
MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Jan 12, 2017

1 / 34

Recap: Inductive Types and Elimination Rules

Simple inductive types (datatypes):

Inductive nat : Type := O : nat | S : nat->nat.
Inductive bool := true | false.
Inductive list (A:Type) : Type :=
nil | cons (hd:A) (tl:list A).

Inductive tree (A:Type) :=
leaf | node (_:A) (_:nat->tree A).

Smallest type closed by introduction rules (constructors)

Parameters: cons : forall A:Type, A -> list A -> list A

Coq prelude: cons 0 nil : list nat

2 / 34

Recap: Elimination rules

Generated elimination scheme (not primitive):

nat_rect
: forall P:nat->Type,

P O -> (forall n, P n -> P (S n)) ->
forall n, P n.

:= fun P h0 hS => fix F n :=
match n return P n with
| O => h0
| S k => hS k (F k)
end

Eliminator of recursive type =
dependent pattern-matching + guarded fixpoint

3 / 34

Logical connectives

Logical connecctives and their non-dependent elimination
schemes:

Inductive True : Prop := I.
True_rect : forall P:Type, P -> True -> P.

Inductive False : Prop := .
False_rect : forall P:Type, False -> P

Inductive and (A B:Prop) : Prop :=
conj (_:A) (_:B).
and_rect : forall (A B:Prop) (P:Type), (A->B->P)-> A/\B

-> P

Inductive or (A B:Prop) : Prop :=
or_introl (_:A) | or_intror (_:B).
or_ind : forall (A B P:Prop), (A->P) -> (B->P) -> P.

4 / 34

Plan

Inductive families
Predicate defined by inference rules
Definition of equality
Vectors

Non-uniform parameters

Theory of Inductive types
Strict Positivity
Dependent pattern-matching
Guarded fixpoint
The guardedness check

5 / 34

Limitations of parameters

Defining a predicate:

Inductive even (n:nat) : Prop :=
even_i (half:nat) (_:half+half=n).

Inductive types with parameters are some kind of “template”

Inductive listnat :=
nilnat | consnat (_:nat) (_:listnat).

Inductive listbool :=
nilbool | consbool (_:bool) (_:listbool).

No dependency between both types.

But in the definition of even:nat->Prop as an inductive type/set

E0:even 0

e:even n

ESS(e):even (S (S n))

even (S (S O)) depends on even O.

6 / 34

Inductive families

Family = indexed type
P : nat -> Type represents the type family (P(n))n∈N

Inductive family:
I Constructors do not inhabit uniformly the members of the

family
I Recursive arguments can change the value of the index

Even numbers:

Inductive even : nat -> Prop :=
E0 : even O

| ESS (n:nat) (e:even n) : even (S (S n)).

Syntax very close to inference rules!

7 / 34

Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

even_ind : forall (P:nat->Prop),
P O -> (forall n, P n -> P (S (S n))) ->
forall n, even n -> P n.

Seems the analogous of nat’s dependent scheme

Even’s dependent scheme (refers to constructors E0 and ESS):

forall (P : forall n, even n -> Prop),
P 0 E0 ->
(forall n (e:even n), P n e -> P (S (S n)) (ESS n e)) ->
forall n (e:even n), P n e

Definable in Coq, but not automatically generated (why? wait
and see...)

8 / 34

Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

even_ind : forall (P:nat->Prop),
P O -> (forall n, P n -> P (S (S n))) ->
forall n, even n -> P n.

Seems the analogous of nat’s dependent scheme

Even’s dependent scheme (refers to constructors E0 and ESS):

forall (P : forall n, even n -> Prop),
P 0 E0 ->
(forall n (e:even n), P n e -> P (S (S n)) (ESS n e)) ->
forall n (e:even n), P n e

Definable in Coq, but not automatically generated (why? wait
and see...)

8 / 34

Defining the dependent elimination scheme

Even more complex return clause: in

Definition even_ind_dep (P:forall n , even n -> Prop)
(h0:P 0 E0)
(hSS:forall n e, P n e -> P (S (S n)) (ESS n e))
: forall n, even n -> P n :=
fix F n e :=
match e as e’ in even k return P k e’ with
| E0 => h0 : P 0 E0
| ESS k e’ =>

hSS k e’ (F k e’) : P (S (S k)) (ESS k e’)
end

Notation as e’ in even k return P k e’ is just a way to write
the term fun k e’ => P k e’.
Becomes natural with time...

9 / 34

Equality: the paradigmatic indexed family

Propositional equality is defined as:

Inductive eq (A : Type) (a : A) : A -> Prop :=
eq_refl : eq A a a.

Notation "x = y" := (eq x y).

Its dependent elimination principle is of the form:

Γ ` e : eq A t u Γ, y :A,e′ :eq A t y ` C(y ,e′) : s
Γ ` t : C(t ,eq_reflA,t)

Γ `

 match e as e′ in eq _ y return C(y ,e′) with
eq_refl⇒ t

end

: C(u,e)

10 / 34

Tactics related to equality

Tactics:
I f_equal (congruence) x=y

f (x)=f (y)

I discriminate (constructor discrimination)
C(t1,...,tn)=D(u1,...,uk)

A

I injection (injectivity of constructors) C(t1,..,tn)=C(u1,...,un)
t1=u1 ... tn=un

I inversion (necessary conditions) even (S(Sn))
even n

I rewrite (substitution) x=y P(y)
P(x)

I symmetry, transitivity

11 / 34

Inductive types with parameters and index
Example of vectors with size

Inductive vect (A:Type) : nat -> Type :=
| niln : vect A O
| consn :

A -> forall n:nat, vect A n -> vect A (S n).

which defines

I a family of types-predicates:
Γ ` vect : Type→ nat → Type

I a set of introduction rules for the types in this family

Γ ` A : Type
Γ ` nilnA : vect A O

Γ ` A : Type Γ ` a : A Γ ` n : nat Γ ` l : vect A n
Γ ` consnA a n l : list A (S n)

12 / 34

Inductive types with parameters and index

vectors : elimination

I an elimination rule (pattern-matching operator with a result
depending on the object which is eliminated)

Γ ` v : vect A n Γ,m :nat , x :vect A m ` C(m, x) : s
Γ ` t1 : C(O,nilnA)

Γ,a :A,n :nat , l :vect A n ` t2 : C(S n,consnA a n l)

Γ `

 match v as x in vect _ p return C(p, x) with
niln⇒ t1 | consn a n l ⇒ t2

end

: C(n, v)

13 / 34

Inductive types with parameters and index

I reduction rules preserve typing (ι-reduction) match nilnA as x in vect _ p return C(x ,p) with
niln⇒ t1 |consna n l ⇒ t2

end

→ι t1 match consnA a′ n′ l ′ as x in vect _ p return C(x ,p) with

niln⇒ t1 |consna n l ⇒ t2
end

→ι t2[a′,n′, l ′/a,n, l]

14 / 34

Non-uniform parameters

Non-uniform parameter:
I Like parameters: uniform conclusion
I Like indices: value can change in recursive subterms

Inductive tuple (A:Type) :=
| H0 (_:A)
| HS (_:tuple (A*A)).

Definition t4 : tuple nat :=
HS nat (HS (nat*nat) (H0 _ ((1,2),(3,4))).

15 / 34

Elimination rules
Pattern-matching:

Γ ` e : tuple A Γ,h : tuple A ` P(h) : s
Γ, x :A ` t0 : P(H0 A x) Γ,h : tuple(A ∗ A) ` tS : P(HS A h)

Γ `

match e as h return P(h) with

H0 x ⇒ t0
| HS h⇒ tS

end

: P(e)

Elimination:
tuple_rect :
forall (P:forall A, tuple A -> Type),
(forall A x, P A (H0 A x)) ->
(forall A h, P (A*A) h -> P A (HS A h)) ->
forall A (h:tuple A), P A h.

Non-uniform parameters:
I In pattern-matching, behaves like a parameter
I In recursive principles, behaves like an index 16 / 34

Encoding inductive families

Non-uniform parameters can encode inductive families:

Inductive even (n:nat) : Prop :=
E0’ (_:n=0)

| ESS’ (k:nat) (e:even k) (_:n=S (S k)).
Definition E0 : even 0 := E0’ 0 eq_refl.
Definition ESS n e : even (S (S n)) :=
ESS’ (S (S n)) n e eq_refl.

17 / 34

Well-formed inductive definitions

18 / 34

Issues
Constructors of the inductive definition I have type:

Γ : ∀(z1 : C1) . . . (zk : Ck).I a1 . . . an

where Ci can feature intances of I.
Question: can these instances be arbitrary?

Example:

Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda

We define:

Definition app (x y:lambda)
:= match x with (Lam f) => f y end.

Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.

and the evaluation of Ω loops.

19 / 34

Issues
Constructors of the inductive definition I have type:

Γ : ∀(z1 : C1) . . . (zk : Ck).I a1 . . . an

where Ci can feature intances of I.
Question: can these instances be arbitrary?
Example:

Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda

We define:

Definition app (x y:lambda)
:= match x with (Lam f) => f y end.

Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.

and the evaluation of Ω loops.

19 / 34

Issues
Constructors of the inductive definition I have type:

Γ : ∀(z1 : C1) . . . (zk : Ck).I a1 . . . an

where Ci can feature intances of I.
Question: can these instances be arbitrary?
Example:

Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda

We define:

Definition app (x y:lambda)
:= match x with (Lam f) => f y end.

Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.

and the evaluation of Ω loops.

19 / 34

Necessity of restrictions

Things can even be worse:

Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda

Now define:

Fixpoint lambda_to_nat (t : lambda) : nat :=
match t with Lam f -> S (lambda_to_nat (f t)) end.

What happens with (lambda_to_nat (Lam (fun x => x)))?

20 / 34

Necessity of restrictions

Things can even be worse:

Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda

Now define:

Fixpoint lambda_to_nat (t : lambda) : nat :=
match t with Lam f -> S (lambda_to_nat (f t)) end.

What happens with (lambda_to_nat (Lam (fun x => x)))?

20 / 34

The way out: (strict) positivity condition

I An inductive type is defined as the smallest type generated
by a set (Γi)1≤i≤n of constructors.

I We can see it as µX ,⊕1≤i≤nΓi(X) (with µ a fixpoint
operator on types).

I The existence of this smallest type can be proved at the
impredicative level when the operator λX ,⊕1≤i≤nΓi(X) is
monotonic.

I In order both to ensure monotonicity and to avoid paradox,
Coq enforces a strict positivity condition: X should never
appear on the left of an arrow in the type of its constructors.

21 / 34

The way out: (strict) positivity condition

More precisely, if the type (a.k.a arity) of a constructor is:
c : C1 -> ... -> Ck -> I a1 .. ak

it is well-formed when:
I I a1 .. ak is well-formed w.r.t. the uniformity of

parametric arguments and typing constraints;
I I does not appear in any of the a1, ... ak;
I Each Ci should either not refer to I or be of the form:

C’1 -> ... C’m -> I b1 ... bk

well typed and with no other occurrence of I.

And the rule generalizes as such to dependent products
(instead of arrow).

22 / 34

More well-formation conditions...

There are more constraints, that will be explained later:
1. predicativity/impredicativity

An inductive is predicative when all constructor argument
types live in a sort not bigger than the declared sort for the
inductive

2. restriction on eliminations

23 / 34

Dependent pattern-matching

Inductive I (p:Par) : A -> s :=
... | Γ (x1:C1)...(xn:Cn) : I p u
| ...

match t as h in I _ a return P(a,h) with
...
| Γ x1 ... xn => e
...
end

Typing conditions:
I ` t : I q a
I a : A[q/p],h : I q a ` P : s′

I x1 : C1[q/p], ..., xn : Cn[q/p] ` e : P(u[q/p], Γ q x1...xn)

Then the match has type P(a, t)

24 / 34

Tactics for case analysis

I case t is the most primitive. It:
I generates a (proof) term of the form match t with ...;
I guesses the return type from the goal (under the line);
I does not introduce/name the arguments of the constructor

by default, but there is a syntax for chosing names.
I The case_eq variant modifies the guessing of the return

type so that equalities are generated.
I The destruct variant modifies the guessing of the return

type so that it generalizes the hypotheses depending on t.

25 / 34

The fixpoint operator (reduction)

Fixpoint expression with dependent result

(fix f (x : A) : B(x) := t(f , x))

I Typing

f : (∀(x : A),B(x)), x : A ` t : B(x)

` (fix f (x : A) : B(x) := t(f , x)) : ∀(x : A),B(x)

26 / 34

Fixpoint operator : well-foundness
Requirement of the Calculus of Inductive Constructions :

I the argument of the fixpoint has type an inductive definition
I recursive calls are on arguments which are structurally

smaller

Example of recursor on natural numbers

λP : nat→ s,
λHO : P(O),
λHS : ∀m : nat,P(m)→ P(S m),
fix f (n : nat) : P(n) :=
match n as y return P(y) with

O ⇒ HO | S m⇒ HS m (f m)
end

is correct with respect to CCI : recursive call on m which is
structurally smaller than n in the inductive nat.

27 / 34

Fixpoint operator : typing rules

Γ ` I : s Γ, x : A ` C : s′ Γ, x : I, f : (∀x : I,C) ` t : C t |∅f <I x
Γ ` (fix f (x : I) : C := t) : ∀x : I,C

the main definition of t |ρf <I x are:

z ∈ ρ ∪ {x} (ui |ρf <I x)i=1...n A|ρf <I x (ti |
ρ∪{x∈~xi |x :∀ ~y :U.I ~u}
f <I x)i

match z u1 . . . un return A with . . . ci ~xi ⇒ ti . . . end|ρf <I x

t 6= (z ~u) for z ∈ ρ ∪ {x} t |ρf <I x A|ρf <I x . . . ti |ρf <I x . . .

match t return A with . . . ci ~xi ⇒ ti . . . end|ρf <I x

y ∈ ρ
f y |ρf <I x

f 6∈ t
t |ρf <I x

+ contextual rules . . .
28 / 34

Remarks on the criteria
I It covers simply the schema of primitive recursive

definitions and proofs by induction which have recursive
calls on all immediate subterms.

λP : listA→ s,
λf1 : P nil,
λf2 : ∀(a : A)(l : listA),P l → P (consa l),
fix Rec (x : listA) : P x :=
match x return P x with
nil⇒ f1 | (consa l)⇒ f2 a l (Rec l)

end

I has type

∀P : listA→ s,
P nil,→
(∀(a : A)(l : listA),P l → P (consa l))→
∀(x : listA),P x

29 / 34

Remarks on the criteria
Possibility of recursive call on deep subterms

Fixpoint mod2 (n:nat) : nat :=
match n with O => O | S O => S O

| S (S x) => mod2 x
end

Possibility of recursive call on terms build by case analysis if
each branch is a strict subterm:

Definition pred (n:nat) : n<>0->nat:=
match n return n<>0->nat with

S p => (fun (h:S p<>0) => p)
| O => (fun (h:0<>0) =>

match h (refl_equal 0) return nat with end
)

end
Fixpoint F (n:nat) : C :=

match iszero n with
(left (H:n=O)) => ...

| (right (H:n<>0)) => F (pred n H)
end

30 / 34

Remarks on the criteria

Note : only the recursive arguments with the same type are
considered recursive (otherwise paradox related to
impredicativity)

Inductive Singl (A:Prop) : Prop := c : A -> Singl A.
Definition ID : Prop := forall (A:Prop), A -> A.
Definition id : ID := fun A x => x.
Fixpoint f (x : Singl ID) : bool :=

match x with (c a) => f (a (Singl ID) (c ID id)) end.

f (c ID id) −→ f (id (Singl ID) (c ID id)) −→ f (c ID id)

31 / 34

Tactics for induction

fix <n>, where <n> is a numeral is the most primitive. It:

I generates a (proof) term of the form:
fun g1 g2 => fix f h1 h2 t h3 {struct t} := ?F h1 h2 t

h3

where:
I g1, g2 are the objects in the context (above the line);
I h1, h2, t, h3 are the objects quantified in the goal

(under the line);
I ?F can call f (= recursive calls);
I the termination of f is should eventually be guaranteed by

structural recursion on t;

Qed checks the well-formedness, which was not guaranteed so
far: error messages come late and may be difficult to interpret.

32 / 34

Tactics for induction
elim t applies an induction scheme, i.e. a lemma of the form:
forall P : T -> Type, -> forall t’ : T, P t’

I It guesses argument P from the goal (under the line),
abstracting all the occurrences of t.

I It guesses the elimination scheme to be used (T_ind,
T_rect,...) from the sort of the goal and the type of t.

I The elim t using S variant allows to provide a custom
elimination scheme (or lemma!) S, with the same
unification heuristic.

I The induction t tactic guesses argument P taking into
account the possible hypotheses depending on t present
in the context (above the line). Plus it can introduce and
name things automatically.

Remark: the rewrite tactic does a similar guessing job...

33 / 34

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

(fix f (x : A) : B(x) := t(f , x)) e→ t(fix f (x : A) : B(x) := t(f , x)), e)

... but this leads to infinite unfolding (SN broken)

Solution: allow this reduction only when e is a constructor

34 / 34

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

(fix f (x : A) : B(x) := t(f , x)) e→ t(fix f (x : A) : B(x) := t(f , x)), e)

... but this leads to infinite unfolding (SN broken)

Solution: allow this reduction only when e is a constructor

34 / 34

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

(fix f (x : A) : B(x) := t(f , x)) e→ t(fix f (x : A) : B(x) := t(f , x)), e)

... but this leads to infinite unfolding (SN broken)

Solution: allow this reduction only when e is a constructor

34 / 34

	Inductive families
	Predicate defined by inference rules
	Definition of equality
	Vectors

	Non-uniform parameters
	Theory of Inductive types
	Strict Positivity
	Dependent pattern-matching
	Guarded fixpoint
	The guardedness check

