-
guages 3 . The tractability of one of these maximal languages follows from
Theorem 18.

As a base set, we can take any infinite set, and we use N for simplicity. We only
consider relations that are preserved by all permutations of N. Such relations
will always be definable by a boolean combination of atomic formulas of the
form x = y, and a constraint language that consists of such relations only
we call an equality constraint language; see [4]. One example of an NP-hard
constraint language in this class consists of the ternary relation R defined by
(x = y∧y 6= z)∨ (x 6= y∧y = z). Examples of a tractable constraint language
from this class consists of the 6-ary relation P defined by (x = y ∧ u = v) →
a = b and the 4-ary relation Q defined by (x 6= y) ∨ (u 6= v).

It was shown in [4] that there are exactly two largest tractable equality con-
straint languages. One is the language Lc that consists of all relations that
are closed under a constant unary operation, and the other language Li con-
sists of all relations that are closed under a (any!) binary injective operation
i. The relations P and Q shown above are examples of relations preserved by
all binary injective operations.

We now demonstrate how to apply Theorem 18 to show that Li is a maximal
constraint language, and that CSP(Li) is tractable. Let Γ be the structure
(N,=); this structure is clearly ω-categorical and homogeneous. Then Γ̂ is
the structure (N,=, 6=). Clearly, CSP(Γ̂) is tractable. It is also clear that Γ2

is isomorphic to Γ; in fact, any binary injective operation together with the
permutations of N locally generates isomorphisms between Γ2 and Γ. We can
therefore apply Theorem 18 and obtain that Li is maximal and that CSP(Li)
is tractable.

3 Note the difference between tractable maximal constraint languages, and largest
tractable constraint languages. The latter are constraint languages where adding any
constraint that was not primitive positive before makes the language intractable.
The former are simply constraint languages that are maximal and tractable.

18

8.2 Solving Equations over Infinite Vector Spaces

Solving equations with equalities and disequalities for an infinite-dimensional
vector space over a finite field can be formulated as a constraint satisfaction
problem with an ω-categorical template.

Let Fq be a finite field with elements s0, . . . , sq−1 and let V be a countably
infinite vector space over Fq. Then V is unique up to isomorphism [15]. We
consider the following relational structure ΓV := (V,R+) where R+ is the
ternary relation defined by R+(x, y, z) ≡ (x + y = z). The structure ΓV

is homogeneous and ω-categorical [15]. Hence, its automorphism group is
oligomorphic; in fact, the automorphism group is one of the groups known
as the classical infinite groups, which have many remarkable properties [12].
Clearly, the constraint satisfaction problem for ΓV is trivial, because it has
a constant endomorphism. But it is not difficult to show that the expansion
Γ̂V = (V,R+,¬R+) of ΓV (where ¬R+ denotes the complement of R+, i.e.,
the ternary disequality relation defined by x+ y 6= z) is a core.

The idea how to solve an instance S of CSP(Γ̂V) in polynomial time is to
eliminate for each constraint R+(x, y, z) in S the variable z from the remaining
constraints in S, similarly as in the Gaussian elimination algorithm. That is,
for every constraint where z occurs we replace z by x + y, and simplify the
resulting equality or disequality in the usual way. If after the elimination of
a variable x a disequality constraint in S reduces to 0 6= 0, the algorithm
reports that S is unsatisfiable. Otherwise, we eventually end up with a set
of disequality constraints, and no more equality constraints. In this case, the
algorithm reports that S has a solution. This is correct, because if y1, . . . , yk

are the remaining variables, then the mapping that sends yi to a vector in V
that has a zero entry at all coordinates except for the i-th coordinate where
it has an entry distinct from zero is clearly a solution to S.

It is well-known that V 2, the direct product of the algebraic object V with it-
self, is isomorphic to V : the function iV that maps the two vectors (a1, a2, . . .) ∈
V and (b1, b2, . . .) ∈ V to (a1, b1, a2, b2, . . .) ∈ V is such an isomorphism be-
tween V 2 and V , and iV is also an isomorphism between Γ2

V and ΓV . Let CV

be the oligomorphic clone that is locally generated by iV and the automor-
phisms of ΓV . Then Theorem 18 implies that Inv(CV) is a maximal constraint
language. Since CSP(Γ̂V) is tractable as well, we can apply Theorem 18 and
find that CSP(Inv(CV)) is tractable. This is an interesting result, which says
that we can efficiently decide whether a given set of Horn clauses of equations
for infinite-dimensional vector spaces over a finite field has a solution.

19

8.3 Spatial Reasoning

One of the most fundamental spatial reasoning formalisms is the RCC-5 cal-
culus (also known as the containment algebra in the theory of relation alge-
bras [9]). The largest tractable sublanguages of the binary constraint language
for RCC-5 have been determined in [17, 20]. Let B0 be the countable atom-
less boolean ring without an identity element. This structure is unique up
to isomorphism and ω-categorical, see for example [10]. It is straightforward
to verify that (B0)

2 is isomorphic to B0 (because (B0)
2 is again a countable

atomless boolean ring without an identity element). We are interpreting the
elements of this boolean ring as non-empty sets (regions), where A + B de-
notes the symmetric difference, and A · B the intersection of A and B. Now,
consider the relational structure Σ over the domain of B0 with the two binary
relations called DR and PP (these are the traditional names in RCC-5). With
the interpretation of the elements of B0 being sets, they are defined as follows:
DR(X, Y) iff X ∩ Y = ∅ and PP(X, Y) iff X ⊂ Y .

The constraint satisfaction problem for CSP(Σ̂) is in P [20]. Σ2 is isomorphic
to Σ as well, and it again follows by Theorem 18 that the constraint language
whose relations have a Horn definition in Σ is tractable. We would like to
remark that Nebel and Renz [20] determined a largest tractable fragment of
RCC-5, and that it follows from the result in [17] that this fragment is the
unique largest tractable fragment that contains the basic relations DR and PP.
But note that RCC-5 only contains binary relations, whereas our maximal
language contains relations of arbitrary arity.

8.4 Temporal Reasoning

We present another maximal constraint language from the field of temporal
reasoning. It will serve us as an example of a maximal constraint language
whose polymorphism clone is locally generated by a binary injective operation,
but which has an NP-complete CSP.

One of the basic structures for temporal reasoning is (Q, <), the set of rational
numbers, ordered by <. This structure is an unbounded and dense linear order
on countably many vertices, and it is uniquely described by these properties,
up to isomorphism. Note that (Q, <)2 is clearly not isomorphic to (Q, <).

Consider a binary operation lex on Q satisfying lex(a, b) < lex(a′, b′) if either
a < a′, or a = a′ and b < b′. Note that every operation lex satisfying these
conditions is by definition injective. Let F be the clone generated by lex and
the automorphisms of (Q, <). The problem CSP(Inv(F)) is NP-complete. This
is because all operations in F preserve the Betweenness relation defined by the

20

formula (x < y < z)∨ (z < y < x), and the CSP for the Betweenness relation
is a well-known NP-complete problem [13]. It is not hard to show that F is a
minimal oligomorphic clone.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

[2] M. Bodirsky and H. Chen. Oligomorphic clones. Algebra Universalis, 57(1):109–
125, 2007.

[3] M. Bodirsky and V. Dalmau. Datalog and constraint satisfaction with infinite
templates. In Proceedings of STACS’06, pages 646–659, 2006.

[4] M. Bodirsky and J. Kára. The complexity of equality constraint languages.
Theory of Computing Systems, 3(2):136–158, 2008. A conference version
appeared in the proceedings of CSR’06.

[5] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable
homogeneous templates. Journal of Logic and Computation, 16(3):359–373,
2006.

[6] A. Bulatov. A graph of a relational structure and constraint satisfaction
problems. In Proceedings of LICS’04, Turku, Finland, 2004.

[7] A. Bulatov, A. Krokhin, and P. Jeavons. The complexity of maximal constraint
languages. In Proceedings of STOC’01, pages 667–674, 2001.

[8] A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34:720–742,
2005.

[9] I. Duentsch. Relation algebras and their application in temporal and spatial
reasoning. Artificial Intelligence Review, 23:315–357, 2005.

[10] D. Evans. Examples of ℵ0-categorical structures. In ‘Automorphisms of first-
order structures’, R. Kaye and H.D. Macpherson, Oxford University Press,
pages 33–72, 1994.

[11] T. Feder and M. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through Datalog and group theory.
SIAM Journal on Computing, 28:57–104, 1999.

[12] T. Gardener. Infinite dimensional classical groups. J. London Math. Soc,
51:219–229, 1995.

[13] M. Garey and D. Johnson. A guide to NP-completeness. CSLI Press, 1978.

[14] P. Hell and J. Nesetril. The core of a graph. Discrete Math., 109:117–126, 1992.

21

[15] W. Hodges. A shorter model theory. Cambridge University Press, Cambridge,
1997.

[16] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints.
JACM, 44(4):527–548, 1997.

[17] P. Jonsson and T. Drakengren. A complete classification of tractability in RCC-
5. J. Artif. Intell. Res., 6:211–221, 1997.

[18] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. JACM, 50(5):591–640,
2003.

[19] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. JACM, 42(1):43–66, 1995.

[20] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A
maximal tractable fragment of the region connection calculus. Artif. Intell.,
108(1-2):69–123, 1999.

[21] I. G. Rosenberg. Minimal clones I: the five types. Lectures in Universal Algebra
(Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, 43:405–427, 1986.

[22] A. Szendrei. Clones in universal Algebra. Séminaire de Mathématiques
Supérieures. Les Presses de L’Université de Montréal, 1986.

22

