
Master Parisien de Recherche en Informatique 2010�2011

Exam course 2-7-2 Proof assistants

Tuesday March 1 2011

The subject is ?? pages long. The exam lasts 2 hours. Hand-written course notes
and other course material distributed this year are the only documents that you can
use. The exercises can be solved independently.

Exercises 1 and 3 require to write Coq terms and proofs; we allow �exibility regard-
ing the syntax used as long as there is no ambiguity on its meaning.

1 Programming with Coq: a binary scheme (9 pts)

The type positive in Coq is a representation of non-null natural numbers in a binary format.
More precisely, there is a constant constructor xH which represents the natural number 1 and
two constructors xI and xO which take a positive and return a positive. If p is a positive which
represents the natural number n then xI p represents 2n+ 1 and xOp represents 2n.

1. Write in Coq the inductive de�nition of positive and give the type of the corresponding
induction principle on the sort Type.

2. Given a set A and a binary operation h on A, one de�nes for each x in A and 0 < n, the
iterated composition hnx of h by recursion on n ∈ nat:

h1 x = x hn+1 x = hx (hn x)

De�ne in Coq a term it that, given h, x, n, computes hn x.

3. From now on, one assumes that h is associative. Prove in Coq that

∀xn, 0 < n→ h2n x = hn (hxx)

4. The type positive gives a fast algorithm to compute hn x using the properties :

h2n x = hn (hxx) h2n+1 x = hx (hn (hxx))

To obtain a terminal recursive version, one introduces an extra variable s as accumulator.
The fast iteration Fit uses the algorithm:

Fith s x 1 = h s x

Fith s x (2n) = Fith s (hxx)n Fith s x (2n+ 1) = Fith (h s x) (hxx)n

One assumes h has a left neutral element ε (i.e. h ε x = x) and one starts with s = ε.

(a) De�ne the function Fit in Coq using the type positive to represent the number n.

1

(b) Using the function nat_of_P which transforms an object in positive into the corre-
sponding object in nat, give a speci�cation for Fit which links (Fith s x p) with s and
(ithx (nat_of_P p))

(c) Give the main element of the proof that your implementation of Fit satis�es this
speci�cation.

(d) Deduce a function Pit which, given h, x, and p : positive, computes (ithx (nat_of_P p)).

(e) Assuming addition on positive is given by a function Pplus, how to instantiate this
scheme in order to compute xn when both x and n are in the type positive?

2 Imperative programming and invariants (10 pts)

One introduces in Why a logical environment for modeling �nite sets with predicates to test
membership and equality; a constant to represent the empty set, and logical operations to add
(resp. remove) an element x to a set s.

type set
logic emptyset : set
logic memset : int , set → prop (∗ x in s ∗)
logic eqset : set , set → prop (∗ equal i ty between sets ∗)
logic addset : int , set → set (∗ s + {x} ∗)
logic remset : int , set → set (∗ s − {x} ∗)

One assumes that the usual properties relating these operations and predicates are given as
axioms. On top of this theory, one introduces a reference of type set and operations to clear
this set, add a (positive) element, and pick an element in a (non-empty) set.

One introduces the following Why environment (named Γ1):

parameter s : set ref

parameter c lear : unit →
{ } unit writes s { eqset (s , emptyset) }

parameter add : x : int →
{ x ≥ 0 } unit writes s { eqset (s , addset (x , s@)) }

parameter pick : unit →
{ not eqset (s , emptyset) }
int writes s
{ memset(result , s@) and eqset (s , remset (result , s@)) }

Reminder: in the post-condition of a function, s@ designates the old value contained in
reference s at the entry point of the function.

1. Let e be the Why expression:

c lear () ; add (2) ; add(3) ; pick ()

Justify that the post-condition { result = 2 or result = 3} is satis�ed after this expression
is executed.

2. Assume there is another function add' with a di�erent speci�cation

parameter add' : x : int → unit writes s { eqset (s , addset (x , s@)) }

Explain why using add' instead of add does not change the behavior of the expression e.

2

3. More generally, let e be an expression that satis�es a post-condition R in an environment
with a function f and which possibly writes variable in a set V :

parameter f : x : tau →
{ P(vars) } sigma writes vars { Q(x , result , vars@ , vars) }

Assume there is another function

parameter f ' : x : tau →
{ P'(var s ') } sigma writes vars ' { Q'(x , result , vars'@ , vars ') }

Explain the conditions on the properties P , Q, P ′, Q′, and the sets of references vars and
vars' such that the parameter f can be replaced by f' without changing the behavior of e.

4. One introduces the property

predicate Inv (s : set) = fo ra l l n : int . memset(n , s) → n ≥ 0

Show that the functions clear, add, and pick, also satisfy the speci�cation where Inv (s) is
added both in pre and post-conditions (only in post for the clear function). Namely the
same implementations could be given the speci�cations:

parameter c lear : unit →
{ } unit writes s { eqset (s , emptyset) and Inv (s) }

parameter add : x : int →
{ x ≥ 0 and Inv (s) } unit writes s { eqset (s , addset (x , s@)) and Inv (s) }

parameter pick : unit →
{ not eqset (s , emptyset) and Inv (s) }
int writes s
{ memset(result , s@) and eqset (s , remset (result , s@)) and Inv (s) }

We call Γ2 this new environment.

5. Show that if e is an expression well-formed in the initial environment Γ1 that establishes
the post-condition R, and if e does not contain an assignment of the form s:=b then it can
be run in the environment Γ2 of question ?? and assuming the pre-condition Inv (s), the
expression e will establish the post-condition (R and Inv (s)) . The expression e is supposed
to be built using application of functions, conditionals, sequences, and assignments. The
only functions doing e�ects on the parameter s are clear, add, and pick.

6. Give an example of expression e that contains an assignment on s and such that the
program e is correct in the environment Γ1 but fails in the environment Γ2.

7. In order to allow arbitrary updates, one introduces a boolean variable invb which, when
true, ensures the invariant is satis�ed. So we have the environment:

parameter invb : bool ref

parameter c lear : unit →
{ } unit writes s { eqset (s , emptyset) and Inv (s) }

parameter add : x : int →
{ x ≥ 0 and Inv (s) and invb = true }
unit writes s
{ eqset (s , addset (x , s@)) and Inv (s) }

parameter pick : unit →
{ not eqset (s , emptyset) and Inv (s) and invb = true }

3

int writes s
{ memset(result , s@) and eqset (s , remset (result , s@)) and Inv (s) }

parameter update : u : set →
{ invb = fa l s e } unit writes s { eqset (s , u) }

We also add two functions which change the value of invb. The parameter invb can be
set to true only when the invariant is proven.

parameter pack : unit → { Inv (s) } unit writes invb { invb = true }
parameter unpack : unit → { } unit writes invb { invb = fa l s e }

Show that any expression e well-formed in that environment (using update, pack, unpack
as well as add, clear, pick) and which does not assign directly s and invb preserves the
property invb = true → Inv (s).

3 Impredicative and inductive encodings of sum (4 pts)

One considers an environment

Variable A : Set .
Variable P : A→ Set .

In this environment, an impredicative encoding of an indexed sum is given by:

Definition sum := fo ra l l C: Set , (fo ra l l x :A, P x → C) → C.

1. Write a Coq term sumi of type forall x :A, P x → sum and another of type sum → A.

2. Write the indexed sum as an inductive de�nition named sumind.

3. Write a Coq term ind of type sumind →A and a term of type:
forall (p : sumind), P (ind p).

4. Using ind, propose a new term pi of type sum →A such that forall (p : sum), P (pi p) is
also provable.

Reminder

Weakest precondiction computation

The weakest precondition WP(i, Q) can be computed by induction on i:

WP(x := e,Q) = Q[x← e]

WP(i1; i2, Q) = WP(i1,WP(i2, Q))

WP(if e then i1 else i2, Q) = (e = true ⇒WP(i1, Q)) ∧ (e = false ⇒WP(i2, Q))

WP(f e,Q) = pre(f)[x← e] ∧ (∀resultω, (post(f)[x← e]⇒ Q))[ω@← ω]

4

