Formalizing a set-theoretical model of CIC in Coq/IZF

Bruno Barras

INRIA Saclay

Feb. 14 & 15, 2011

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 1/53

Overview

Today:

» General setup: models and strong normalization

» Predicative universes

Tomorrow:
» Inductive types: nat and ordinals

Inductive nat := 0 | S (_:nat).
Inductive ord := 0 | LimS (_:nat->ord).

(should generalize easily to

Inductive W A B := sup (x:4) (_:B x ->W A B). and thus to any
strictly positive inductive definition)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 2 /53

General setup: models and SN

Motivations

Why a model of CIC ?

» Currently no model of the full formalism of Coq:
features studied separately: Streicher, Coquand, Luo, Werner,
H. Goguen

» No strong intuition of which axioms are consistent with CIC
(Chicli-Pottier-Simpson paradox)

Why formally 7
» To be “sure”

» To make it simpler (for both the designer and the reader)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

3 /53

General setup: models and SN

Which model do we want 7

» Smallest model vs
Model with smallest number of assumptions
(or: studying the proof theoretic strength of CIC vs
supporting more axioms)

In particular, we do not limit ourselves to continuous or computable
functions (countable model). We want to be able to support classical reals,
powerful description axioms, extensionality and what not...

Set-theoretical model:

A — B set of all set-theoretical function from A to B.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 4 /53

General setup: models and SN

Set theory: IZF

Axiomatized Zermelo-Fraenkel without excluded-middle:

| 2

>

>

Library: couples, relations, functions, plump ordinals, fixpoint theorem,

a carrier type set with equality = and membership €,
pair {a; b},

union |J a,

powerset P(a),

separation {x € A | P(x)},

replacement {y | 3x € A.R(x,y)} (R functional relation),
infinity

unused: well-foundation (instead of regularity in ZF)

Grothendieck universes, ...

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

5 /53

General setup: models and SN

The Playground

(Univ)
MLTT » CC » ECC

N\

(Ext)\ CC+NAT —» CC+W —>» CIC

l

CCuT » ECIC

Three independent features:
» Predicative universes
» Inductive types

» Extentional theory

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

6 /53

General setup: models and SN

Semantics first

Usual scheme:
» Introduce the syntax: terms and judgements
» Define the interpretation (recursion over the syntax)

» Prove soundness of the interpretation

Many systems: better avoid to start from the syntax!
» Shallow embedding
» Naturally extendable
» “Pick” the syntax (not shown in this talk)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

7 /53

General setup: models and SN

Model construction scheme

Abstract model (M):

» Describes the world of ground expressions
» Judgement: [M: T]or M € EI(T)

Dealing with free variables (de Bruijn):
» constr = (N — M) - M

» valuations £ N — M

Judgements:
» [[] = sets of valid valuations: ps.t. (x: T)eTl = [xp: Tp]
» TEM:T)=Vpelll],[Mp: Tpl
» Derive all necessary typing rules
(so we have soundness: T-M: T =[TFM:T])

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

8 /53

General setup: models and SN

Abstract model of Martin Lof's Type Theory

Structure:

» A setoid (M, =), membership € EI(_)
» Operations: A\, @, T1

» A(A, F): function F with domain A AM F:M—->M
» ©(M, N): application M, N : M
» M(A, B): set of dependent functions AM B:M—->M

» Properties:

> Mdintro: (Vx € EI(A). F(x) € EI(B(x))) = A(A, F) € EI(N(A, B))
> Melim: M € EMN(A,B)) A N e EI(A) = ©(M,N) e EI(B(N))
> Bequality: N € EI(A) = ©(A(A,F),N) = F(N)

Straightforward implementation:
» M = set and El is the identity (alternative: HF)
» [N dependent product (usual encoding of functions)
» Note: A uses the domain argument

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 9 /53

General setup: models and SN

Abstract model of CC

Additional constants and properties:
» Prop: *
» Impredicativity: (Vx € EI(A). B(x) € El(x)) = M(A, B) € El(x)

Note: topsort Kind is the proper class M:
[M: T]= M +#Kind A (T =KindV M € EI(T))

Implementation:

» Aczel's encoding AA, F) {(x,y) | xe ANy € F(x)}
Q(M. N) {y [(N,y) € M}
» But this is incompatible with Streicher’'s method because functions do
not carry their domain.

L
L

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 10 / 53

General setup: models and SN

Model in details

[Remember: constr = (N — M) — M]

a N Dx:T.M] = p—NTp, v M(v
[Prig} 2 pzp*() [M N] £ p= ©(Mp, Np)
- MNx:A.B] = pwN(Ap, v B(v
IM{O\N}] £ p s M(Np - p)
Judgements:

» Valid valuations: [[[= {p |V(x: T) € T.[p(x): Tp|}
» Typing: [T M: T]=Vpe[l].[Mp: Tp|
» Equality: [T M= N]£Vpe[[].Mp=Np

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

r))
r))

11 / 53

General setup: models and SN

Soundness

Deriving rules: (soundness: TFM: T = [+ M:T])

[FFn:T(n) [+ Prop : Kind]

FHM:Nx:A.B] [FFN:A A#Kind
FEMN : B{x\N}]

F(x:T)FM:U] T,U 4 Kind
MEA:T. M : Mx: T. U]

r=M:7] [TET=T] [M(x:T)FU:s] T #Kind
[FEM:T] MEMNx:T.U : s]

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 12 / 53

General setup: models and SN

Consistency

» Valid contexts: [[] # 0)
» [= []
» extensionality
» VP. ==P — P if we assume EM at the meta-level (IZF—ZF)

» [MP:Prop. Pl =1
From soundness, absurd cannot be derived in a valid context:

BM.T =M :NP:Prop. P

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

13 / 53

General setup: models and SN

Extendability

This model can be extended with any set of IZF
» Semantical judgement allows Kind variables

» Not allowed by derivations

Examples of valid contexts:
» (nat:Kind) (O:nat) (S:nat—nat) ...

» Classical real numbers (in ZF)

> ...

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

14 / 53

General setup: models and SN

Strong Normalization

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 15 / 53

General setup: models and SN

Strong normalization models

SN is a syntactic result (proved semantically)
Strong normalization as a realizability model construction.

Terms and types use the same syntax.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

16 / 53

General setup: models and SN

Consistency model vs SN model

Recursive realizability:
» Attach a satured set to every type (Sat): set of realizers

» Attach a pure \-term to every term (Tm): realizer

» Extra invariant: realizer belongs to the set of realizers of its type:

[M: T]=Val(M) € E(T) A Tm(M) € Sat(T)

All types must be inhabited to ensure SN (reduction under binders).

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

17 / 53

General setup: models and SN

Abstract SN model

Extra operations:
» Sat: M — SAT
> o: M

Extra properties:
> Sat(Mx:A. B) = Sat(A) = (\,cgi(a) Sat(B(x))
» Sat(Prop) = SN/
» e c EI(MP:Prop. P)

Does not support strong elimination, but works for CC and ECC.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 18 / 53

General setup: models and SN

Supporting strong elimination

Previous definition does not support strong elimination:
» Sat(Mn:N. P(n)) = {f | VneN.VueSat(N).f u € Sat(P(n))}
» So, f 0 should be in Sat(P(1)) !

» Need coherence between n and u; A-sets

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

19 / 53

General setup: models and SN

My take on A-sets

No need to define A-sets with specific properties:

» Replace Sat by a realizability relation I-7: EI(T) — SAT
Notation: t -7 v stands for v € EI(T) At €lb (v).

> tlrnag) f =Vuv.ulrav =t ulrgy ©(f,v) as usual.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

20 / 53

General setup: models and SN

Abstract SN model: new version

» Operations: El and I

» Impredicativity:
TeSN A NVuviulbav=UulF, QB,v)) = KT Ul N(A B)

Implementation:

> [¥] = (El = {(El = {0}; Sat =X _.S) | S € SAT}; Sat=_.SN)
> [Mx:A.B] = (El = N(EI(A), v — EI(B(v))); Sat =lFn(ag))

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 21 /53

General setup: models and SN

SN Model in details

L || | [

o — o(n)

_ =K

o~ K (Mx.Mo) To
o+— Mo No

o — K (Ax.Bo) Ao

Formally: Tm and Val defined simultaneously
(constr = (N - M) - M x (N — A) — A with substitutivity
requirement: M(o’o0) = Mo{c'}

(M does not introduce free variables)

Bruno Barras (INRIA Saclay)

model of CIC in Coq/IZF

Feb. 14 & 15, 2011

22 /53

General setup: models and SN

Judgements

1= {(p.0) [V(x: T) € T.o(x) b, p(x)}

[FHM:T]2Y(p,0) € [[]. Mo k7, Mp
M= M=N]=V(p,0)€[[].Mp=Np

Equality is based only on the denotation (not the realization). This makes
extensionality principles admissible. Could we also require Mo convertible
to No?

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 23 /53

General setup: models and SN

Strong Normalization Theorem

Simulation of reductions:
» (Ax: T.M) N)o =T (M{x\N})o

TEM:T]= M(_ —x)eSN

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

24 / 53

General setup: models and SN

Consistency out of the SN model

Assume [F M : TP :Prop. P].

> By soundness we have M(_ + Ax.x) IF(np.prop.py M(_ — 0).
» So M(_ +— Ax.x) is closed (by substitutivity),

» but M(_ — Ax.x) € (] S which contains no closed term.
SESAT

Conclusion: there is no proof of absurdity.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

25 / 53

General setup: models and SN

Extendability

Which extensions are supported by this model 7

» Adding an IZF set as a type without reduction rules:
new constants are interpreted (Tm) by neutral terms; new types assign
SN to every value (IF).

» Adding an IZF set as a type with reductions rules that can be
simulated by [S-reduction (sequential computations): interpret new
constants and types accordingly. Inductive types of CIC fall into this
category.

» If the reduction rules cannot be simulated by /3, add new constants to
the A-calculus with appropriate reductions. The notion of saturated
set has to be adapted.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 26 / 53

Predicative Universes

Predicative Universes

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 27 / 53

Predicative Universes

Extended Calculus of Constructions

New rules:
e Fe=T:Type; T (x:T)F U: Type;
I Type; : Type; N=Tix: T.U: Type;
FrN-EM: T THETL<T T+HT :s
r=M: T’
HKx:T)YFUSU
[+ Type; < Type; iy FEMx:T.UL<Nx:T.U

Luo showed strong normalization of ECC in ZF but this proof does not
extend to inductive types with strong elimination.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 28 / 53

Predicative Universes

Abstract model of ECC

Consistency:
> A sequence of sets ([;);cy
» Property: Vi.(J; € El(O;+1) A EE;) C EN(Oj41)
» Predicativity:
A€ EI(0;)) N (Yx € EI(A). B(x) € EI(0;)) = N(A,B) € EI(00))

SN:
» Vi,e; € MN(O;, X — X)

Beware: extensionality and strong normalization!
h:nat = (nat — nat) - (Ax.x x) (Ax.x x) : nat

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 29 / 53

Predicative Universes

Grothendieck Universes

Grothendieck universes: sets that are model of the theory

» Any set construction based on elements of the universe is still in the
universe

» Equivalent to assuming the existence of an inaccessible cardinal:
If 1 inaccessible cardinal, then V), is a Grothendieck universe;
conversely the ordinals of a Grothendieck universe form an inaccessible
cardinal

Obviously models predicative products:
»FA:s AN x:AFB:s = FIx:AB : s

No interference between universes and any set theoretical construction.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 30 /53

Predicative Universes

Abstract model of ECC implemented

Consistency:
» A sequence of Grothendieck universes (0J;);cy
» Property Vi.[; € Oj;1 trivial.

» Cumulativity follows from transitivity of Grothendieck universes.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

31 /53

Predicative Universes

Conclusion (for today)

» Method: keep it extendable (modularity universes/construction within
a universe)

» Tried to remain as extensional as possible

Tomorrow:
» inductive types (nat mostly),

> separation match/fix and termination by type-checking.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 32 /53

Inductive Types

Inductive Types

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 33 /53

Inductive Types

Overview

Model construction
» Induction: constructors and pattern-matching
» Type with stages
» Recursive functions

» Convergence

Judgements

Strong normalization models

» Recursor

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF

Feb. 14 & 15, 2011

34 / 53

Inductive Types

Recursive types

Given a monotonic type operator F, build 11.X. F(X) the least fixpoint of F
(when it exists).

Existence of a fixpoint:

» monotonicity not sufficient: P is monotone but has no fixpoint
» strict positivity condition sufficient

Typical examples:
> nat: Frae(X) =14+ X
> ord: Fog(X) =1+ (nat — X)
» W(A,B): Fw(X) =Xx:A. (B(x) = W(A,B))

(isomorphic to {0} x unit U {1} x X)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 35 /53

Inductive Types Inductive principles

Inductive principles: constructors

(For illustration purposes, we assume F = Fp,¢)

Constructors (X ~ F(X)):
0= (0,tt) € F(X)

v

» S=n—(1,n) € X = F(X)
» Discrimination: 0 # S(n)
> Injection: S(m)=S(n)=m=n
» Intuitionist’s corner: stability () F(X;) = F((X;)
icl i€l
Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

36 / 53

Inductive Types Inductive principles

Inductive principles: pattern-matching

Pattern-matching (VP.(X — P) ~ (F(X) — P)):
»ne F(X)=n=0 Vv Jac X.n=5(a)

L

» Natcase(n, 7, g)
{ye{f} [n=0}yU{y € {g(snd(n))} [3k.n= 5(k)}
» Reduction: Natcase(0,f,g) =f Natcase(S(k),7,g) = g(k)
» Typing: Natcase(n,f,g) € P(n)
whenever n € F(X), f € P(0) and g € N(X,v — P(S(v)))

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 37 /53

Inductive Types Type with stages

Type with stages

Let /* = F*(()) (for any ordinal «).
Convergence of /” to the least fixpoint of F investigated later on.

Properties of /¢:
> monotonicity: o < 8= 1% C I? (in particular I* C l°‘+)
> 19" = F(I) (equi inductive type)

N a
> [is stable: [/¢ = [o€/
acJ

So {a | a € I} has a least element (when not empty) for all a.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

38 / 53

Inductive Types Type with stages

Constructors and patten-matching again

Typing:
> Vo 0 € 1"
> Va. Sel*— 1o
» Natcase(n,f,g) € P(n)
ifnel*", feP(0)and g e N(I*, k— P(S(k)))

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

39 / 53

Inductive Types Recursive functions

Recursive functions: requirements

The goal is to build recursively a function of domain /% (and codomain
U,), given a process G that transforms a function of domain /% to a
function of domain /%" (with 8 <).

Summary:
> Given Gg € (17 — Up) — (17" — Us)
» We shall build Fix(G,a) € I* = U,
» Satisfying the fixpoint equation Fix(G, o) = G, (Fix(G, «))

Issues:

» G should not use its ordinal argument computationally
(otherwise Gg(f) and f might not agree on domain /7)

» The fixpoint equation is ill-typed!

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

40 / 53

Inductive Types Recursive functions

Recursive functions: the construction

Given an ordinal o, (Ug),_, and (Gg),_,, st
> G typing: Gg € (N(17, Ug) — (N7, Ug+))
» U monotone: Vy < 8 < a.Vx € I7. U,(x) C Us(x)

» G monotone and “stage irrelevant”: (f =4 g = Vx € A.f(x) = g(x))
Vv < B < a. Y € N(17, Uy). Vg € N(I%, Us).
f = g§= Gw(f) =)+ Gg(g)

Then we define Fix by transfinite induction:
Fixs(G) = U G, (Fixy(G
¥<B

Properties (for 8 < «):
» Typing: Fixs(G) € N(1°, Up)
» Fixpoint equation: Fixz(G) = A(1?, Gs(Fixs(G)))

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 41 / 53

Inductive Types Recursive functions

Recursive functions: comments

» Requirement on U is stronger than needed:
Abel defined a better continuity criterion
» Set-theoretical artifacts:
» n-expansion in the fixpoint equation
» G needs the ordinal argument to know the exact domain of its

argument (the recursive function at previous stage), but its result do
not depend on it (“stage irrelevance”)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 42 / 53

Inductive Types Convergence

Convergence

Goal find an ordinal X such that /* = F(/*) (closure ordinal of /).

Case of first-order datatypes (e.g. nat):
> Fis (w-)continuous: F(U;c, Xi) = Ui, F(Xi)

» closure ordinal A = w

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

43 / 53

Inductive Types Convergence

Convergence: general case

General case (here: ordinals):

» To ensure convergence of Iy, itis sufficient to find \ s.t. the
supremum of any sequence in nat — X is an ordinal < \.
E.g. Card(nat)+1 or Card(WF(nat)).

» Can we avoid using choice and exclude-middle ? (I bet yes)
Construction of bigger cardinals using the Burali-Forti paradox.

» Generalizes to W-types because we did not rely on specific properties
of nat (besides its cardinality < \).

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 44 / 53

Inductive Types Judgements

Judgements for stage irrelevance

Contexts: T =[] | (x:T) | (a<O)|T;(f:A~ B)
» (x:T) regular variable
» (o < O) ordinal variable bounded by ordinal expression O
» (f:A ~> B) recursive function variable (domain depends on ordinals)

Valuations: p; < pa € [I7 iff
> V(x:T)eTl. pi(x) = p2(x) € Tps
» V(< 0) eTl.pi(a) < pa(a) < Opo
» Y(f:A~B)er.
p1(f) € Ap1 — Bp1 A pa(f) € Apa = Bp2 A p1(f) =ap, pa(f)

Judgements:
» Monotonicity: [+ M T] Vo1 p2.p1 < p2 €[] = Mp1 C Mps
> Invariance: [T M =] = Vpl p2.p1 < p2 € [[= Mp1 = Mps
» Domain: [= M (dom A)] = Vp1 p2.p1 < p2 € [[] = Mp1 =a,, Mp2

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 45 / 53

Inductive Types Judgements

Rule samples

(Not: TFM:(x:T)~»UETFM:Nx:T.U A T+ M (dom T))

(B<at)i(x:IP)FUT (B<a®);(F:(x:1P)~Ug) F M: (x:18") ~ Ugs

F Fix(Bf.M, «) : (x:1%) ~ Ugx

FTH (x:T)F=M:U FM:(x:T)~U F-N:T

FAX:T.M:(x:T)~ U F- M N: U{x\N}
(B<a)eTl Ot o1 FT= (x:T)FU?
r=as1 Fot? 191 FNx:T.U1

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 46 / 53

Inductive Types Judgements

Expressivity: examples

» Recursor:
[F Nrec : TP :nat — Prop.P(0) — (Mk.P(k) — P(S(k))) —
Mn.P(n)]

» Annotated subtraction: [< co - minus, : nat® — nat — nat?]

» Cannot deal with min : nat® — nat® — nat®

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 47 / 53

Inductive Types Judgements

Strong Normalization

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 48 / 53

Inductive Types Strong Normalization

Strong Normalization of CC+NAT (recursor)

Fam = Nat — SAT (family of saturated sets = realizability relation)

A

FalA) 2 ks () P(O) = ((1Aln) P(0) = P(S(0)) - P(R)
J 2 {P e Fam | Yk, Fnat(P, k) C P(k)}

IFNat = 0 N P(n)

PeJ
nat(0) 2 (p > (El = Nat®; Sat =lrnat), 0 — K)
Ze = (pr 0, o = Axf. x)
Su(n) 2 (p+— S(np), o Mxf. fno(noxf))
Nrec(n, f,g) = (p — Natrec(np, fp, gp), o no fo go)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 49 / 53

Future work

Future Work

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 50 / 53

Future work

Strong normalization of the fixpoint operator

Issues:

» Simulate Fix's weird reduction strategy in the pure A-calculus (or
extend the pure A-calculus with G s.t. G (Ax.t) — Ax.x and
G t' - if t/ not an abstraction)

» Reductibility issue: realizers of non-constructor guarded inductive
expressions (e.g. /* with « ordinal variable) have to be neutral:
fix Fn := match n with S (S k) =>F (Sk) | ... end
should be rejected (because F (S (S 0)) is not SN). This will be the
case if S k is not a realizer of Nat® for any ordinal variable a.

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011 51 / 53

Future work

Dealing with empty inductive definitions

Strong normalization requires all types are inhabited

» Distinguish total values and partial values
Qu: does extensionality forces us to have strict evaluation?

» Either one value belongs to every type
» Or each type carries its default value

Solution 2: match depends on the return type (B):
(match o (NAT) with ... end: B) = ¢(B)

Solution 1: () in all types
» already in all function types
» inductive types: add an extra constructor () (new values: S(0),
S(S(0)), ...)
match () with ... end =)

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

52 / 53

Future work

Coinductive types

Various approaches. Among them:

» Process with hidden state vX.F(X) = ZY.Y x (Y — F(Y))

» Impredicative definition
» Cannot be extensional

» Set of compatible well-founded approximations with a closure
property:
» Add an extra constructor |
» Extentional

Stream: set of finite prefixes (lists)

But syntax is the difficult part...

Bruno Barras (INRIA Saclay) model of CIC in Coq/IZF Feb. 14 & 15, 2011

53 / 53

	General setup: models and SN
	Predicative Universes
	Inductive Types
	Inductive principles
	Type with stages
	Recursive functions
	Convergence
	Judgements
	Strong Normalization

	Future work

