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Abstract. Allowing templates with infinite domains greatly expands the range
of problems that can be formulated as a non-uniform constraint satisfaction prob-
lem. It turns out that many CSPs over infinite templates can be formulated with
templates that are ω-categorical. We survey examples of such problems in tempo-
ral and spatial reasoning, infinite-dimensional algebra, acyclic colorings in graph
theory, artificial intelligence, phylogenetic reconstruction in computational biology,
and tree descriptions in computational linguistics.
We then give an introduction to the universal-algebraic approach to infinite-domain
constraint satisfaction, and discuss how cores, polymorphism clones, and pseudo-
varieties can be used to study the computational complexity of CSPs with ω-
categorical templates. The theoretical results will be illustrated by examples from
the mentioned application areas. We close with a series of open problems and
promising directions of future research.

1 Introduction

Some of the oldest results in constraint satisfaction concern constraint satisfaction prob-
lems over infinite domains. Examples are the constraint satisfaction problem (CSP) for
Allen’s interval algebra and its fragments, and the CSPs for many other temporal rea-
soning formalisms. Also in spatial reasoning, some of the earliest computational problems
can be formulated as CSPs, e.g., the CSP for the region connection calculus.

In the 1990’s, several systematic results about the computational complexity of CSPs
in spatial and temporal reasoning were obtained, mostly for binary constraint languages.
An important step was Nebel and Bürckert’s discovery of Ord-Horn, a tractable fragment
of Allen’s interval algebra. In a computer-assisted proof, they showed that Ord-Horn is
a largest tractable fragment of Allen’s interval algebra, i.e., adding any (binary) relation
from Allen’s interval algebra to Ord-Horn results in an NP-complete constraint language.
Another important step in complexity classification was the complete classification of
all tractable fragments of the region connection calculus RCC-5 in spatial reasoning by
Jonsson and Drakengren [44]. The corresponding result for Allen’s interval algebra was ob-
tained later by Krokhin, Jeavons, and Jonsson [49]. Similar classifications for the cardinal
direction calculus, for constraint languages for branching time, and constraint languages
for partially ordered time were mostly obtained by a case-by-case study and ad-hoc meth-
ods. There are some common themes [29] and tools (e.g., local consistency techniques),
but so far there is no general theory of tractabilility and hardness for such problems.

A typical property of constraint satisfaction problems is that if we add constraints
to an unsatisfiable instance of the CSP, the instance stays unsatisfiable. Moreover, if we



form the disjoint union of two satisfiable instances of the CSP, the resulting instance is
again satisfiable. In fact, all computational problems (i.e., all sets of relational structures)
that share these two properties can be formulated as a homomorphism problem for a
fixed infinite relational structure Γ (in other words, as a non-uniform CSP with an in-
finite template). Many examples of computational problems that have been studied in
the literature have a natural formulation as a homomorphism problem for a fixed infinite
structure Γ , and we will mention examples from graph theory, artificial intelligence, phy-
logenetic reconstruction, finite model theory, and tree description logics in computational
linguistics.

This survey is about techniques to study the computational complexity of CSPs with
infinite templates. We focus mostly on the border between CSPs that can be solved by
a polynomial-time algorithm, and CSPs that are known to be NP-hard. This border has
been of central interest in most of the mentioned work on temporal and spatial reasoning.
Our main theme will be the question which of the powerful universal-algebraic techniques
that are employed to study the complexity of the finite domain CSP (see e.g. [22]) can
be generalized to infinite domain templates. It turns out that the universal-algebraic
approach applies if the template satisfies an important and central property in model
theory, called ω-categoricity.

The article is divided into two parts: in the first part we demonstrate that the class
of computational problems that can be formulated with an ω-categorical template is very
large (actually, it contains all the infinite-domain CSPs we have mentioned so far). In
the second part, we set out to develop the universal-algebraic theory for ω-categorical
templates. We recall the definitions of polymorphisms, algebras, and (pseudo-) varieties,
and show that these concepts are useful not only for finite but also for infinite ω-categorical
structures. Some of the tractability results presented here do not have a finite domain
counterpart. We only give proofs of the statements in this text if they are are instructive,
previously unpublished, or more conceptual than the existing proofs in the literature, and
give references to the literature in all other cases.

2 Infinite Templates

The notation used in this text mostly follows Hodges’ text book [42]. A signature τ is a set
of relation and function symbols, each equipped with an arity. A τ -structure A is a set A
(the domain of A) together with a relation RA ⊆ Ak for each k-ary relation symbol in τ
and a function fA : Ak → A for each k-ary function symbol in τ . When there is no danger
of confusion, we use the same symbol for a function and its function symbol, and for a
relation and its relation symbol. By convention, A,B,C, . . . denotes the domain of the
structures A, B , C , . . . , respectively. We sometimes write (A,RA
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say that a structure is infinite if its domain is infinite. The most important special cases
of structures that appear in this paper are relational structures, that is, structures with
a purely relational signature, and algebras, that is, structures with a purely functional
signature. Algebras with domain A,B,C, . . . are denoted by A,B,C, . . .

Homomorphisms. A homomorphism h from a structure A to a structure B with the
same signature τ is a mapping from A to B that preserves each function and each relation
for the symbols in τ ; that is,



– if (a1, . . . , ak) is in RA, then (h(a1), . . . , h(ak)) must be in RB ;
– if fA(a1, . . . , ak) = a0, then fB (h(a1), . . . , h(ak)) = h(a0).

In this article, a (non-uniform) constraint satisfaction problem (CSP) is a computa-
tional problem that is specified by a single structure with a finite relational signature,
called the template of the CSP. Relational structures that denote templates for CSPs will
be denoted by capital greek letters Γ , ∆ (and their domain by D(Γ ), D(∆), respectively).

Definition 1. Let Γ be a (possible infinite) relational structure with a finite relational
signature τ . Then CSP(Γ ) is the computational problem to decide whether a given finite
τ -structure homomorphically maps to Γ .

We sometimes also write CSP(D,R1, . . . , Rl) instead of CSP((D,R1, . . . , Rl)). Note
that due to the assumption that the signature τ is finite, we can fix any representation of
the relation symbols in τ to represent the input structure. CSP(Γ ) can also be considered
to be a set – the set of all finite structures that homomorphically map to Γ .

Logic. As for finite domain CSPs, there is another way of looking at the constraint
satisfaction problem for Γ that uses terminology from logic. A first-order τ -formula is
called primitive positive if it is of the form

∃x1, . . . , xm. ψ1 ∧ · · · ∧ ψl

where ψ1, . . . , ψl are atomic τ -formulas.
It is straightforward to verify (in the same way as for finite domain CSPs) that CSP(Γ )

is polynomial-time equivalent to the following computational problem (in fact, the two
problems can be considered to be the same computational problem, up to formalization).
The input consists of a primitive positive τ -sentence Φ (i.e., a primitive positive τ -formula
without free variables), and the question is whether Φ is holds true in Γ . The conjuncts in
the primitive positive sentence are then called the constraints of Φ. From this formulation
of the constraint satisfaction problem it is obvious that CSP(Γ ) is fully determined by
the first-order theory of Γ (i.e., the set of first-order sentences that are valid in Γ ).

We would like to remark that the logic perspective on CSP(Γ ) is closely related to the
evaluation problem for conjunctive queries studied in database theory. We freely switch
between the relational homomorphism and the logic perspective whenever this is conve-
nient. We also say that A is satisfiable (with respect to CSP(Γ ) if A homomorphically
maps to Γ , and the homomorphism from A to Γ is called a solution for A.

Example 1. Consider the problem CSP(N,=, 6=). An instance of this problem consists of a
set of variables, some linked by equality, some by disequality constraints. Such an instance
is unsatisfiable if and only if there is a path x1, . . . , xn from a variable x1 to a variable
xn that uses only equality edges, i.e., ‘xi = xi+1’ is a constraint in the instance for each
1 ≤ i ≤ n − 1, and additionally ‘x1 6= xn’ is a constraint in the instance. Clearly, it can
be tested in linear time in the size of the input instance whether the instance contains
such a path.

Example 2. Next, consider the problem CSP(Q, <). Here, < denotes the strict linear order
on the relational numbers Q (i.e., < is a binary relation). An instance of this problem can
be viewed as a directed graph (potentially with loops), where there is an arc between the



vertices x and y if there is the constraint ‘x < y’ in the instance. It is easy to see that an
instance homomorphically maps to (Q, <) if and only if there is no directed cycle in the
graph. Again, this can be tested in linear time, e.g., by depth-first search.

Example 3. The so-called betweenness problem is CSP(Q,Betw) where Betw is the ternary
relation {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x}. This problem is an NP-complete prob-
lem from the famous book of Garey and Johnson [37].

We have defined the constraint satisfaction problem only for relational structures, but
the generalization to structures that also include function symbols is straightforward,
and has been studied for finite domains [47]. If we allow function symbols and infinite
domains, we can for instance formulate the famous unification problem (see, e.g., [56])
as CSP(Γ ) for an appropriate infinite structure Γ . In this article we focus on relational
templates only.

Having structures with function symbols will be convenient in Section 8 where we use
algebras to study the computational complexity of CSPs. Moreover, several templates
that we use to illustrate the theory have a convenient definition by means of structures
that contain functions, e.g., in Subsections 5.3 and 5.2.

The next lemma is a convenient tool to determine whether a computational problem
can be formulated as CSP(Γ ) for an infinite relational structure Γ . The disjoint union
of a set of τ -structures C is a τ -structure B whose domain is the disjoint union of the
domains of the structures in C. The relations in B are the union of the corresponding
relations in the structures in C.

Definition 2. We say that a set C of relational structures is closed under (finite) disjoint
unions iff whenever A,B ∈ C then the disjoint union of A and B is also in C. We say that
C is closed under inverse homomorphisms iff whenever B ∈ C and A homomorphically
maps to B then A ∈ C.

The following is a fundamental lemma for constraint satisfaction problems.

Lemma 1. Let C be a set of finite τ -structures, for a finite relational signature τ . Then
C = CSP(Γ ) for some relational structure Γ over an infinite domain if and only if C is
closed under disjoint unions and inverse homomorphisms.

Proof. Clearly, the disjoint union of two instances of CSP(Γ ) that homomorphically map
to Γ also homomorphically maps to Γ . Moreover, if A does not homomorphically map to
Γ , and there is a homomorphism from A to B , then B does not homomorphically map
to Γ either.

For the other direction, suppose that C is a set of relational structures that is closed
under disjoint unions and inverse homomorphisms. Let Γ be the (infinite) disjoint union
of all structures in C. Clearly, every structure in C homomorphically maps to Γ . Now, let
A be a finite structure with a homomorphism h to Γ . By construction of Γ , the set h(A)
is contained in the disjoint union B of a finite set of structures from C. Since C is closed
under disjoint unions, B is in C. Clearly, A homomorphically maps to B , and because C

is closed under inverse homomorphisms, A is in C as well. ut

To apply the techniques presented in this paper it will be important that the templates
of the CSPs are ω-categorical (ω-categoricity will be defined in Section 3). The structures
produced by Lemma 1 are usually not ω-categorical.



Let us conclude this section with remarks concerning the computational complexity
of CSP(Γ ). So far, we have seen CSPs in Examples 1, 2, and 3 that are in P or NP-
complete. However, it is not hard to come up with undecidable CSPs. For example,
Hilbert’s 10’th problem, the problem to decide whether a given diophantine equation
has a solution, is undecidable [54], and is computationally equivalent to CSP(Z, R+, R∗)
where R+ = {(x, y, z) ∈ Z3 | x+ y + z = 1} and R∗ = {(x, y, z) ∈ Z3 | xy = z}.

Bauslaugh [6] has constructed for every recursive function f an infinite digraph Γ such
that CSP(Γ ) is decidable, but has time complexity at least f . In this paper, we focus on
CSPs that are in NP.

3 Good Templates: ω-categorical Structures

Many important infinite-domain constraint satisfaction problems can be formulated with
templates that are ω-categorical. The concept of ω-categoricity is of central importance
in model theory.

Definition 3. A countably infinite structure Γ is called ω-categorical if all countable
models of its first-order theory are isomorphic to Γ .

One of the first structures that were found to be ω-categorical (by Kantor) is the linear
order of the rational numbers (Q, <). We will see many more examples of ω-categorical
structures in this section and in Section 5. One of the standard approaches to verify that a
structure is ω-categorical is via a so-called back-and-forth argument. We sketch the back-
and-forth argument that shows that (Q, <) is ω-categorical; much more detail about this
important concept in model theory can be found in [42,57]. Let A be a countable model of
the first-order theory of (Q, <). An isomorphism i between A and (Q, <) can be defined
inductively as follows. Suppose that we have already defined i on a finite subset S of Q
and that f is an embedding of the structure S induced by S in (Q, <) into A. Since <A is
dense and unbounded, we can extend f to any other element of Q such that the extension
is still an embedding from a substructure of Q into A (going forth). Symmetrically, for
every element v of A we can find an element u ∈ Q such that the extension of f that
maps u to v is also an embedding (going back). We now alternate between going forth
and going back; when going forth, we extend the domain of f by the next element of Q,
according to some fixed enumeration of the elements in Q. When going back, we extend
f such that the image of A contains the next element of A, according to some fixed
enumeration of the elements of A. If we continue in this way, we have defined the value
of f on all elements of Q. Moreover, f will be surjective, and an embedding, and hence
an isomorphism between (Q, <) and A.

There are many equivalent characterizations of ω-categoricity. Let G be a permutation
group acting on a set X. For n ≥ 1 the orbit of (t1, . . . , tn) ∈ Xn under G is the set
{(α(t1), . . . , α(tn)) | α ∈ G}. We say that a permutation group is oligomorphic if for
each n ≥ 1 there are finitely many orbits of n-tuples. An accessible proof of the following
theorem can be found in Hodges’ book (Theorem 6.3.1 in [42]).

Theorem 1 (Engeler, Ryll-Nardzewski, Svenonius). The following are equivalent:

1. Γ is ω-categorical;
2. The automorphism group of Γ is oligomorphic;



3. for each n ≥ 1, there are finitely many inequivalent formulas with n free variables
over Γ ;

4. for each n ≥ 1, the orbits of n-tuples are first-order definable in Γ .

The second condition in Theorem 1 provides another possibility to verify that a struc-
ture is ω-categorical. We again illustrate this with the structure (Q, <). It is not difficult
but a good exercise to verify that the orbit of an n-tuple (t1, . . . , tn) from Qn in the
automorphism group of (Q, <) is determined by the weak linear order that is induced by
t1, . . . , tn in (Q, <) (we write weak linear order, and not linear order, because some of the
elements t1, . . . , tn might be equal). Hence, there is a finite number of orbits of n-tuples,
for all n ≥ 1.

Lemma 2 below states a useful fact that ω-categorical structures have in common with
finite structures. A homomorphism h from A to B is called a strong homomorphism if
it also preserves the complements of the relations from A. Note that an embedding is an
injective strong homomorphism.

Lemma 2. Let Γ be a finite or infinite ω-categorical structure with relational signature
τ , and let A be a countable relational structure with the same signature τ . If there is no
homomorphism (embedding) from A to Γ , then there is a finite substructure of A that
does not homomorphically map (embed) to Γ .

The lemma is an easy consequence of Königs tree lemma; a proof for homomorphisms can
be found in [11], and the proof for embeddings (and, similarly, for strong homomorphisms
and for injective homomorphisms) is analogous.

3.1 Fräıssé Amalgamation – ω-categorical Structures for Everyone

A versatile tool to construct ω-categorical templates is Fräıssé-amalgamation. We present
it here for structures that might contain relations and functions; this will sometimes be
convenient even if we are only interested in relational structures (see Subsections 5.2
and 5.3).

If A and B are structures, A ⊆ B, and the inclusion map from A to B is an embedding,
then we say that A is a substructure of B . Note that for every subset S of B there is a
unique smallest substructure A of B such that A contains S. We call A the substructure
of B generated by S, also denoted by B [S]. We say that A is finitely generated if S is a
finite set of elements.

Let C be a set of finitely generated structures. We say that C has the

HP Hereditary property if whenever A ∈ C and B is a finitely generated substructure of
A then B is isomorphic to a structure in C.

JEP Joint embedding property if whenever A,B ∈ C then there is C ∈ C such that both
A and B embed into C .

AP Amalgamation property if whenever A,B1,B2 ∈ C and e1 : A → B1 and e2 :
A → B2 are embeddings there exists C ∈ C and embeddings f1 : B1 → C and
f2 : B2 → C such that f1e1 = f2e2.

A structure Γ is homogeneous (sometimes also called ultra-homogeneous [42]) if every
isomorphism between finitely generated substructures of Γ can be extended to an auto-
morphism of Γ . It is well-known that a homogeneous structure Γ with a signature that



contains finitely many relation symbols of arity k, for each k, is ω-categorical (this is not
explicitly mentioned in Hodges’ book [42], but can easily be shown with the background
from there). Moreover, Γ admits quantifier elimination, i.e., for every first-order τ -formula
there exists an equivalent quantifier-free τ -formula [42]. In fact, an ω-categorical structure
is homogeneous if and only if it admits quantifier elimination (Statement 2.22 in [25]).

Theorem 2 (Fräıssé [36]; see [42]). Let τ be a countable signature and let C be a
non-empty finite or countable set of finitely generated τ -structures which has HP, JEP,
and AP. Then there is a homogeneous and at most countable τ -structure Γ such that
a structure is a finitely generated substructure of Γ if and only if it is isomorphic to a
structure in C. The structure Γ is unique up to isomorphism, and called the Fräıssé-limit
of C.

Remark 1. It is sometimes convenient to define an ω-categorical τ -structure Γ by defining
an amalgamation class C with a finite signature that is larger than τ such that Γ is a
reduct1 of the Fräıssé-limit of C. It is an easy consequence of Theorem 1 that Γ must
then be ω-categorical.

3.2 New ω-categorical structures from old

Many ω-categorical structures can be derived from other ω-categorical structures via first-
order interpretations. Our definition of first-order interpretations essentially follows [42].

If δ(x1, . . . , xk) is a first-order formula with the k free variables x1, . . . , xk, and Γ is a
structure, we we write δ(Ak) for the k-ary relation that is defined by δ on A.

Definition 4. A relational σ-structure B has a (first-order) interpretation in a τ -structure
A if there exists a natural number d, called the dimension of the interpretation, and

– a τ -formula δ(x1, . . . , xd) – called domain formula,
– for each k-ary relation symbol R in σ a τ -formula φR(x1, . . . , xk) where the xi denote

disjoint d-tuples of distinct variables – called the defining formulae,
– a τ -formula φ=(x1, . . . , xd, y1, . . . , yd), and
– a surjective map h : δ(Ad) → B – called coordinate map,

such that for all relations R in B and all tuples ai ∈ δ(Ad)

(h(a1), . . . , h(ak)) ∈ RB ⇔ A |= φR(a1, . . . , ak) , and
h(a1) = h(a2) ⇔ A |= φ=(a1, a2) .

If the formulas δ, φR, and φ= are all primitive positive, we say that B has a primitive
positive interpretation in A. We say that B is interpretable in Γ with finitely many
parameters if there are c1, . . . , cn ∈ A such that B is interpretable in the expansion of A
by the singleton relations {ci} for all 1 ≤ i ≤ n. First-order definitions are a special case
of interpretations: a structure B is (first-order) definable in A if B has an interpretation
in B of dimension one where the domain formula is logically equivalent to true.

1 A reduct of a structure A is a structure that is obtained from A by removing relations and/or
functions from A.



Lemma 3 (see e.g. [42]). If Γ is an ω-categorical structure, then every structure ∆ that
is first-order interpretable in Γ with finitely many parameters is ω-categorical as well.

Suppose that A and B are finite or ω-categorical structures. In the remainder of the
section we show that then the disjoint union A]B (which was defined in Section 2) and
the compositionA ◦B (Definition 5 below) of A and B are finite or ω-categorical as well.
Again, this will be convenient to specify templates of constraint satisfaction problems.

The composition of A and B is, roughly speaking, the structure obtained from A by
replacing each element in A by a copy of B .

Definition 5. If A,B are τ -structures, then A◦B is the τ -structure with domain A×B,
where ((a1, b1), . . . , (ak, bk)) ∈ RA◦B for a k-ary relation symbol R ∈ τ iff (a1, . . . , ak) ∈
RA or (a1 = · · · = ak and (b1, . . . , bk) ∈ B).

To verify ω-categoricity of disjoint union and composition it is most convenient to
use the second condition from Theorem 1 (i.e., we will count the orbits of k-tuples in
the resulting structure). For an ω-categorical structure A, let fn(A) be the number of
orbits of n-tuples in the automorphism group of A, and let F (A, x) be the exponential
generating function in one formal variable x, defined by

∑
n≥0 fn(A)xn/n!. The following

reflects well-known facts in enumerative combinatorics (for a presentation in the context
of oligomorphic permutation groups, see [25]).

Lemma 4. Let A,B be finite or ω-categorical structures. Then

F (A ]B, x) = F (A, x)F (B, x)
F (A ◦B, x) = F (A, F (B, x)− 1)

In particular, for all n ≥ 1 we have that fn(A]B) and fn(A◦B) are finite, and therefore
A ]B and A ◦B is finite or ω-categorical.

We would like to remark that the automorphism group of A ◦B is also known as the
wreath product of the automorphism group of B with the automorphism group of A.

4 Better Templates: Model-complete Cores

It might be that the same CSP can be formulated with different templates. For example,
CSP(Q, <) and CSP

(
(Q, <)](Q, <)

)
are the same computational problem, namely graph

acyclicity. For finite and for ω-categorical templates we have a very elegant characteri-
zation of those pairs of templates that have the same CSP. Call two structures Γ and
∆ homomorphically equivalent if there is a homomorphism from Γ to ∆ and a homo-
morphism from ∆ to Γ (this is in fact an equivalence relation). The following is an easy
consequence of Lemma 2.

Lemma 5. Let Γ,∆ be finite or ω-categorical. Then CSP(Γ ) equals CSP(∆) if and only
if Γ and ∆ are homomorphically equivalent.

Lemma 5 is false for general relational structures. Consider for example the structure
(Z, {(x, y) | y = x + 1}) — the ‘infinite line’, and the structure (N, {(x, y) | y = x + 1})



— the ‘infinite ray’. Clearly, these two structures give rise to the same CSP, but there is
no homomorphism from the line to the ray.

It turns out that every equivalence class of finite or ω-categorical templates (with
respect to homomorphic equivalence) has a member with very good properties for the
universal-algebraic approach. Moreover, this member is unique up to isomorphism.

Definition 6. An ω-categorical structure Γ is called model-complete if every embed-
ding of Γ into Γ is elementary, i.e., preserves all first-order definable relations. An ω-
categorical structure is called a core if every endomorphism is an embedding.

The structure (Q, <), for example, is easily seen to be a model-complete core, in
contrast to (Q, <) ] (Q, <), which is not a core.

Note that for every finite structure Γ every embedding of Γ into Γ is elementary
(because it must be an automorphism of Γ ).

Theorem 3 (of [7]). Every ω-categorical relational structure Γ is homomorphically
equivalent to a model-complete core ∆, which is unique up to isomorphism, and ω-
categorical or finite. For all k ≥ 1, the orbits of k-tuples in ∆ are primitive positive
definable.

Hence, if we want to classify the complexity of CSP(Γ ) for an ω-categorical structure
Γ , we can without loss of generality assume that Γ is a core. We state an important
consequence of Theorem 3, which is well-known (and also non-trivial) for finite templates.
The consequence will be used in Theorem 10.

Corollary 1 (of [7]). Let Γ be an ω-categorical model-complete core, and let ∆ be the
expansion of Γ by finitely many singleton relations, i.e., relations of the form {a} for
a ∈ D(Γ ). Then CSP(Γ ) and CSP(∆) are polynomial-time equivalent.

5 Examples

Most of the examples of CSPs that we present in this Section can be solved in polynomial-
time, and we come back to most of these problems in Section 10 when discussing tractabil-
ity criteria for CSPs. Coming up with NP-hard CSPs is much easier: each CSP in this sec-
tion becomes NP-hard if we expand the template by the relation {(x, y, z) | x = y∨y = z}.
More on NP-hardness criteria of CSPs follows in later sections, culminating in Section 9.

5.1 Temporal Reasoning

Temporal reasoning is an important sub-discipline in Artificial Intelligence. One of the
most basic temporal reasoning problems is the constraint satisfaction problem of the so-
called point algebra. Here, the variables denote time points, and the constraints are of
the form x = y, x < y, x ≤ y, and x 6= y. In this CSP, it does not matter whether we
use as the domain the natural, the rational, or the real numbers. The problem can e.g.
be formalized as CSP(Q,=, <,≤, 6=), and can be solved in linear time in the size of the
input instances.



If we do not restrict our attention to binary constraints, it is natural to study expan-
sions of the point-algebra by higher-ary relations with a first-order definition in (Q, <).
For instance, consider the relation

Rmin = {(x, y, z) | x > y ∨ x > z} .

The relation Rmin(x, y, z) specifies that x is larger than the minimum of y and z. The
constraint satisfaction problem CSP(Q, Rmin) will be discussed in Section 10.

Another famous temporal reasoning problem is the CSP for Allen’s Interval Algebra.
It is easiest to describe the template for this CSP by an interpretation in (Q, <). The di-
mension of this interpretation is two, and the domain formula δ(x, y) is x < y. Hence, the
variables of the CSP denote non-empty time intervals. The template contains for each in-
equivalent {<}-formula with four variables φ a binary relation R such that (a1, a2, a3, a4)
satisfies φ if and only if ((a1, a2), (a3, a4)) ∈ R. In particular, we have relations for con-
tainment of intervals, disjointness of intervals, and so forth. By Lemma 3, this template
is ω-categorical. Its CSP is NP-complete [5]. The computational complexity of the CSP
for all fragments of Allen’s inteval algebra has been determined in [49,55].

5.2 Spatial Reasoning

One of the most fundamental spatial reasoning formalisms is the RCC-5 calculus (also
known as the containment algebra in the theory of relation algebras [31]). In this formal-
ism, the variables denote non-empty regions, and the basic relations in the calculus express
containment of regions, disjointness of regions, etc; formal definitions will be provided be-
low. The constraint satisfaction problem for RCC-5 is NP-complete; the computational
complexity of its fragments was classified in [44,58].

To formulate the CSPs for RCC-5 and its fragments with ω-categorical templates, let
B be the countable atomless boolean ring without an identity element. That is, B is an
algebra with an operation + for addition and an operation · for multiplication satisfying
the usual axioms for rings. A ring is boolean if it satisfies x·x = x for all elements x. A ring
is without (multiplicative) identity element if there is no element x1 such that x1 ·y = y for
all elements y. A ring without identity element is atomless if the partial order ≤ defined
by x ≤ y if x · y = x does not have minimal elements. Every countable atomless boolean
ring without an identity element is unique up to isomorphism [1], homogeneous (this can
be shown by Theorem 2), and hence ω-categorical. We can interpret the elements of this
boolean ring as non-empty sets (regions), where x+ y denotes the symmetric difference,
and x · y the intersection of x and y.

Now, consider the relational structure that has the same domain B as the boolean
ring B, and that contains all binary relations with a first-order definition in B. This is
exactly the template for the constraint satisfaction problem for RCC-5 (several equivalent
definitions can be found in the literature). Ordered by inclusion, there are five minimal
non-empty binary relations with a first-order definition in B, and they are known as the ba-
sic relations of RCC-5. Traditionally, these relations are denoted by DR,PO,PP,PPI,EQ,
and they have the following first-order definitions in B (with their intuitive meaning in
braces).



DR(x, y) iff (x+ y)x = x ‘x and y are disjoint’
PP(x, y) iff xy = x ∧ x 6= y ‘y properly contains x’

PPI(x, y) iff xy = y ∧ x 6= y ‘x properly contains y’
EQ(x, y) iff x = y ‘x equals y’
PO(x, y) iff ¬(DR(x, y) ∨ PP(x, y) ∨ PPI(x, y) ∨ EQ(x, y)) ‘x and y properly overlap’

It is known that CSP(B,DR,PP,PPI,EQ,PO) is in P [58]. A larger tractable fragment
of RCC-5 is discussed in Section 10.

5.3 Vector Space CSPs

Next, we discuss a natural algebraic constraint satisfaction problem.

Vector Space CSP
INSTANCE: A set of equalities of the form x + y = z and disequalities of the form
x+ y 6= z over a set of variables V .
QUESTION: Can we assign d-dimensional boolean vectors to the variables such that all
the equalities and disequalities are satisfied, for some d?

It is easy to observe that if there exists a solution, then there is a solution where
d = |V |. However, note that |V | grows with the input size, and it is easy to see that this
problem cannot be formulated with a finite template.

The vector space CSP has a natural formulation as a CSP with an ω-categorical
template. Let V be the infinite-dimensional vector space over the 2-element field F2.
Infinite-dimensional vector spaces over finite fields are known to be homogeneous and ω-
categorical [33], and they play an important role in the classification of so-called strictly
minimal sets in ω-categorical structures [26, 27, 61]. They are also examples of totally
categorical structures, i.e., structures with a first-order theory that has one model of
every infinite cardinality, up to isomorphism.

The signature of V is operational, with function symbols for + and a unary function
for scalar multiplication for each element of the field. Then the template V of the above
CSP is the relational structure with the same domain as V, and with the ternary relation
{(x, y, z) | x + y = z} and the ternary relation {(x, y, z) | x + y 6= z}. Since V clearly
has a first-order definition in V, it is ω-categorical as well. It is not hard to see that V is
a model-complete core. An polynomial time algorithm for CSP(V ) will be discussed in
Section 10.

5.4 Graph Coloring Problems

The H -coloring problem in graph theory is the special case of the CSP where the template
H has a single binary relation, and therefore can be viewed as a digraph (directed graph).
If we allow infinite digraphs H , many more graph coloring problems that have been
studied in the literature can be formulated as H -coloring problems.

The complexity of the following class of infinite H -coloring problems has been classi-
fied completely by Feder, Hell, and Mohar [34].



Acyclic H -coloring
INSTANCE: A finite digraph G.
QUESTION: Is there a mapping c from G to H such that for every edge xy in G the di-
graph H contains the arc c(x)c(y), and such that the pre-image of every vertex is acyclic?

For every digraph H , we can formulate the acyclic H -coloring problem as a constraint
satisfaction problem with an ω-categorical template. The acyclic H -coloring problem is
CSP(H ◦ (Q, <)).

5.5 Phylogenetic Reconstruction

Modern biology holds the view that the species in the evolution of life on earth developed
in a mostly tree-like fashion: at certain time periods, species separated into sub-species.
The goal of phylogenetic reconstruction is to determine the evolutionary tree from given
partial information about the tree. This motivates the computational problem of rooted
triple consistency, defined below. In 1981, Aho, Sagiv, Szymanski, and Ullman [4] pre-
sented a quadratic time algorithm to this problem, motivated independently from com-
putational biology by questions in database theory.

We fix some terminology concerning rooted trees. Let T be a tree with a distinguished
vertex r, the root of T . For u, v ∈ T , we say that u lies below v if the path from u to
r passes through v. We say that u lies strictly below v if u lies below v and u 6= v. The
youngest common ancestor (yca) of two vertices u, v ∈ T is the node w such that both u
and v liew below w and w has maximal distance from r.

Rooted-Triple-Consistency
INSTANCE: A finite relational structure (V,Ryca), where Ryca is a ternary relation.
QUESTION: Is there a rooted tee T with leaves X and a mapping α : V → X such that
for every triple (x, y, z) ∈ Ryca the yca of α(x) and α(y) lies strictly below the yca of
α(x) and α(z) in T?

The rooted-triple-consistency problem can be formulated as CSP(Γ ) for an ω-categorical
template Γ . To define Γ , we first consider the following structure ∆ with domain N → Q,
i.e., the set of all functions from the natural numbers to the rational numbers (hence, ∆ is
uncountable). For two elements f, g of ∆, let kf,g be the largest natural number such that
f(i) = g(i) for all i < kf,g. The ternary relation fg|h in ∆ holds on elements f, g, h of ∆
if they are pairwise distinct and either kf,g > kf,h or (kf,g = kf,h and f(kf,g) < h(kf,h)).
It is known that the first-order theory of ∆ is ω-categorical [30]. It follows from the theo-
rem of Löwenheim-Skolem (see [42]) that the first-order theory of ∆ also has a countable
model Γ , and it is straightforward to verify that CSP(Γ ) is the rooted triple consistency
problem.

5.6 Reasoning over Branching-Time

Another important model in temporal reasoning is branching time, where for every time
point the past is linearly ordered, but the future is only partially ordered.

Branching-Time-Consistency
INSTANCE: A finite relational structure I = (V,≤, ‖, 6≡) where ≤, ‖, and 6≡ are binary



relations
QUESTION: Is there a rooted tree T and a mapping α : V → T such that in T the
following is satisfied:
a) If x ≤ y, then α(x) lies above α(y);
b) If x ‖ y, then neither α(x) lies strictly above α(y) nor α(y) lies strictly above α(x);
c) If x 6≡ y, then α(x) 6= α(y).

This problem can be formulated as CSP(Γ ) for an ω-categorical structure (D,≤, ‖, 6≡),
which has been studied intensively in the theory of infinite permutation groups [25, 30].
The reduct (D,≤) is a partial order with the property mentioned above: for all x ∈ D,
the set {y | y ≤ x} is linearly ordered.

The first polynomial-time algorithm for this problem is due to Hirsch [41], and has a
worst-case running time in O(n5). This was later improved by Broxvall and Jonsson [19],
who presented an algorithm running in O(n3.376) (this algorithm uses an O(n2.376) algo-
rithm for fast integer matrix multiplication). A simpler algorithm which does not use fast
matrix multiplication and runs in O(nm) can be found in [15]. It is an easy exercise to
efficiently reduce the rooted-triple-consisteny problem to the branching-time-consistency
problem.

5.7 CSPs without an ω-categorical Template

There are constraint satisfaction problems that can not be formulated with an ω-categorical
template. Since it might not be obvious whether a CSP has this property, we demonstrate
with a simple example how one can show that a CSP can not be formulated with an ω-
categorical template.

Consider the CSP for the relational structure Γ with domain Q and the three relations
{(x, y, z) | x + y = z}, 6=, {0}, and {1}. To specify constraints for instances of CSP(Γ )
we write x+ y = z, x = 0, and x = 1, to keep expressions simple.

Proposition 1. CSP(Γ ) cannot be formulated as CSP(Γ ′) for an ω-categorical template
Γ ′.

Proof. Suppose for contradiction that there is such an ω-categorical template ∆. We
construct an infinite sequence p0, p1, p2 . . . of elements from pairwise distinct orbits of
the automorphism group of ∆, which will be a contradiction by Theorem 1. Let z0 and
z1 be elements in ∆ such that z0 = 0 and z1 = 1 hold in ∆. Note that if there was an
element z′0 distinct from z0 such that z′0 = 0 holds in ∆, then x = 0∧x 6= y∧y = 0 would
be a satisfiable instance of CSP(∆), but unsatisfiable in CSP(Γ ), which is impossible by
assumption. Hence, z0 is uniquely defined. Let p0 be z0. Assume inductively that pn is
defined uniquely in Γ by a primitive positive formula φ(x). Consider the following instance
of CSP(Γ ), which is specified by the primitive positive formula ψ:

φ(s) ∧ (s+ x = y) ∧ (y + x = l) ∧ l = 1 .

Clearly, if we set s to pn, x to (1 − pn)/2, and y to (1 + pn)/2, all conjuncts of ψ are
satisfied in Γ . By assumption, ψ is also satisfiable over ∆, i.e., there is an assignment
h : {s, x, y, l} → D(∆) to the free variables that satisfies all conjuncts in ψ. Let pn+1 be
h(y). We claim that pn+1 is uniquely determined: if there was solution with another value



for y, then ψ(s, x, y, l)∧ψ(s, x′, y′, l)∧x′ 6= x would be satisfiable over ∆, but not over Γ ,
a contradiction. We also claim that pn+1 lies in an orbit that is distinct from the orbits of
p1, . . . , pn, respectively: otherwise, if there was an automorphism α of Γ that maps pi to
pn+1, for some i ≤ n, then pn+1 would not have been unique, since α(h) is an assignment
that also satisfies all conjuncts but assigns a different value to y. ut

6 CSPs and Existential Second-Order Logic

One of the motivating questions in the landmark paper of Feder and Vardi [35] is

Question 1. Which natural subclasses of NP do exhibit a complexity dichotomy, i.e., only
contain problems that are either NP-complete or in P?

Whether the class FCSP of finite domain constraint satisfaction problems has such a
complexity dichotomy is one of the greatest open problems in constraint satisfaction
theory.

Feder and Vardi approached Question 1 from two sides. One the one hand, they
conjectured that the class FCSP exhibits a dichotomy and made important contributions
to this end. On the other hand, they investigated larger classes of computational problems
that provably do not exhibit a complexity dichotomy. These larger classes are defined with
syntactic restrictions of existential second order logic (ESO).

By Fagin’s famous theorem, a set C of finite τ -structures is in NP if and only if there
is a sentence Φ in existential second-order logic such that Φ is true on a τ -structure A if
and only if A is in C. An important syntactic restriction of existential second-order logic
is SNP (for strict NP): here we require that the sentence is of the form

∃R1, . . . , Rk.∀x1, . . . , xl. ψ

where R1, . . . , Rk are (existentially quantified) relation symbols, x1, . . . , xl are (universally
quantified) first-order variables, and ψ is a quantifier-free formula. Furthermore, we say
that an SNP-formula is monadic if all second-order variables are unary. Let MSNP be
the class of all problems that can be described by a monadic SNP sentence.

Theorem 4 (of [35]). Every problem in NP has a polynomial-time equivalent problem
in MSNP.

Theorem 4 shows that there is no complexity dichotomy for all problems in MSNP,
because if P 6= NP there are problems in NP that are neither in P nor NP-complete [52].

However, Feder and Vardi also showed that if we restrict our attention to (infinite
domain) constraint satisfaction problems in MSNP, we obtain a class that is ‘computa-
tionally equivalent’ to FCSP. Let CSP be the class of all constraint satisfaction problems
(with domains of arbitrary cardinality).

Theorem 5 (of [35], [50]). Every problem in CSP ∩ MSNP is polynomial-time equiv-
alent to an FCSP (and FCSP is contained in CSP ∩ MSNP).

Hence, a complexity dichotomy for FCSP is equivalent to a complexity dichotomy for
CSP ∩ MSNP. The dichotomy conjecture for FCSP is wide open, and not undisputed.
Instead of disproving the dichotomy conjecture for FCSP, it might be easier to disprove
it for CSPs in SNP that can be formulated with an ω-categorical template.



Question 2. Is every problem in NP polynomial-time equivalent to a CSP with an ω-
categorical template?

The logic of SNP and MSNP are natural logics in the context of constraint satisfaction
with ω-categorical templates, as witnessed by the following theorem.

Theorem 6 (of [11]). Every CSP in MSNP can be formulated as CSP(Γ ) for an ω-
categorical structure Γ .

So far, we have not touched the question how infinite templates Γ might be finitely
represented. For the definition of CSP(Γ ) we don’t have to fix a representation. But for
several algorithmic “meta-questions” concerning CSP(Γ ) such a representation is neces-
sary.

Most natural CSPs with ω-categorical templates are in SNP. Thus, SNP sentences
can be used to specify constraint satisfaction problems for ω-categorical templates (up to
homomorphic equivalence, see Lemma 5). However, the following question remains open.

Question 3. Is every CSP in SNP a CSP over an ω-categorical template?

7 Preservation Theorems

Primitive positive definability plays an important role in hardness proofs for the CSP. In
this section, we discuss a model-theoretic preservation theorem that characterizes prim-
itive positive definability. We then use this result to establish that the computational
complexity of a CSP with a finite or ω-categorical template is fully described by an
algebra that can be associated to a template.

Let A and B be two structures with the same signature τ . Then the (direct) product
C = A×B of A and B is the τ -structure with domain A×B, and for each k-ary R ∈ τ
the structure C has the relation that contains a tuple ((a1, b1), . . . , (ak, bk)) if and only if
R(a1, . . . , ak) holds in A and R(b1, . . . , bk) holds in B . For each k-ary f ∈ τ the structure
C has the operation that maps ((a1, b1), . . . , (ak, bk)) to (f(a1, . . . , ak), f(b1, . . . , bk)). We
write Ak for A×Ak−1 if k > 1, and A1 for A.

Definition 7. Let A be a structure. Then f : Ak → A is called a polymorphism of A if
f is a homomorphism from Ak to A.

If R is a relation over D, and f is a polymorphism of (D,R), we also say that f
preserves R. A relation R has a primitive positive definition in a finite structure if and
only if R is preserved by all polymorphisms of this structure. This was discovered by
Geiger [38] and by Bodnarcuk et al. [18], and is of central importance in universal algebra.

The following generalization of this theorem to ω-categorical structures was shown
in [17]. We give a new proof here, which derives the theorem from the well-known homo-
morphism preservation theorem in model-theory. The proof given in [17] is neither long
nor very complicated; however, we believe that the proof given below is also interesting,
because it demonstrates how universal-algebraic preservation theorems can be derived
from classical preservation theorems in model theory.

Theorem 7 (of [17]). Let A be an ω-categorical or a finite structure. A relation R has
a primitive-positive definition in A if and only if R is preserved by all polymorphisms of
A.



The corresponding preservation theorem in model theory is as follows (even though we
have not been able to find a reference for this fact, it should be considered to be known).
We say that a first-order formula φ is equivalent to ψ modulo a first-order theory T if
∀x.φ(x) ↔ ψ(x) holds in all models of T . We also say that φ(x1, . . . , xl) is preserved by
a homomorphism f from a direct product of models Γ1, . . . , Γk of T to a model Γ of T
if whenever φ holds on l-tuples a1, . . . , al in Γ1, . . . , Γk, respectively, then φ also holds on
f((a1

1, . . . , a
1
l ), . . . , (a

k
1 , . . . , a

k
l )) in Γ .

Theorem 8. Let T be a first-order theory. A first-order formula φ is equivalent to a
primitive positive formula modulo T if and only if φ is preserved by all homomorphisms
from finite direct products of models of T to models of T .

The theorem can be shown by a slight modification of the proofs in [46]. This approach
relies on several concepts and basic results in model-theory, and is out of the scope of this
paper. We recommend Hodges’ book [42] as an accessible introduction to model-theoretic
preservation theorems.

Proof (of Theorem 7). First, observe that every relation R with a primitive positive defini-
tion in Γ is preserved by all polymorphisms of Γ . This can be shown in a straightforward
way by induction on the syntactic structure of primitive positive definitions. To prove
the converse, let R be a k-ary relation that is preserved by all polymorphisms of Γ . In
particular, R is preserved by all automorphisms of Γ , and Theorem 1 implies that R has
a first-order definition φ in Γ .

Let T be the first-order theory of Γ . We claim that if R is preserved by all polymor-
phisms of Γ then φ is preserved by all homomorphisms from finite direct products of
models Γ1, . . . , Γl of T to a model Γ0 of T . If we have shown the claim, Theorem 7 follows
directly from Theorem 8.

So assume to the contrary that φ is not preserved by a homomorphism f from a finite
direct product of models Γ1, . . . , Γl of T to a model Γ0 of T (note that Γ1, . . . , Γl, and Γ0

might be uncountable). We prove by a standard application of the downward Löwenheim-
Skolem theorem (see e.g. [42]) that φ is not preserved by some l-ary polymorphism of Γ ,
as follows. Let ∆ be the disjoint union of Γ0, Γ1, . . . , Γl. Additionally, ∆ has a relation
S∆ that denotes the union of the relations defined by φ in Γ0, Γ1, . . . , Γl, and has unary
relations P∆

0 , P
∆
1 , . . . , P

∆
l , where P∆

i denotes the elements from Γi, for 1 ≤ i ≤ l. Finally,
∆ has an l-ary function g∆, which is interpreted as follows. If v1, . . . , vl are elements from
∆, where vi is from Γi for 1 ≤ i ≤ l, then g∆(v1, . . . , vl) is the value of the homomor-
phism f from Γ1 × · · · × Γl to Γ0. Because φ is not preserved by f , there are k-tuples
t1, . . . , tl from S∆ such that (f(t1), . . . , f(tl)) is not in S∆. For all other l-tuples from ∆,
the interpretation of g∆ is set arbitrarily to some fixed element from ∆. By downward
Löwenheim-Skolem, the first-order theory of ∆ has a countable model ∆′. Note that P∆′

i

denotes a countable, but still necessarily an infinite set. It is also easy to see that the
structures Γ ′1, . . . , Γ

′
k induced by the sets P∆′

1 , . . . , P∆′

k in ∆′ have the same first-order
theory as Γ , and by ω-categoricity of Γ are isomorphic to Γ . The function g∆′

maps
tuples v1, . . . , vk where vi ∈ Γ ′i for 1 ≤ i ≤ k to Γ ′0, and still the restriction of g∆′

to those
tuples violates the relation S∆′

. Hence, the restriction of g∆′
to these tuples gives rise to

a polymorphism of Γ that violates φ. ut



8 The Algebra of a Template

In this section we discuss how the algebraic approach to constraint satisfaction might
be extended to ω-categorical templates Γ . We have already seen in the previous section
that the polymorphisms of Γ characterize primitive positive definability of relations in
Γ . Therefore, the algebra defined on the domain D of Γ that contains as operations all
the polymorphisms of Γ fully describes the computational complexity of CSP(Γ ). The
algebra that we just defined for an ω-categorical template Γ will be denoted by AΓ .

AΓ has several important properties. First of all, its set of operations forms a clone,
i.e., is closed under compositions and contains the projections [59]. Clones with infinite
domains are a subject in its own right [39]. Clones that arise as the set of polymorphisms
of a structure are always locally closed, a concept which only becomes relevant for infinite
domains. We need a couple of definitions.

Let D be an infinite set, and let O(k) be the set of operations from Dk to D, for k ≥ 1.
The symbol O denotes

⋃∞
k=1 O(k). We say that an operation f ∈ O(k) is interpolated by

a set F ⊆ O if for every finite subset A of D there is some operation g ∈ F such that
f(t) = g(t) for every t ∈ Ak. The set of all operations that are interpolated by F is denoted
by I(F). A clone is called a local clone (or locally closed) if I(F) = F. The smallest clone
that contains F is the clone generated by F, and denoted by G(F). The smallest local
clone that contains F is called the clone locally generated by F , and denoted by L(F).

Proposition 2 (see e.g. [59]). For all F ⊆ O we have that L(F) = I(G(F)).

We say that an algebra A is called oligomorphic if the unary bijective operations (i.e.,
the permutations) in A form an oligomorphic permutation group. Theorem 1 asserts that
AΓ is oligomorphic if Γ is ω-categorical. Conversely, it is not hard to see that for every
oligomorphic algebra A whose operations form a local clone there is an ω-categorical
structure Γ such that A = AΓ . Such an ω-categorical structure Γ can be obtained by
equipping the domain of A with all relations that are preserved by all operations in A;
we call this structure the canonical structure for A.

An operation of an oligomorphic clone is called elementary if it is locally generated
by its permutations. Clearly, for clones with a finite domain, the elementary operations
are the operations that are composed of a projection with a permutation. Note that all
endomorphisms of a model-complete ω-categorical core are elementary. Conversely, if all
endomorphisms of an oligomorphic algebra A are elementary, then the canonical structure
for A is a core [8].

We now define several other important properties of k-ary operations. A k-ary oper-
ation f is

– idempotent iff f(x, . . . , x) = x;
– essentially unary iff there is a unary operation g such that f(x1, . . . , xk) = g(xi) for

some i ∈ {1, . . . , k};
– essential iff f is not essentially unary;
– commutative iff f is binary and f(x, y) = f(y, x);
– a quasi near-unanimity operation (short, qnu-operation) iff f(x, . . . , x) = f(x, . . . , x, y)

= · · · = f(x, . . . , x, y, x, . . . , x) = · · · = f(y, x, . . . , x);
– a quasi Maltsev operation iff k = 3 and f(x, y, y) = f(y, y, x) = f(x, x, x);

An idempotent quasi near-unanimity and quasi Maltsev operation is known as near-
unanimity and Maltsev operation, respectively.



9 The Pseudo-variety of a Template

A class V of algebras with the same signature τ is called a pseudo-variety if V contains all
homomorphic images (Section 2), subalgebras (i.e., substructures as defined in Section 3),
and finite direct products (Section 7) of algebras in V. The difference between pseudo-
varieties and varieties is that pseudo-varieties need not be closed under direct products
of arbitrary cardinality (which we did not define here). The smallest pseudo-variety that
contains an algebra A is called the pseudo-variety generated by A.

The results in this section link the universal-algebraic concept of pseudo-varieties with
the model-theoretic concept of primitive positive interpretations. We already mentioned
that first-order interpretations are a convenient tool to construct ω-categorical structures
from simpler ω-categorical structures. Primitive positive interpretations (see Section 3)
can be used to study the computational complexity of constraint satisfaction problems.

Proposition 3. Let ∆ and Γ be a structures with finite relational signatures. If there is
a primitive positive interpretation of ∆ in Γ , then there is a polynomial-time reduction
from CSP(∆) to CSP(Γ ).

Proof. Let d be the dimension of the primitive positive interpretation of the τ -structure
∆ in the σ-structure Γ , let δ(x1, . . . , xd) be the domain formula, let h : δ(Γ d) → D(∆)
be the coordinate map, and let φR(x1, . . . , xdk) be the formula for the k-ary relation R
from ∆.

Let A be an instance of CSP(∆), and let A = {a1, . . . , an} be the elements of A.
We construct an instance B of CSP(Γ ) as follows. The domain B of B consists of dn
vertices b11, . . . , b

d
n. For all 1 ≤ i ≤ n, we impose δ in B on (b1i , . . . , b

d
i ): note that δ

is a primitive positive σ-formula, and therefore can be simulated by a conjunction of
constraints from τ , possibly with adding new vertices for the existentially quantified
variables in the definition. If a tuple (ai1 , . . . , aik

) is contained in a k-ary relation R in
A, then we impose φR(b1i1 , . . . , b

d
i1
, . . . , b1ik

, . . . , bdik
) in B . Clearly, the structure B is an

instance of CSP(Γ ) and can be constructed in polynomial time in the size of A.
We claim that there is a homomorphism from A to∆ if and only if there is a homomor-

phism from B to Γ . Suppose f : B → D(Γ ) is a homomorphism from B to Γ . By construc-
tion, if R(ai1 , . . . , aik

) holds in A then φR((f(b1i1), . . . , f(bdi1)), . . . , (f(b1i1), . . . , f(bdi1)))
holds in Γ . By the definition of interpretations, this is the case if and only if R(h(f(b1i1),
. . . , f(bdi1)), . . . , h(f(b1ik

), . . . , f(bdik
))) holds in ∆. Hence, the mapping g : A→ D(∆) that

maps ai to h(f(b1i ), . . . , f(bdi )) is a homomorphism from A to ∆.
Now, suppose that f is a homomorphism from A to ∆. Since h is a surjective mapping

from δ(Γ )d to ∆, there are elements e1i , . . . , e
d
i in Γ such that h(e1i , . . . , e

d
i ) = f(ai), for

all i ∈ {1, . . . , n}. We claim that the mapping g : B → D(Γ ) that maps bji to ej
i is a

homomorphism from B to Γ . By construction, any constraint in B comes from a primi-
tive positive formula φR(b1i1 , . . . , b

d
i1
, . . . , b1ik

, . . . , bdik
) that was introduced for a constraint

R(ai1 , . . . , aik
) in A. It therefore suffices to show that φR(g(b1i1), . . . , g(b

d
i1

), . . . , g(b1ik
), . . . ,

g(bdik
)) holds in Γ . Since f is a homomorphism from A to ∆, R(f(ai1), . . . , f(aik

)) holds in
∆. By the choice of e11, . . . , e

d
n, this shows that R(h(e1i1 , . . . , e

d
i1

), . . . , h(e1ik
, . . . , ed

ik
)) holds

in Γ . By the definition of interpretations, this is the case if and only if φR(e1i1 , . . . , e
d
1,

. . . , e1ik
, . . . , ed

ik
) holds in Γ , which is what we had to show. ut



Section 11 contains a hardness proof that uses this proposition. We now present the
mentioned connection between primitive positive interpretations and pseudo-varieties. We
have not been able to find the following theorem explicitely in the literature even in the
case of finite algebras, and therefore present its proof in full detail.

Theorem 9. Let Γ be a finite or ω-categorical relational structure. Then a structure ∆
has a primitive positive interpretation in Γ if and only if there is an algebra B in the
pseudo-variety generated by AΓ such that all operations of B are polymorphisms of ∆.

Proof. Let V be the pseudo-variety generated by AΓ . Similarly to the famous HSP theorem
for varieties, every algebra in V is the homomorphic image of a subalgebra of a finite direct
product of AΓ (we can use the same proof as for the HSP theorem given in [24]).

First assume that there is an algebra B in V all of whose operations are polymorphisms
of ∆. Then there exists a finite number d ≥ 1, a subalgebra C of (AΓ )d, and a surjective
homomorphism h from C to B.

We claim that ∆ has a first-order interpretation with dimension d in Γ . All operations
of AΓ preserve C (viewed as a d-ary relation over D(Γ )), since C is a subalgebra of (AΓ )d.
By Theorem 7, this implies that C has a primitive positive definition δ(x1, . . . , xd) in Γ ,
which becomes the domain formula of our interpretation. As coordinate map we choose
the mapping h.

If R is a k-ary relation in ∆, let R′ the dk-ary relation over D(Γ ) that contains
the dk-tuple (a1

1, . . . , a
d
1, . . . , a

1
k, . . . , a

d
k) whenever R contains the tuple (h(a1

1, . . . , a
d
1),

. . . , h(a1
k, . . . , a

d
k)). Let f be any operation in AΓ . By assumption, the corresponding

operation f in B preserves R. It is easy to verify that then the operation f in AΓ preserves
R′. Hence, all polymorphisms of Γ preserve R′, and because Γ is ω-categorical, the relation
R′ has a primitive positive definition φR in Γ . The formula φR becomes the defining
formula for R in the interpretation of ∆ in Γ .

Finally, since h is an algebra homomorphismus, the kernel2 K of h is a congruence3 of
C. In other words, if ((a1

1, . . . , a
d
2), (a

1
2, . . . , a

d
2)) ∈ K then (f(a1

1, . . . , a
d
2), f(a1

2, . . . , a
d
2)) ∈

K for all operations f from C, and hence ((f(a1
1), . . . , f(ad

2)), (f(a1
2), . . . , f(ad

2))) ∈ K for
all operations f from AΓ . It follows that K, viewed as a 2d-ary relation over D(Γ ), is
preserved by all operations from AΓ . Theorem 7 implies that K has a primitive positive
defintion in Γ . This definition becomes the formula φ= in the interpretation of ∆ in Γ .
It is straightforward to verify that we have found a primitive positive interpretation of ∆
in Γ .

To prove the opposite direction, suppose that ∆ has a primitive positive interpretation
in an ω-categorical τ -structure Γ . We have to show that V contains an algebra B such
that all operations in B are polymorphisms of ∆. Let d be the dimension and δ be the
domain formula of the interpretation. Clearly, the set δ(Γ d) is preserved by all operations
in AΓ , and therefore induces a subalgebra C of (AΓ )d.

We first show that the kernel of the coordinate map h of the interpretation is a
congruence ρ of C. For all d-tuples a, b ∈ C the 2d-tuple (a, b) satisfies φ= in Γ if and
only if h(a) = h(b). Hence, the restriction of φ= to C defines the kernel of h. Since φ= is

2 The kernel of a map f : A → B is the equivalence relation on A that contains all pairs (x, y)
such that f(x) = f(y).

3 A congruence of an algebra A is an equivalence relation that is preserved by all operations in
A; equivalently, a congruence is the kernel of a homomorphic image of A.



primitive positive definable in Γ , it is preserved by all polymorphisms of Γ , and therefore
is a congruence of (AΓ )d. By the second isomorphism theorem in universal algebra [24],
the restriction of this congruence to C is a congruence ρ of C.

Also by basic universal algebra [24] the natural map g that maps an element c from C
to its congruence class c/ρ in the quotient algebra C/ρ is a surjective homomorphism from
C to C/ρ. By the first isomorphism theorem, the elements of B := C/ρ are in bijective
correspondence to the elements of ∆, and we assume without loss of generality that B and
∆ have the same domain. We finally verify that every operation in B is a polymorphism
of ∆: It suffices to prove that every relation R of ∆ is preserved by all operations f in
B. Let φR be the defining τ -formula of R in the primitive positive interpretation of ∆ in
Γ . The operation f in B preserves R if and only if the operation f in AΓ preserves the
relation defined by φR. Since the operations in AΓ are polymorphisms of Γ , and since φR

is a primitive positive τ -formula, the operation f preserves the relation defined by φR. ut

Theorem 10. Let Γ be ω-categorical. Then CSP(Γ ) is NP-hard if there is an expansion
∆ of the model-complete core of Γ by finitely many singleton relations such that V(A∆)
contains an 2-element algebra where all operations are projections.

Proof. By Corollary 1 there is a polynomial-time reduction from CSP(∆) to CSP(Γ ).
Combining Theorem 9 with Proposition 3, we can show that CSP(∆) is NP-hard, by
reduction from the well-known NP-complete problem positive 1-in-3-3SAT, which can be
formulated as CSP({0, 1}, {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). ut

All known ω-categorical templates with an NP-hard CSP satisfy the condition in
Theorem 10. It is therefore natural to ask whether the sufficient condition for hardness
given in Theorem 10 is also necessary. For finite templates, it has been conjectured that
this is true [21].

Question 4. Does Theorem 10 describe exactly the NP-hard CSPs with an ω-categorical
template?

10 Tractable Templates

For finite templates Γ , all known tractable problems CSP(Γ ) can be solved by a Datalog
program [35] or by an algorithm for templates with a Maltsev polymorphism [23, 43]
(generalizing group-theoretic algorithms introduced in [35]), or combinations of those [20].

An ω-categorical model-complete core Γ can not have a Maltsev polymorphism, not
even a quasi Maltsev polymorphism [25]. This does not imply that group-theoretic algo-
rithms do not occur for ω-categorical templates, as we will see in Subsection 10.2.

Datalog continues to play an important role also for ω-categorical templates. All
tractability results known for temporal and spatial reasoning can be formulated with Dat-
alog programs. We will discuss in this section a result showing that every ω-categorical
model-complete core with a quasi near-unanimity operation can be solved by a Datalog
program. In fact, in this case we can use the Datalog program to compute a globally con-
sistent instance. We also present examples of templates in temporal and spatial reasoning
that have a quasi near-unanimity polymorphism.

For a large family of CSPs we can show tractability because the template has a
certain binary bijective polymorphism. The powerful tractability criterion explains several



results in the literature on temporal and spatial reasoning and will be introduced in
Subsection 10.2.

We finally present an ω-categorical template whose CSP can be solved by a simple
linear-time algorithm, but which can neither be solved by Datalog nor by algebraic algo-
rithms related to Maltsev polymorphisms.

10.1 From Local to Global Consistency

An introduction to Datalog for constraint satisfaction with finite templates can be found
in [Cite Bulatov,Krokhin,Larose in this book]. Datalog programs can also be used to
solve CSPs with infinite templates in polynomial time: recall that every Datalog program
derives on a given finite input structure only a polynomially bounded number of facts.
Thus, any Datalog program can be evaluated in polynomial time. An example of a CSP
with an infinite template that can be solved by a (2, 3)-Datalog program is CSP(Q, 6=,≤)
[60].

Datalog is particularly useful when the template is ω-categorical, since in this case
there exist canonical Datalog programs, as in the case of finite templates.

Definition 8. Let Γ be an ω-categorical structure. The canonical (l, k)-Datalog program
for CSP(Γ ) is a Datalog program Π that contains an IDB for every at most l-ary primitive
positive definable relation in Γ (by ω-categoricity of Γ , there are only finitely many such
relations). The empty 0-ary relation will be denoted by false. The EDBs are precisely the
relation symbols in τ . The program Π contains a rule ψ :- ψ1, . . . , ψj if the implication
ψ1 ∧ · · · ∧ ψj ⇒ ψ contains at most k variables, is valid in Γ , and ψ is of the form
R(y1, . . . , ys) for an IDB R and s ≤ l.

The final stage in the evaluation of a canonical Datalog program on a given instance
gives rise to another instance A of CSP(Γ ′), where Γ ′ is the expansion of Γ by all at most
l-ary primitive positive definable relations, and where A contains all the derived tuples
from these relations [32].

Proposition 4 (of [11]). A constraint satisfaction problem CSP(Γ ) with an ω-categorical
template Γ can be solved with an (l, k)-Datalog program if and only if the canonical (l, k)-
Datalog program solves CSP(Γ ).

Global consistency. Some templates Γ have the strong property that the instance com-
puted by the canonical Datalog program is always globally consistent, see Definition 9
below.

Definition 9. Let Γ be a structure with finite relational signature. An instance A of
CSP(Γ ) is called strongly k-consistent if for every subset S = {v1, . . . , vl} of A with
l ≤ k and every homomorphism h from A[{v1, . . . , vl−1}] to Γ there exists an extension
of h that is a homomorphism from A[S] to Γ . An instance A of CSP(Γ ) is called globally
consistent if it is k-consistent for all 1 ≤ k ≤ |A|.

Note that if Γ has the property that every strongly k-consistent instance of CSP(Γ ) is
globally consistent, then CSP(Γ ) can be solved in polynomial time. As an example, con-
sider again CSP(Q,≤, 6=). It is known that the canonical (4, 5)-Datalog program computes
globally consistent instances, but the canonical (3, 4)-Datalog program does not [48]. We
will see a universal-algebraic explanation of this fact in the next paragraph.



Quasi near-unanimity functions. We present a universal-algebraic characterization of
those ω-categorical model-complete cores where the canonical (l, k)-Datalog program
computes globally consistent instances. Recall the definition of (quasi) near-unanimity
functions given in Section 8. As an example of a near-unanimity function, consider the
structure (Q,≤, <), and the operation median, which is the ternary function that returns
the median of its three arguments. More precisely, for three elements x, y, z from Q, sup-
pose that {x, y, z} = {a, b, c}, where a ≤ b ≤ c. Then median(x, y, z) is defined to have
value b. It is easy to verify that median is a ternary near-unanimity function, and that it
is a polymorphism of (Q,≤, <).

The structure (N, 6=) is an example of a structure that has no near-unanimity polymor-
phism (exercise!), but has a ternary quasi near-unanimity operation, defined as follows.
Consider the structure (N, 6=)3, where for all x, y ∈ N the triples of the form (y, x, x),
(x, y, x), (x, x, y), and (x, x, x) are identified. The resulting structure homomorphically
maps to (N, 6=) (Lemma 2), and this homomorphism is a ternary polymorphism of (N, 6=)
and a quasi near-unanimity operation.

Similarly, we can construct a 5-ary quasi near-unanimity polymorphism of (N, R)
where R = {(x, y, u, v) | x 6= y ∨ u 6= v}). To see that this structure has no 4-ary quasi
near-unanimity, consider the tuples t1 = (1, 0, 0, 0), t2 = (0, 1, 0, 0), t3 = (0, 0, 1, 0), and
t4 = (0, 0, 0, 1). Any 4-ary quasi near-unanimity operation applied to (t1, t2, t3, t4) yields
a tuple (c, c, c, c) for some c ∈ N. But note that t1, . . . , t4 are in R, whereas c is not.

Theorem 11 (of [11]). An ω-categorical model-complete core Γ has a k-ary quasi near-
unanimity polymorphism if and only if every strongly k-consistent instance of CSP(Γ ) is
globally consistent.

Examples. A 5-ary quasi near-unanimity polymorphism of (Q,≤, 6=) was described in [9].
We give a different construction of such a polymorphism here. Let f : Q10 → Q be
an injective operation that preserves ≤. Such an operation exists; we can simply take
any operation such that f(x1, . . . , x10) < f(y1, . . . , y10) if and only if (x1, . . . , x10) is
lexicographically smaller than (y1, . . . , y10).

Proposition 5. Let h(x, y, z, u, v) be the 5-ary operation

f(median(x, y, z),median(x, y, u),median(y, z, v), ...,
median(y, u, v),median(z, u, v) )

(That is, we apply the median to all of the 10 three-element subsets of {x, y, z, u, v}.)
Then h is a 5-ary quasi near-unanimity polymorphism of (Q,≤, 6=).

It can also be shown that the template with the basic relations of the spatial reasoning
formalisms RCC-5 (see Section 5) has a 5-ary quasi near-unanimity polymorphism [9].

We would like to remark that the concept of quasi near-unanimity operations is a
natural concept also for finite domain constraint satisfaction problem. For example, it
allows to formulate the well-known dichotomy of CSP(H) for undirected graphs H as
follows: CSP(H) is in P if and only if H has a quasi near-unanimity operation (unless
P=NP). This is easy to derive from the well-known theorem that CSP(H) is NP-hard if
H is not bipartite [40].



10.2 Horn Tractability

In this section we describe a powerful tractability criterion, which in particular explains
many results in temporal and spatial reasoning. But also CSPs with a group-theoretic
algorithm will be treated here.

We say that a relation R has a quantifier-free Horn definition in a τ -structure Γ if R
can be defined by a quantifier-free τ -formula in conjunctive normal form in which each
clause contains at most one positive literal. If A is a structure, we denote by Â the
expansion4 of A that also contains the complement for each relation in A.

Theorem 12 (of [10]). Let Γ be an ω-categorical homogeneous structure, and let ∆
be a structure with a first-order definition in Γ . If ∆ has a polymorphism i which is a
strong homomorphism from Γ 2 to Γ , then ∆ has a quantifier-free Horn definition in Γ .
Moreover, if CSP(Γ̂ ) is tractable, then CSP(∆) is tractable as well.

Note that if i is bijective (in other words, if i is an isomorphism between Γ 2 and Γ )
then the binary polymorphism of ∆ satisfies the equation

i(x, y) = a(i(y, x))

for some automorphism a of ∆ [10]. In this case, every expansion of ∆ by some relation
with a first-order definition in Γ that is not equivalent to a quantifier-free Horn formula
over Γ has an NP-hard CSP [10]; in this sense, the tractability result is strongest possible.
We illustrate the use of this theorem by examples.

Solving Equations over Infinite Vector Spaces. We come back to the application on solving
systems of equations over boolean vectors, described in Subsection 5.3. To recall, the
template for this CSP had a first-order definition in the infinite-dimensional vector space
V over the 2-element field F2. It is well-known that V2, the direct product of V with
itself, is isomorphic to V; similarly, we have that V 2 (as defined in Subsection 5.3) is
isomorphic to V . Let i be the isomorphism. Note that V̂ = V , since V already contains
the complements of all its relations. It was shown in [10] that CSP(V ) can be solved in
polynomial time.

Finally, let∆ be any relational structure where all relations have a first-order definition
in Γ which is a quantifier-free Horn formula. It is straightforward to verify that such
relations are preserved by i. Now we can apply Theorem 12, and obtain the result that
CSP(∆) can be solved in polynomial time as well.

Spatial Reasoning. Theorem 12 can also be applied to study tractable CSPs in spatial
reasoning. The countable atomless boolean ring without identity element B, as introduced
in Subsection 5.2, is isomorphic to B2 (because B2 is again an atomless boolean ring
without identity element, and all such boolean rings are isomorphic [1]); let i : B2 → B
denote this isomorphism. The constraint satisfaction problem for (B,DR,PP,¬DR,¬PP)
is in P [58] (in fact, this structure has a 5-ary qnuf, as shown in [9]). Theorem 12 then
implies that CSP(Γ ) is in P if all relations of Γ have a first-order definition in (B,DR,PP)
and are preserved by i. These are precisely the relations that have a first-order Horn
4 An expansion of a structure A is a structure that is obtained from A by adding relations

and/or functions to A.



definition in (B,DR,PP). In particular, we obtain a result by Renz and Nebel [58] who
determined a largest tractable fragment of RCC-5. It follows from the result in [44] that
this fragment is the unique largest tractable fragment that contains the basic relations
DR and PP. However, note that Theorem 12 also applies to relational structures ∆ with
relations of arbitrary arity.

10.3 Other Tractable Templates

All known tractable problems of the form CSP(Γ ) for templates Γ with a finite domain
can be solved by Datalog, or by an algebraic algorithm, or combinations and extensions
of these approaches. For infinite templates Γ , there are new kinds of algorithms to solve
CSP(Γ ) in polynomial time. We present a simple example of such an algorithm, and
give some details here, because the algorithm is a prototype for several more advanced
algorithms [4,16].

In Section 5, we have already mentioned the problem CSP(Q, Rmin), which we call
the min-ordering problem: in this problem we are given a set A of variables, and a set
Rmin of triples on these variables. We want to find a mapping α : A → Q such that for
each triple (x, y, z) either α(x) > α(y) or α(x) > α(z). It can be shown [14] that there
is no Datalog program that solves this problem. However, here is a simple linear-time
algorithm for CSP(Q, Rmin).

The algorithm we present relies on the fact that Rmin has the binary operation min as
a polymorphism, where min(x, y) is by definition the minimum of x and y. The operation
min is an example of a semilatttice operation, which is an associative, commutative, and
idempotent operation. For finite structures it is known that if a template Γ has an semi-
lattice polymorphism, then CSP(Γ ) is tractable by a Datalog program. This result does
not carry over to ω-categorical templates (we have already mentioned that (Q, Rmin) has
a semilattice polymorphism, but cannot be solved by a Datalog program).

Let A be an instance of the min-ordering problem that has a solution α. It will be
easy to generalize our algorithm to all templates where all relations have a first-order
definition in (Q, <) and are preserved by min. The algorithm was found in the course of
the classification of the complexity of CSP(Γ ) for all Γ with a first-order definition in
(Q, <), and is one of the simplest cases in this classification [13,14].

Definition 10. A set S of variables in an instance A of the min-ordering problem is
called free if the instance has a solution α where α(x) ≤ α(y) for all y ∈ A and x ∈ S.

If x is from a free set of variables S, then Rmin cannot contain a triple (x, y, z) where
x appears in the first entry, because then either α(y) or α(z) are strictly smaller than
α(x), a contradiction. We say that a variable x ∈ A is blocked if Rmin contains a tuple
(x, y, z) where x appears in the first entry (and unblocked otherwise).

Lemma 6. If all variables in an instance of the min-ordering problem are blocked, then
the instance is unsatisfiable.

Proof. Suppose the instance has a solution, then there must exist a free set of variables.
But as we have seen, free variables cannot be blocked. ut

It turns out that if an instance of the min-ordering problem is satisfiable, then the set
of all min-candidates is free. This follows from the correctness of the following algorithm.



Min-Ordering(A)
Input: A structure (A, Rmin) with a ternary relation Rmin.

If A = ∅ then accept
else

Compute the set S of min-candidates;
If S = ∅ then reject;
else Min-Ordering(A[A \ S])

end if

Fig. 1. The Min-Ordering algorithm.

Proposition 6. The Min-Ordering procedure given in Figure 1 correctly decides the min-
ordering problem in linear time in the input size.

Proof. Let A be an instance of the min-ordering problem. If at some point during the
execution of the Min-Ordering procedure on A we recursively apply the min-ordering
procedure to a substructure B of A and do not find an unblocked variable, then Lemma 6
implies that B and therefore also A does not have a solution.

Otherwise, it is clear that A has a solution if the set of variables is empty. So, suppose
the algorithm finds a non-empty set S. Inductively assume that A[A\S] has a solution α.
Then the extension α′ of α that maps all variables in S to a value smaller than the value
of α(y) for all other variables y ∈ A \ S is clearly a solution to A. Hence, the algorithm
is correct. It is not difficult to see that it can be implemented such that it has a linear
worst-case running time. ut

A similar, but more complicated algorithm based on finding a free set of variables can
be used to solve the branching-time consistency problem (and therefore also the rooted
triple consistency problem, as we have noticed before) in quadratic time [16].

11 Classification for Equality Constraint Languages

In this section, we show how to use the concepts we have seen so far to describe a
full classification for a very restricted, but important class of ω-categorical templates.
We study countably infinite relational structures that are first-order definable in (N,=).
Equivalently, we study relational structures where all relations have a definition by a
boolean combination of atomic formulas of the form x = y. Such templates are called
equality constraint languages [12]. Example 1 in Section 2 is an example of an equality
constraint language. Another example is (N, S) where

S = {(x, y, z) ∈ N3 | x = y = z ∨ x 6= y 6= z 6= x} .

It is not hard to see that equality constraint languages are precisely those templates
that are preserved by all permutations of the domain.

Theorem 13 (of [12]). Let Γ be an equality constraint language. If Γ is preserved by
a unary constant operation, or by a binary injective operation, then CSP(Γ ) is in P.



Otherwise, all polymorphisms of Γ are essentially unary and preserve 6=, and CSP(Γ ) is
NP-complete.

We can answer Question 4 positively in case that Γ is an equality constraint language.
In fact, Theorem 13 has the following reformulation using pseudo-varieties and equations.

Theorem 14. Let Γ be an equality constraint language. The either V(AΓ ) contains a
2-element algebra where all operations are projections, and CSP(Γ ) is NP-complete, or
AΓ contains operations a, f satisfying f(x, y) = a(f(y, x)).

Proof. If AΓ contains operations a, f satisfying f(x, y) = a(f(y, x)) then this equation
holds for all members of V(AΓ ), and since the projections do not satisfy this equation,
the two cases mentioned in the theorem are indeed disjoint.

Now, suppose that all polymorphisms of AΓ are essentially unary and preserve 6=. Let
f : D(Γ )2 → {0, 1} be such that (x, y) is mapped to 0 for x = y and to 1 for x 6= y.
It is straightforward to verify that f is a surjective algebra homomorphism from A2

Γ to
an algebra B where all operations are projections. Theorem 10 implies that CSP(Γ ) is
NP-complete.

If AΓ contains an operation that does not preserve 6=, or is not essentially unary, then
Theorem 13 shows that AΓ contains a constant operation or a binary injective operation.
It is easy to see that in both cases there is a permutation a and a binary operation f in
AΓ such that f(x, y) = a(f(y, x)). ut

12 Outlook

In the opinion of the author, there are three important directions of future research on
CSPs with infinite templates.

1. Apply the universal-algebraic approach to unify and generalize existing
CSP complexity results in the application areas. Similarly as for the men-
tioned classification for equality constraint languages, it would be interesting to have
a complete classification for templates for reasoning over time points, time intervals
(i.e., the generalization of Allen’s interval algebra to constraint languages with ar-
bitrary, and not only binary constraints), for reasoning over partially ordered time,
branching time, and spatial reasoning with RCC-5, and for other important qualita-
tive reasoning formalisms that have been studied in the literature. I am optimistic
that with the universal-algebraic approach a classification in the style of Theorem 13
can be obtained in all these areas. In particular, I expect that in this way we discover
new and interesting tractable languages.

2. Further develop the universal-algebraic theory for ω-categorical templates.
(a) When is it useful to work with varieties instead of pseudo-varieties? For finite

templates Γ , the pseudo-variety and the variety of the Γ contain the same finite
algebras. Birkhoff’s theorem thus asserts that the computational complexity of
CSP(Γ ) is captured by the set of equations satisfied by the operations in AΓ .
Indeed, also for ω-categorical templates several tractability criteria can be formu-
lated by equations satisfied by the polymorphisms of the template (see Section 10).



(b) Develop tame congruence theory for oligomorphic algebras A. An interesting ap-
proach might be to apply classical tame congruence theory to the finite algebras in
the pseudo-variety generated by A, and to study the implications for the algebra
A (recall the examples in Section 11).

(c) Suppose we have classified the computational complexity for all templates with a
first-order definition in another ω-categorical structure Γ . Can we lift this classi-
fication to a classification for all structures with a first-order interpretation in Γ?

(d) Follow the successful lines in model-theory where ω-categorical structures were
classified under certain additional assumptions, for example strict minimality [26,
61], finite homogeneity or stability [28, 51], or smooth approximability [27, 45].
These classifications are usually up to inter-definability, sometimes even bi–inter-
pretability, so even if a classification is complete in the model-theoretic sense, quite
some effort might be necessary to classify the complexity of the corresponding
CSPs. Finally, we would like to mention that many of the ω-categorical templates
in Artificial Intelligence have an automorphism group that is a Jordan group [25,
53], for which strong classification results are known [2,3].

3. Clarify which constraint satisfaction problems in NP can be formulated
with an ω-categorical template. We have seen an example that does not have
such a formulation in Section 5. But we have also seen that all CSPs in MSNP do
have a formulation with an ω-categorical template. Is the same true for all problems
in SNP? Which constraint satisfaction problems in NP are in SNP?
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