MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Dec 15, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Last week recap...

- Use of typed λ-calculus as a logical formalism: Curry-Howard isomorphism
 - Propositions as types
 - Proofs as inhabitants
 - Deduction rules as typing rules
- Simple types correspond to propositional logic
- Predicate logic requires dependent products and pairs (Π and Σ types).
- Terms and types share the same syntax.
- Types are terms whose type is one of the special constants called sorts.

Plan

Martin-Löf's Type Theory

System F, Polymorphism

Calculus of Constructions

Pure Type Systems

Metatheory: consistency, strong normalization, canonicity

Martin-Löf's Type Theory

Judgments:

- $\Gamma \vdash A$ type (types have a specific judgment)
- $\blacktriangleright \Gamma \vdash M : A$
- $\Gamma \vdash A = B$ (equality only on well-typed terms)
- $\blacktriangleright \Gamma \vdash M = N : A$

Organized as:

- formation rules (rule for Π)
- introduction rules (rule for λ)
- elimination rules (rule for application)
- computation rules (β-reduction)

MLTT: History

Versions:

- 1971: Type:Type (inconsistent impredicativity)
- 1973: Intensional Type Theory (predicative)
- 1979: Extensional Type Theory
 - Types are sets with a specific equality (setoids)
 - Reflection rule: conversion and propositional equality are identified

Features:

- Logical connectives
- Universes
- Equality
- Inductive definitions (or W-types)

System F

System F (J.-Y. Girard (72), Reynolds (74)) extends the simply typed λ -calculus with a new type former (polymorphism):

 $\forall \alpha. \tau$

Inhabitants of this type are terms that have type τ for all possible substitution of a type for α .

Ex:
$$(\lambda x. x) : \forall \alpha. \alpha \to \alpha$$

$$\frac{\Gamma \vdash M : \tau \quad \alpha \text{ not free in } \Gamma}{\Gamma \vdash M : \forall \alpha. \tau} \qquad \frac{\Gamma \vdash M : \forall \alpha. \tau}{\Gamma \vdash M : \tau[\tau'/\alpha]}$$

Explicit version (needed when λ carries the domain type):

$$\frac{\Gamma \vdash M : \tau \quad \alpha \text{ not free in } \Gamma}{\Gamma \vdash \Lambda \alpha. M : \forall \alpha. \tau} \qquad \frac{\Gamma \vdash M : \forall \alpha. \tau}{\Gamma \vdash M \tau' : \tau[\tau'/\alpha]}$$

6/28

<ロ> <同> <同> < 回> < 三> < 三> 三 三

System F and arithmetic

System F can encode datatypes and a wide range of functions over them, by functional encodings.

Ex: arithmetic

$$\mathbb{N} = \forall \alpha. \alpha \to (\alpha \to \alpha) \to \alpha$$

[n]= $\lambda x. \lambda f. f^n x$ (0 = $\lambda x. \lambda f. x$, 2 = $\lambda x. \lambda f. f (f x)$)

Encodes all functions of second order arithmetic (quantifiers can range over predicates a.k.a. sets of natural numbers)

Limitations as a logical formalism:

 Cannot encode equality via the Curry-Howard isomorphism Polymorphism allows to define a type by quantification over *all* types, including itself.

Allows for self-application!

• $\mathsf{id} = \lambda \mathbf{x} \cdot \mathbf{x} : \forall \alpha \cdot \alpha \to \alpha$

▶ id id is well-typed (α instantited with $\forall \alpha. \alpha \rightarrow \alpha$)

"System F is not set-theoretical" (Reynolds)

Calculus of Constructions: History

Coquand and Huet (85)

Merges ideas from:

- System F (polymorphism)
- Automath (related to Martin Löf's Type Theory)

Calculus of Constructions (CC)

2 sorts: **Prop** and **Type** (literature: **Type**/**Kind** or $*/\Box$)

 $\begin{array}{c} \hline \prod \vdash T:s \\ \hline \prod \vdash T;x:T \vdash & \hline \Gamma \vdash x:T & \hline \Gamma \vdash Prop:Type \\ \hline \Gamma \vdash A:s_1 \quad \Gamma;x:A \vdash B:s_2 \\ \hline \Gamma \vdash \Pi x:A.B:s_2 & \hline \Gamma \vdash \Pi x:A.B:s \quad \Gamma;x:A \vdash M:B \\ \hline \Gamma \vdash M:\Pi x:A.B \quad \Gamma \vdash N:A \\ \hline \Gamma \vdash MN:B[N/x] & \hline \Gamma \vdash M:T \quad T =_{\beta}T' \quad \Gamma \vdash T':s \\ \hline \Gamma \vdash M:T' \end{array}$

Conversion rule (= $_{\beta}$ includes β -reduction/expansion + congruence rules): 2 convertible types have the same inhabitants/proofs. Necessary for good metatheoretical properties.

CC extends System F

Prop (a.k.a. *) is a sort of types that includes the types of System F:

- (*, *, *) governs arrow types
 ℕ : * ⇒ ℕ → ℕ : *
- $(\Box, *, *)$ governs polymorphism e.g. $\forall \alpha. \tau \implies \Pi \alpha : *. \tau$

Explicit polymorphism

- Generalization rule : $\Lambda \alpha.t \implies \lambda \alpha : *.t$
- Instantiation rule : $t \tau \implies t \tau$

CC: a powerful system

CC extends System F (and F ω):

- Functions of higher-order arithmetic
- ▶ Propositional connectives (∧, ∨,...)

CC extends $\lambda \Pi$:

- Predicate calculus: existential quantifier, equality
- CC is a higher-order logic:
 - In MLTT, predicative rule (□, *, □) prevents quantifications to always be a proposition No type of all propositions
 - In CC, * is the type of all propositions of higher-order logic

Calculus of Constructions with Universes (CC_{ω})

A hierarchy of predicative universes is added (Coquand, 1986).

```
\textbf{Prop}: \textbf{Type}_1: \textbf{Type}_2: \textbf{Type}_3 \dots
```

Logical strength:

- CC with 2 universes can model Zermelo set theory (Miquel) (Uses predicative polymorphic encodings)
- CC_{ω} can be proved consistent in ZF (Luo).

Limitations of polymorphics encodings

- Case of impredicative encoding
 - $0 \neq 1$ is not provable (by erasability of dependencies)
 - induction is not "directly" provable (only the recursor is available)
- Case of predicative encoding in the calculus with universes
 - OK for expressivity (we have 0 ≠ 1 and an "indirect" induction)
 - But no predecessor in 1 step
 - not "natural", introduces universe issues
 - difficult to write automated tools that can distinguish between inductive types constructors and arbitrary terms
- Primitive inductive types "a la Martin-Löf" have been added.

Pure Type Systems (PTS) are a way to factorize the syntax of many formalisms of type theory. Many metatheoretical results can be established for large classes of PTS.

Definition of Pure Type Systems (PTS)

Sorts (types of types), organised in axioms A and rules for product R.

Rules

 $\frac{\Gamma \vdash (s_1, s_2) \in \mathcal{A}}{\Gamma \vdash s_1 : s_2} \quad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash} \quad \frac{\Gamma \vdash (x, A) \in \Gamma}{\Gamma \vdash x : A}$ $\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad (s_1, s_2, s_3) \in \mathcal{R}$ $\Gamma \vdash \Pi x : A.B : s_3$ $\Gamma, x : A \vdash t : B$ $\Gamma \vdash \Pi x : A.B : s$ $\Gamma \vdash t : \Pi x : A.B$ $\Gamma \vdash u : A$ $\Gamma \vdash \lambda x : A.t : \Pi x : A.B$ $\Gamma \vdash t u : B[x \leftarrow u]$ $\Gamma \vdash t : A \quad \Gamma \vdash B : s \quad A =_{\beta} B$ $\lambda x : A.t u =_{\beta} t[x \leftarrow u]$ $\Gamma \vdash t \cdot B$

(Predicativity: when s_3 is not lower than s_1 or s_2)

PTS instances: Barendregt's cube

 $\mathcal{S} = \{*, \Box\}, \ \mathcal{A} = (*, \Box)$ Rules:

- (*, *, *) simple types
- (*, \Box , \Box) dependent types ($\lambda \Pi$)
- ► (□, *, *) polymorphism (system F)
- (\Box, \Box, \Box) higher-order (system F ω)

Metatheory

For a logical formalism, the main metatheoretical property is consistency (the existence of a non-provable proposition).

But other properties are of interest:

- Strong normalization (SN)
- Canonicity / Constructivity

Actually, SN is the strongest property, the others can be seen as corollaries (within arithmetic).

Establishing SN requires preliminary results:

- confluence of \rightarrow_{β}
- substitution lemma
- subject-reduction (soundness of typing)

Strong Normalization as the strongest property

Strong Normalization property (SN):

 $\Gamma \vdash M : T \Rightarrow \neg \exists (M_i)_{i \in \mathbb{N}} . M = M_0 \rightarrow_{\beta} M_1 \rightarrow_{\beta} \cdots$

Gödel's 2nd incompleteness theorem: a formal system as strong as arithmetic cannot prove its own consistency, unless it is inconsistent.

 \Rightarrow Consistency and SN cannot be proved in arithmetic. Need a stronger formalism, e.g. set theory.

Strong Normalization proofs

Milestone: Girard's reducibility candidates (CR)

CR are sets of SN λ -terms with well-chosen closure properties.

 $X \to Y = \{t \mid \forall u \in X.t \ u \in Y\}$

models arrow types and intersection of a family of CR is a CR, so Girard could show SN for System F:

$$\Gamma \vdash \boldsymbol{M} : \tau \implies \forall \sigma \in \llbracket \Gamma \rrbracket . \boldsymbol{M}[\sigma] \in \llbracket \tau \rrbracket$$

Proof simplified by Mitchell and Tait.

Adapts to theories with dependent types (Altenkirch's Λ -sets), but may require a model.

Metatheory: conversion

Conversion:

Confluence:

$$\textbf{\textit{A}} \rightarrow^*_{\beta} \textbf{\textit{B}} ~ \land \textbf{\textit{A}} \rightarrow^*_{\beta} \textbf{\textit{C}} ~ \Rightarrow ~ \exists \textbf{\textit{D}}.~ \textbf{\textit{B}} \rightarrow^*_{\beta} \textbf{\textit{D}} \land \textbf{\textit{C}} \rightarrow^*_{\beta} \textbf{\textit{D}}$$

Corollary: inversion of products

$$\Pi x : A \cdot B =_{\beta} \Pi x : A' \cdot B' \Rightarrow A =_{\beta} A' \land B =_{\beta} B'$$

Metatheory: typing

Typing:

Substitution lemma:

$$\frac{\Gamma; x : A; \Delta \vdash M : T \quad \Gamma \vdash N : A}{\Gamma; \Delta[N/x] \vdash M[N/x] : T[N/x]}$$

Inversion lemmas (one for each term constructor): Γ ⊢ λx: A.M : C ⇒ ∃Bs. C =_β Πx: A.B ∧ Γ; x: A ⊢ M : B ∧ Γ ⊢ Πx: A.B : s
Subject Reduction:

$$\Gamma \vdash M : T \land M \rightarrow_{\beta} M' \Rightarrow \Gamma \vdash M' : T$$

Note: if $N \rightarrow_{\beta} N'$, refl N : N = N but refl N' : N = N requires the conversion rule

Canonicity

Characterization of inhabitants (in normal form) of type constructors

Using inversion lemmas, if *M* in normal form (atomic terms: $x t_1 \cdots t_n$):

► $\Gamma \vdash M$: Πx : *A*.*B* implies *M* is either a λ or an atomic term.

► $\Gamma \vdash M$: *s* implies *M* is either a sort, a Π or an atomic term.

Note: when $\Gamma = []$, the atomic case does not apply

If the formalism encodes arithmetic, we expect:

► $\Gamma \vdash M$: N implies *M* is either 0 or a successor, or an atomic term.

Canonicty + SN: Constructivity

Using SN:

- \vdash *M* : $\sqcap x$: *A*.*B* then *M* reduces to a λ .
- $\vdash M : s$ then *M* reduces to a sort or a \square .
- \vdash *M* : \mathbb{N} then *M* reduces to a numeral.

Constructivity and Consistency

Constructivitiy: canonicity applied to connectives (cut elimination)

- ► \vdash *M* : *A* \lor *B* implies *M* reduces to an introduction rule, thus we get either a proof of *A* or a proof of *B*.
- ► \vdash *M* : $\exists x : A.B$ implies *M* reduces to a pair (*a*, *b*) where *a* is a witness.
- \vdash *M* : \perp is impossible: consistency.

Note: non-normalization of a type theory often (not always!) lead to inconsistency.

Towards the formalism of Coq

Recap on CC:

- Encodes correctly higher-order logic.
- Encodes (using polymorphism) datatypes and functions on them.
- Does not encode correctly the equational theory of those datatypes

Calculus of Inductive Constructions (CIC)

- Extends CC with universes and primitive (co-)inductive types (a la Martin-Löf, but impredicativity allowed)
- Enjoys the expected canonicity results

Coquand, Paulin-Mohring (90).

CIC: sort setup

Universes:

- An impredicative sort Prop:
- A hierarchy of predicative sorts Type;

 $\textbf{Prop}: \textbf{Type}_1: \textbf{Type}_2: \textbf{Type}_3 \dots$

 $\textbf{Prop} \subset \textbf{Type}_1 \subset \textbf{Type}_2 \subset \textbf{Type}_3 \dots$

Proof-irrelevance ($\forall P : \mathbf{Prop}. \forall pq : P. p = q$):

- Admissible.
- Not provable: axioms discriminating proofs are consistent (but the interpretation of functions have to be restricted to computable ones)

Classical logic

 Prop can be interpreted as a boolean type (implies proof-irrelevance)

Exercises

TP 2 on my webpage

http://www.lix.polytechnique.fr/~barras/mpri/

Or http://www.lix.polytechnique.fr/~barras/
mpri/2016/tp2.pdf