MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Jan 12, 2017

Recap: Inductive Types and Elimination Rules

Simple inductive types (datatypes):

```
Inductive nat : Type := O : nat | S : nat->nat.
Inductive bool := true | false.
Inductive list (A:Type) : Type :=
    nil | cons (hd:A) (tl:list A).
Inductive tree (A:Type) :=
    leaf | node (_:A) (__:nat->tree A).
```

Smallest type closed by introduction rules (constructors)
Parameters: cons : forall A:Type, A -> list A -> list A
Coq prelude: cons 0 nil : list nat

Recap: Elimination rules

Generated elimination scheme (not primitive):

```
nat_rect
    : forall P:nat->Type,
        P O -> (forall n, P n -> P (S n)) ->
        forall n, P n.
    := fun P h0 hS => fix F n :=
        match n return P n with
        | O => h0
    | S k => hS k (F k)
    end
```

Eliminator of recursive type = dependent pattern-matching + guarded fixpoint

Logical connectives

Logical connecctives and their non-dependent elimination schemes:

```
Inductive True : Prop := I.
    True_rect : forall P:Type, P -> True -> P.
Inductive False : Prop := .
    False_rect : forall P:Type, False -> P
Inductive and (A B:Prop) : Prop :=
    conj (_:A) (_:B).
        and_rect : forall (A B:Prop) (P:Type), (A->B->P)-> A/\B
            -> P
Inductive or (A B:Prop) : Prop :=
    or_introl (_:A) | or_intror (_:B).
    or_ind : forall (A B P:Prop), (A->P) -> (B->P) -> P.
```


Plan

Inductive families
Predicate defined by inference rules
Definition of equality
Vectors

Non-uniform parameters

Theory of Inductive types
Strict Positivity
Dependent pattern-matching
Guarded fixpoint
The guardedness check

Limitations of parameters

Defining a predicate:

```
Inductive even (n:nat) : Prop :=
    even_i (half:nat) (_:half+half=n).
```

Inductive types with parameters are some kind of "template"

```
Inductive listnat :=
    nilnat | consnat (_:nat) (_:listnat).
Inductive listbool :=
    nilbool | consbool (_:bool) (_:listbool).
```

No dependency between both types.
But in the definition of even:nat->Prop as an inductive type/set
$\overline{E_{0}: \text { even } 0} \quad \frac{e: \operatorname{even} n}{E_{S S}(e): \operatorname{even}(S \quad(S n))}$
even ($S(S O)$) depends on even 0 .

Inductive families

Family = indexed type
P : nat $->$ Type represents the type family $(P(n))_{n \in \mathbb{N}}$
Inductive family:

- Constructors do not inhabit uniformly the members of the family
- Recursive arguments can change the value of the index

Even numbers:

```
Inductive even : nat -> Prop :=
    EO : even O
| ESS (n:nat) (e:even n) : even (S (S n)).
```

Syntax very close to inference rules!

Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

```
even_ind : forall (P:nat->Prop),
    P O -> (forall n, P n -> P (S (S n))) ->
    forall n, even n -> P n.
```

Seems the analogous of nat's dependent scheme

Elimination scheme

Elimination scheme: minimality of predicate, rule-induction

```
even_ind : forall (P:nat->Prop),
    P O -> (forall n, P n -> P (S (S n))) ->
    forall n, even n -> P n.
```

Seems the analogous of nat's dependent scheme
Even's dependent scheme (refers to constructors E0 and Ess):

```
forall (P : forall n, even n -> Prop),
P O EO ->
(forall n (e:even n), P n e -> P (S (S n)) (ESS n e)) ->
forall n (e:even n), P n e
```

Definable in Coq, but not automatically generated (why? wait and see...)

Defining the dependent elimination scheme

Even more complex return clause: in

```
Definition even_ind_dep (P:forall n , even n -> Prop)
    (h0:P O E0)
    (hSS:forall n e, P n e -> P (S (S n)) (ESS n e))
    : forall n, even n -> P n :=
    fix F n e :=
    match e as e' in even k return P k e' with
    | EO => h0 : P O EO
    | ESS k e' =>
        hSS k e' (F k e') : P (S (S k)) (ESS k e')
    end
```

Notation as e^{\prime} in even k return $P k e^{\prime}$ is just a way to write the term fun $k e^{\prime}=>P k e^{\prime}$.
Becomes natural with time...

Equality: the paradigmatic indexed family

Propositional equality is defined as:

```
Inductive eq (A : Type) (a : A) : A -> Prop :=
    eq_refl : eq A a a.
Notation "x = y" := (eq x y).
```

Its dependent elimination principle is of the form:

$$
\left.\begin{array}{c}
\Gamma \vdash e: e q A t u \quad \Gamma, y: A, e^{\prime}: \text { eq } A t y \vdash C\left(y, e^{\prime}\right): s \\
\Gamma \vdash t: C\left(t, \text { eq_refl }_{A, t}\right)
\end{array}\right]\left(\begin{array}{l}
\text { match } e \text { as } e^{\prime} \text { in eq_y return } C\left(y, e^{\prime}\right) \text { with } \\
\text { eq_refl } \Rightarrow t \\
\text { end }
\end{array}\right)
$$

Tactics related to equality

Tactics:

- f_equal (congruence) $\frac{x=y}{f(x)=f(y)}$
- discriminate (constructor discrimination)
$\frac{C\left(t_{1}, \ldots, t_{n}\right)=D\left(u_{1}, \ldots, u_{k}\right)}{A}$
- injection (injectivity of constructors) $\frac{C\left(t_{1}, \ldots, t_{n}\right)=C\left(u_{1}, \ldots, u_{n}\right)}{t_{1}=u_{1}} \ldots \quad t_{n}=u_{n} \quad$
- inversion (necessary conditions) $\frac{\text { even }(S(S n))}{\operatorname{even} n}$
- rewrite (substitution) $\frac{x=y \quad P(y)}{P(x)}$
- symmetry,transitivity

Inductive types with parameters and index

Example of vectors with size

```
Inductive vect (A:Type) : nat -> Type :=
| niln : vect A O
| consn :
    A -> forall n:nat, vect A n -> vect A (S n).
```

which defines

- a family of types-predicates:

$$
\Gamma \vdash \text { vect }: \text { Type } \rightarrow \text { nat } \rightarrow \text { Type }
$$

- a set of introduction rules for the types in this family

$$
\begin{gathered}
\frac{\Gamma \vdash A: \text { Type }}{\Gamma \vdash \mathrm{niln}_{A}: \text { vect } A O} \\
\frac{\Gamma \vdash A: \text { Type } \Gamma \vdash a: A \Gamma \vdash n: \text { nat } \Gamma \vdash I: \text { vect } A n}{\Gamma \vdash \operatorname{consn} A} a n l: \operatorname{list} A(S n)
\end{gathered}
$$

Inductive types with parameters and index

vectors : elimination

- an elimination rule (pattern-matching operator with a result depending on the object which is eliminated)

Inductive types with parameters and index

- reduction rules preserve typing (ı-reduction)

$$
\begin{aligned}
& \left(\begin{array}{c}
\text { match nil } A \text { as } x \text { in vect_p return } C(x, p) \text { with } \\
\text { niln } \Rightarrow t_{1} \mid \text { cons } a n l \Rightarrow t_{2} \\
\text { end }
\end{array}\right) \\
& \rightarrow_{\iota} t_{1} \\
& \left(\begin{array}{c}
\text { match consn } A a^{\prime} n^{\prime} l^{\prime} \text { as } x \text { in vect_p return } C(x, p) \text { with } \\
\text { niln } \Rightarrow t_{1} \mid \text { consn } a n l \Rightarrow t_{2} \\
\text { end } \\
\rightarrow_{\iota} \quad t_{2}\left[a^{\prime}, n^{\prime}, l^{\prime} / a, n, l\right]
\end{array} .\right.
\end{aligned}
$$

Non-uniform parameters

Non-uniform parameter:

- Like parameters: uniform conclusion
- Like indices: value can change in recursive subterms

```
Inductive tuple (A:Type) :=
| HO (_:A)
| HS (_:tuple (A*A)).
Definition t4 : tuple nat :=
    HS nat (HS (nat*nat) (H0 _ ( (1, 2), (3,4))).
```


Elimination rules

Pattern-matching:

$$
\begin{gathered}
\ulcorner\vdash e: \text { tuple } A \quad\ulcorner, h: \text { tuple } A \vdash P(h): s \\
\Gamma, x: A \vdash t_{0}: P(H 0 A x) \quad \Gamma, h: \text { tuple }(A * A) \vdash t_{S}: P(H S A h) \\
\Gamma \vdash\left(\begin{array}{c}
\text { match } e \text { as } h \text { return } P(h) \text { with } \\
H 0 x \Rightarrow t_{0} \\
H S h \Rightarrow t_{S} \\
\text { end }
\end{array}\right)
\end{gathered}
$$

Elimination:

```
tuple_rect :
    forall (P:forall A, tuple A -> Type),
    (forall A x, P A (H0 A x)) ->
    (forall A h, P (A*A) h -> P A (HS A h)) ->
    forall A (h:tuple A), P A h.
```

Non-uniform parameters:

- In pattern-matching, behaves like a parameter
- In recursive principles, behaves like an index

Encoding inductive families

Non-uniform parameters can encode inductive families:

```
Inductive even (n:nat) : Prop :=
    EO' (_:n=0)
| ESS' (k:nat) (e:even k) (__:n=S (S k)).
Definition EO : even O := EO' O eq_refl.
Definition ESS n e : even (S (S n)) :=
    ESS' (S (S n)) n e eq_refl.
```


Well-formed inductive definitions

Issues

Constructors of the inductive definition I have type:

$$
\Gamma: \forall\left(z_{1}: C_{1}\right) \ldots\left(z_{k}: C_{k}\right) \cdot / a_{1} \ldots a_{n}
$$

where C_{i} can feature intances of I.
Question: can these instances be arbitrary?

Issues

Constructors of the inductive definition I have type:

$$
\Gamma: \forall\left(z_{1}: C_{1}\right) \ldots\left(z_{k}: C_{k}\right) \cdot / a_{1} \ldots a_{n}
$$

where C_{i} can feature intances of I.
Question: can these instances be arbitrary?
Example:

```
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
```


Issues

Constructors of the inductive definition I have type:

$$
\Gamma: \forall\left(z_{1}: C_{1}\right) \ldots\left(z_{k}: C_{k}\right) \cdot / a_{1} \ldots a_{n}
$$

where C_{i} can feature intances of I.
Question: can these instances be arbitrary?
Example:

```
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
```

We define:

```
Definition app (x y:lambda)
    := match x with (Lam f) => f y end.
Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.
and the evaluation of }\Omega\mathrm{ loops.
```


Necessity of restrictions

Things can even be worse:
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
Now define:

```
Fixpoint lambda_to_nat (t : lambda) : nat :=
    match t with Lam f -> S (lambda_to_nat (f t)) end.
```


Necessity of restrictions

Things can even be worse:
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
Now define:

```
Fixpoint lambda_to_nat (t : lambda) : nat :=
    match t with Lam f -> S (lambda_to_nat (f t)) end.
```

What happens with (lambda_to_nat (Lam (fun x => x)))?

The way out: (strict) positivity condition

- An inductive type is defined as the smallest type generated by a set $\left(\Gamma_{i}\right)_{1 \leq i \leq n}$ of constructors.
- We can see it as $\mu X, \oplus_{1 \leq i \leq n} \Gamma_{i}(X)$ (with μ a fixpoint operator on types).
- The existence of this smallest type can be proved at the impredicative level when the operator $\lambda X, \oplus_{1 \leq i \leq n} \Gamma_{i}(X)$ is monotonic.
- In order both to ensure monotonicity and to avoid paradox, Coq enforces a strict positivity condition: X should never appear on the left of an arrow in the type of its constructors.

The way out: (strict) positivity condition

More precisely, if the type (a.k.a arity) of a constructor is:
c : C1 -> ... -> Ck -> I a1 .. ak
it is well-formed when:

- I al . . ak is well-formed w.r.t. the uniformity of parametric arguments and typing constraints;
- I does not appear in any of the a1, ... ak;
- Each ci should either not refer to I or be of the form:
C'1 -> ... C'm -> I b1 ... bk
well typed and with no other occurrence of I.

And the rule generalizes as such to dependent products (instead of arrow).

More well-formation conditions...

There are more constraints, that will be explained later:

1. predicativity/impredicativity

An inductive is predicative when all constructor argument types live in a sort not bigger than the declared sort for the inductive
2. restriction on eliminations

Dependent pattern-matching

```
Inductive I (p:Par) : A -> s :=
```



```
match t as h in I _ a return P(a,h) with
| \Gamma x x l ... x xn => e
end
```

Typing conditions:

- $\vdash t: I q a$
- $a: A[q / p], h: I q a \vdash P: s^{\prime}$
- $x_{1}: C_{1}[q / p], \ldots, x_{n}: C_{n}[q / p] \vdash e: P\left(u[q / p], \Gamma q x_{1} \ldots x_{n}\right)$

Then the match has type $P(a, t)$

Tactics for case analysis

- case t is the most primitive. It:
- generates a (proof) term of the form match t with ...;
- guesses the return type from the goal (under the line);
- does not introduce/name the arguments of the constructor by default, but there is a syntax for chosing names.
- The case_eq variant modifies the guessing of the return type so that equalities are generated.
- The destruct variant modifies the guessing of the return type so that it generalizes the hypotheses depending on t.

The fixpoint operator (reduction)

Fixpoint expression with dependent result

$$
(f i x f(x: A): B(x):=t(f, x))
$$

- Typing

$$
\frac{f:(\forall(x: A), B(x)), x: A \vdash t: B(x)}{\vdash(\mathrm{fix} f(x: A): B(x):=t(f, x)): \forall(x: A), B(x)}
$$

Fixpoint operator : well-foundness

Requirement of the Calculus of Inductive Constructions:

- the argument of the fixpoint has type an inductive definition
- recursive calls are on arguments which are structurally smaller

Example of recursor on natural numbers

$$
\begin{aligned}
& \lambda P: \text { nat } \rightarrow s, \\
& \lambda H_{O}: P(O), \\
& \lambda H_{S}: \forall m: \text { nat, } P(m) \rightarrow P(S m), \\
& \text { fix } f(n: \text { nat }): P(n):= \\
& \text { match } n \text { as } y \text { return } P(y) \text { with } \\
& O \Rightarrow H_{O} \mid S m \Rightarrow H_{S} m(f m) \\
& \text { end }
\end{aligned}
$$

is correct with respect to CCl : recursive call on m which is structurally smaller than n in the inductive nat.

Fixpoint operator : typing rules

$$
\frac{\Gamma \vdash I: s \Gamma, x: A \vdash C: s^{\prime} \Gamma, x: I, f:(\forall x: I, C) \vdash t:\left.C t\right|_{f} ^{\mid}<1 x}{\Gamma \vdash(f i x f(x: I): C:=t): \forall x: I, C}
$$

the main definition of $\left.t\right|_{f} ^{\rho}<_{1} x$ are:

$$
\frac{\left.z \in \rho \cup\{x\} \quad\left(\left.u_{i}\right|_{f} ^{\rho}<, x\right)_{i=1, \ldots n} \quad A\right|_{f} ^{\rho}<_{1} x \quad\left(\left.t_{i}\right|_{f} ^{\rho \cup\left\{x \in \vec{x}_{i}|x: \forall y: U . I| \vec{u}\right\}}<_{I} x\right)_{i}}{\text { match } z u_{1} \ldots u_{n} \text { return } A \text { with } \ldots c_{i} \overrightarrow{x_{i}} \Rightarrow t_{i} \ldots \text { end }\left.\right|_{f} ^{\rho}<_{1} x}
$$

$$
\frac{t \neq(z \vec{u}) \text { for }\left.z \in \rho \cup\{x\} \quad t\right|_{f} ^{\rho}<\left._{1} x \quad A\right|_{f} ^{\rho}<\left._{1} x \quad \ldots t_{i}\right|_{f} ^{\rho}<_{1} x \ldots}{\text { match } t \text { return } A \text { with } \ldots c_{i} \overrightarrow{x_{i}} \Rightarrow t_{i} \ldots \text { end }\left.\right|_{f} ^{\rho}<_{l} x}
$$

$$
\frac{y \in \rho}{\left.f y\right|_{f} ^{\rho}<1 x} \quad \frac{f \notin t}{\left.t\right|_{f} ^{\rho}<1 x}
$$

+ contextual rules ...

Remarks on the criteria

- It covers simply the schema of primitive recursive definitions and proofs by induction which have recursive calls on all immediate subterms.

```
\lambda: list A}->s
\lambdaf
ff : }\forall(a:A)(l: list A),P | ->P(cons al)
fix Rec (x: list A) : Px :=
match }x\mathrm{ return Px with
        nil }=>\mp@subsup{f}{1}{}|(\mathrm{ cons al) }=>\mp@subsup{f}{2}{}\mathrm{ al(Recl)
    end
```

- has type

$$
\begin{aligned}
& \forall P: \operatorname{list} A \rightarrow s, \\
& P \text { nil } \rightarrow \rightarrow \\
& (\forall(a: A)(I: \operatorname{list} A), P I \rightarrow P(\text { cons } a l)) \rightarrow \\
& \forall(x: \operatorname{list} A), P x
\end{aligned}
$$

Remarks on the criteria

Possibility of recursive call on deep subterms

```
Fixpoint mod2 (n:nat) : nat :=
    match n with O O O | S O => S O
    | S (S x) => mod2 x
    end
```

Possibility of recursive call on terms build by case analysis if each branch is a strict subterm:

```
Definition pred (n:nat) : n<>0->nat:=
    match n return n<>0->nat with
            S p => (fun (h:S p<>0) => p)
            | O => (fun (h:0<>0) =>
                match h (refl_equal 0) return nat with end
            )
    end
Fixpoint F (n:nat) : C :=
    match iszero n with
        (left (H:n=O)) => ...
        | (right (H:n<>0)) => F (pred n H)
    end
```


Remarks on the criteria

Note : only the recursive arguments with the same type are considered recursive (otherwise paradox related to impredicativity)

```
Inductive Singl (A:Prop) : Prop := c : A >> Singl A.
Definition ID : Prop := forall (A:Prop), A -> A.
Definition id : ID := fun A x => x.
Fixpoint f (x : Singl ID) : bool :=
    match x with (c a) => f (a (Singl ID) (c ID id)) end.
    f(cID id )}\longrightarrowf(id(SingIID)(cID id ))\longrightarrowf(cID id 
```


Tactics for induction

fix <n>, where $<\mathrm{n}>$ is a numeral is the most primitive. It:

- generates a (proof) term of the form:
fun g1 g2 => fix f h1 h2 th3 \{struct t\} := ? F h h2 t where:
- g1, g2 are the objects in the context (above the line);
- h1, h2, t, h3 are the objects quantified in the goal (under the line);
- ?F can call f (= recursive calls);
- the termination of f is should eventually be guaranteed by structural recursion on t;

Qed checks the well-formedness, which was not guaranteed so far: error messages come late and may be difficult to interpret.

Tactics for induction

elim t applies an induction scheme, i.e. a lemma of the form:
forall P : T -> Type, -> forall t' : T, P t'

- It guesses argument P from the goal (under the line), abstracting all the occurrences of t.
- It guesses the elimination scheme to be used (T_ind, T_rect,...) from the sort of the goal and the type of t.
- The elim t using s variant allows to provide a custom elimination scheme (or lemma!) s, with the same unification heuristic.
- The induction t tactic guesses argument p taking into account the possible hypotheses depending on t present in the context (above the line). Plus it can introduce and name things automatically.

Remark: the rewrite tactic does a similar guessing job...

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

$$
(\operatorname{fix} f(x: A): B(x):=t(f, x)) e \rightarrow t(\operatorname{fix} f(x: A): B(x):=t(f, x)),
$$

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:
$(f i x f(x: A): B(x):=t(f, x)) e \rightarrow t(f i x f(x: A): B(x):=t(f, x))$,
... but this leads to infinite unfolding (SN broken)

Fixpoint expansion

We would expect the usual expansion rule for fixpoints:
$(f i x f(x: A): B(x):=t(f, x)) e \rightarrow t(f i x f(x: A): B(x):=t(f, x))$,
... but this leads to infinite unfolding (SN broken)
Solution: allow this reduction only when e is a constructor

