Exam course 2-7-2 Proof assistants

Tuesday March 12011

The subject is ?? pages long. The exam lasts 2 hours. Hand-written course notes and other course material distributed this year are the only documents that you can use. The exercises can be solved independently.
Exercises 1 and 3 require to write Coq terms and proofs; we allow flexibility regarding the syntax used as long as there is no ambiguity on its meaning.

1 Programming with Coq: a binary scheme (9 pts)

The type positive in COQ is a representation of non-null natural numbers in a binary format. More precisely, there is a constant constructor xH which represents the natural number 1 and two constructors xl and xO which take a positive and return a positive. If p is a positive which represents the natural number n then xl p represents $2 n+1$ and xO p represents $2 n$.

1. Write in CoQ the inductive definition of positive and give the type of the corresponding induction principle on the sort Type.
2. Given a set A and a binary operation h on A, one defines for each x in A and $0<n$, the iterated composition $h^{n} x$ of h by recursion on $n \in$ nat:

$$
h^{1} x=x \quad h^{n+1} x=h x\left(h^{n} x\right)
$$

Define in CoQ a term it that, given h, x, n, computes $h^{n} x$.
3. From now on, one assumes that h is associative. Prove in CoQ that

$$
\forall x n, 0<n \rightarrow h^{2 n} x=h^{n}(h x x)
$$

4. The type positive gives a fast algorithm to compute $h^{n} x$ using the properties :

$$
h^{2 n} x=h^{n}(h x x) \quad h^{2 n+1} x=h x\left(h^{n}(h x x)\right)
$$

To obtain a terminal recursive version, one introduces an extra variable s as accumulator. The fast iteration Fit uses the algorithm:

$$
\text { Fit } h s x 1=h s x
$$

Fithsx $2 n)=$ Fit $h s(h x x) n \quad$ Fithsx $(2 n+1)=$ Fit $h(h s x)(h x x) n$
One assumes h has a left neutral element ϵ (i.e. $h \in x=x$) and one starts with $s=\epsilon$.
(a) Define the function Fit in CoQ using the type positive to represent the number n.
(b) Using the function nat_of_ P which transforms an object in positive into the corresponding object in nat, give a specification for Fit which links (Fit hsxp) with s and (it $h x$ (nat_of_P p))
(c) Give the main element of the proof that your implementation of Fit satisfies this specification.
(d) Deduce a function Pit which, given h, x, and p : positive, computes (it $h x$ (nat_of_P p)).
(e) Assuming addition on positive is given by a function Pplus, how to instantiate this scheme in order to compute x^{n} when both x and n are in the type positive?

2 Imperative programming and invariants (10 pts)

One introduces in Why a logical environment for modeling finite sets with predicates to test membership and equality; a constant to represent the empty set, and logical operations to add (resp. remove) an element x to a set s.

```
type set
logic emptyset : set
logic memset : int, set }->\mathrm{ prop (* x in s *)
logic eqset : set, set }->\mathrm{ prop (* equality between sets *)
logic addset : int, set }->\mathrm{ set (* s+{x} *)
logic remset : int, set }->\mathrm{ set (*s-{x}*)
```

One assumes that the usual properties relating these operations and predicates are given as axioms. On top of this theory, one introduces a reference of type set and operations to clear this set, add a (positive) element, and pick an element in a (non-empty) set.

One introduces the following WHY environment (named Γ_{1}):

```
parameter s: set ref
parameter clear : unit \(\rightarrow\)
    \{ \} unit writes \(s\) \{ eqset (s,emptyset) \}
parameter add : \(\mathrm{x}:\) int \(\rightarrow\)
    \(\{x \geq 0\}\) unit writes \(s\{\operatorname{eqset}(s, a d d s e t(x, s @))\}\)
parameter pick: unit \(\rightarrow\)
    \(\{\) not eqset (s,emptyset) \}
    int writes \(s\)
    \{ memset(result,s@) and eqset(s,remset(result, s@)) \}
```

Reminder: in the post-condition of a function, $s @$ designates the old value contained in reference s at the entry point of the function.

1. Let e be the Why expression:
clear(); add(2); add(3); pick()
Justify that the post-condition $\{$ result $=2$ or result $=3\}$ is satisfied after this expression is executed.
2. Assume there is another function add' with a different specification parameter add': $\mathrm{x}: \mathbf{i n t} \rightarrow$ unit writes s \{ eqset (s,addset (x,s@)) \}

Explain why using add' instead of add does not change the behavior of the expression e.
3. More generally, let e be an expression that satisfies a post-condition R in an environment with a function f and which possibly writes variable in a set V :

```
parameter f: x : tau }
    {P(vars) } sigma writes vars { Q(x,result,vars@,vars) }
```

Assume there is another function

```
parameter f': x : tau }
    { P'(vars') } sigma writes vars' { Q'(x,result,vars'@,vars') }
```

Explain the conditions on the properties $P, Q, P^{\prime}, Q^{\prime}$, and the sets of references vars and vars' such that the parameter f can be replaced by f^{\prime} without changing the behavior of e.
4. One introduces the property
predicate $\operatorname{lnv}(\mathrm{s}: \mathrm{set})=\mathbf{f o r a l l} \mathrm{n}:$ int. $\operatorname{memset}(\mathrm{n}, \mathrm{s}) \rightarrow \mathbf{n} \geq 0$
Show that the functions clear, add, and pick, also satisfy the specification where $\operatorname{lnv}(s)$ is added both in pre and post-conditions (only in post for the clear function). Namely the same implementations could be given the specifications:

```
parameter clear: unit }
    { } unit writes s { eqset(s,emptyset) and Inv(s) }
parameter add : x : int }
    {x\geq0 and Inv(s) } unit writes s { eqset(s,addset(x,s@)) and Inv(s) }
parameter pick: unit }
    { not eqset(s,emptyset) and Inv(s) }
    int writes s
    { memset(result,s@) and eqset(s,remset(result,s@)) and Inv(s) }
```

We call Γ_{2} this new environment.
5. Show that if e is an expression well-formed in the initial environment Γ_{1} that establishes the post-condition R, and if e does not contain an assignment of the form $\mathrm{s}:=\mathrm{b}$ then it can be run in the environment Γ_{2} of question ?? and assuming the pre-condition $\operatorname{lnv}(s)$, the expression e will establish the post-condition (R and $\operatorname{lnv}(\mathrm{s})$). The expression e is supposed to be built using application of functions, conditionals, sequences, and assignments. The only functions doing effects on the parameter s are clear, add, and pick.
6. Give an example of expression e that contains an assignment on s and such that the program e is correct in the environment Γ_{1} but fails in the environment Γ_{2}.
7. In order to allow arbitrary updates, one introduces a boolean variable invb which, when true, ensures the invariant is satisfied. So we have the environment:

```
parameter invb: bool ref
parameter clear: unit }
    { } unit writes s { eqset(s,emptyset) and Inv(s) }
parameter add: x : int }
    {x\geq0 and Inv(s) and invb = true }
    unit writes s
    { eqset(s,addset(x,s@)) and Inv(s) }
parameter pick: unit }
    { not eqset(s,emptyset) and Inv(s) and invb = true }
```

```
    int writes s
    { memset(result,s@) and eqset(s,remset(result,s@)) and Inv(s) }
parameter update: u : set }
    { invb = false } unit writes s { eqset (s,u) }
```

We also add two functions which change the value of invb. The parameter invb can be set to true only when the invariant is proven.

```
parameter pack : unit \(\rightarrow\{\operatorname{Inv}(\mathrm{s})\}\) unit writes invb \(\{\) invb \(=\) true \(\}\)
parameter unpack : unit \(\rightarrow\}\) unit writes invb \(\{\) invb \(=\) false \(\}\)
```

Show that any expression e well-formed in that environment (using update, pack, unpack as well as add, clear, pick) and which does not assign directly s and invb preserves the property invb $=$ true $\rightarrow \operatorname{lnv}(\mathrm{s})$.

3 Impredicative and inductive encodings of sum (4 pts)

One considers an environment
Variable A : Set
Variable P : A \rightarrow Set.
In this environment, an impredicative encoding of an indexed sum is given by:
Definition sum $:=$ forall C : Set, (forall $x: A, P x \rightarrow C) \rightarrow C$.

1. Write a CoQ term sumi of type forall $\mathrm{x}: \mathrm{A}, \mathrm{P} \times \rightarrow$ sum and another of type sum $\rightarrow \mathrm{A}$.
2. Write the indexed sum as an inductive definition named sumind.
3. Write a CoQ term ind of type sumind $\rightarrow \mathrm{A}$ and a term of type: forall $(p$: sumind $), P($ ind $p)$.
4. Using ind, propose a new term pi of type sum $\rightarrow A$ such that forall ($p:$ sum $), P(p i p)$ is also provable.

Reminder

Weakest precondiction computation

The weakest precondition $W P(i, Q)$ can be computed by induction on i :

```
        \(W P(x:=e, Q)=Q[x \leftarrow e]\)
    \(W P\left(i_{1} ; i_{2}, Q\right)=W P\left(i_{1}, W P\left(i_{2}, Q\right)\right)\)
\(W P\left(\right.\) if \(e\) then \(i_{1}\) else \(\left.i_{2}, Q\right)=\left(e=\right.\) true \(\left.\Rightarrow W P\left(i_{1}, Q\right)\right) \wedge\left(e=\right.\) false \(\left.\Rightarrow W P\left(i_{2}, Q\right)\right)\)
    \(W P(f e, Q)=\operatorname{pre}(f)[x \leftarrow e] \wedge(\forall \operatorname{result} \omega,(\operatorname{post}(f)[x \leftarrow e] \Rightarrow Q))[\omega @ \leftarrow \omega]\)
```

