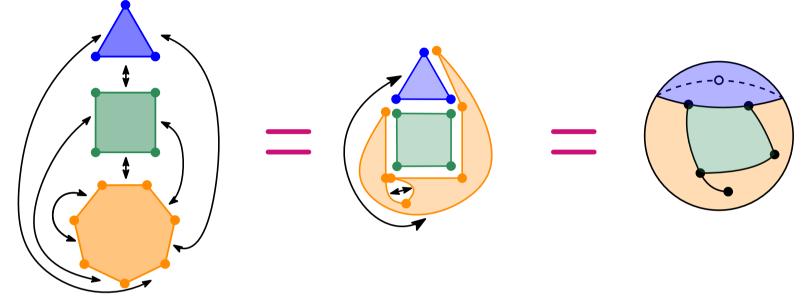
Maps: at the interface between combinatorics and probability

Marie Albenque (CNRS, LIX, École Polytechnique)

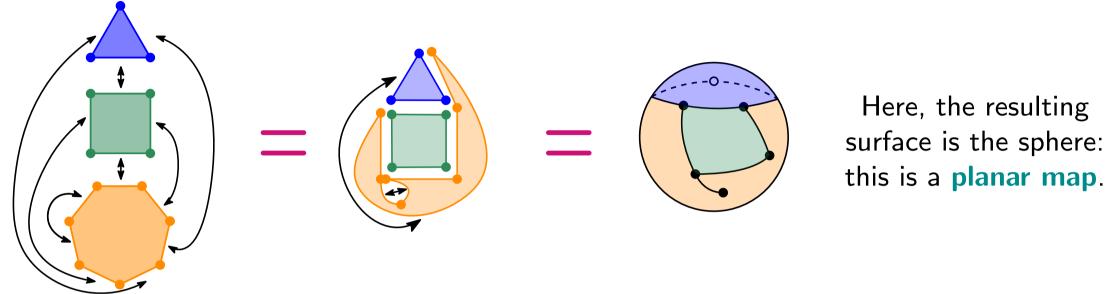


Soutenance d'habilitation, 16 décembre 2020

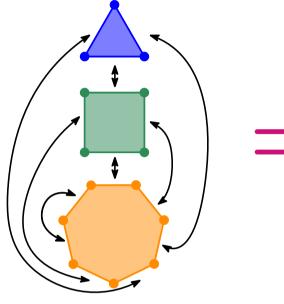
A map is a collection of polygons glued along their sides (with some technical conditions).

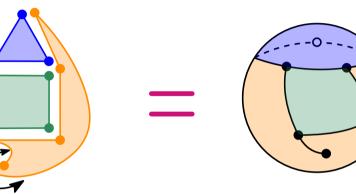


A map is a collection of polygons glued along their sides (with some technical conditions).



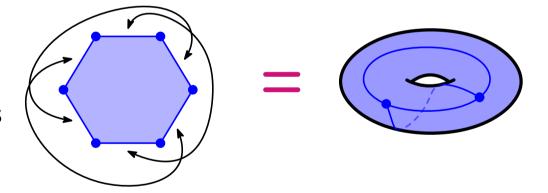
A map is a collection of polygons glued along their sides (with some technical conditions).



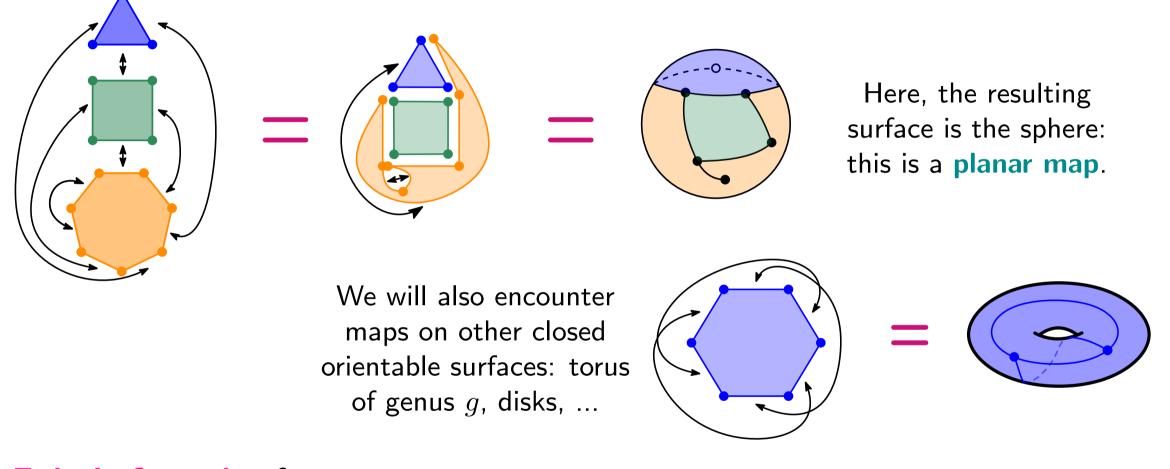


Here, the resulting surface is the sphere: this is a **planar map**.

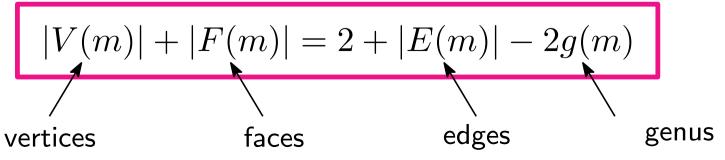
We will also encounter maps on other closed orientable surfaces: torus of genus g, disks, ...



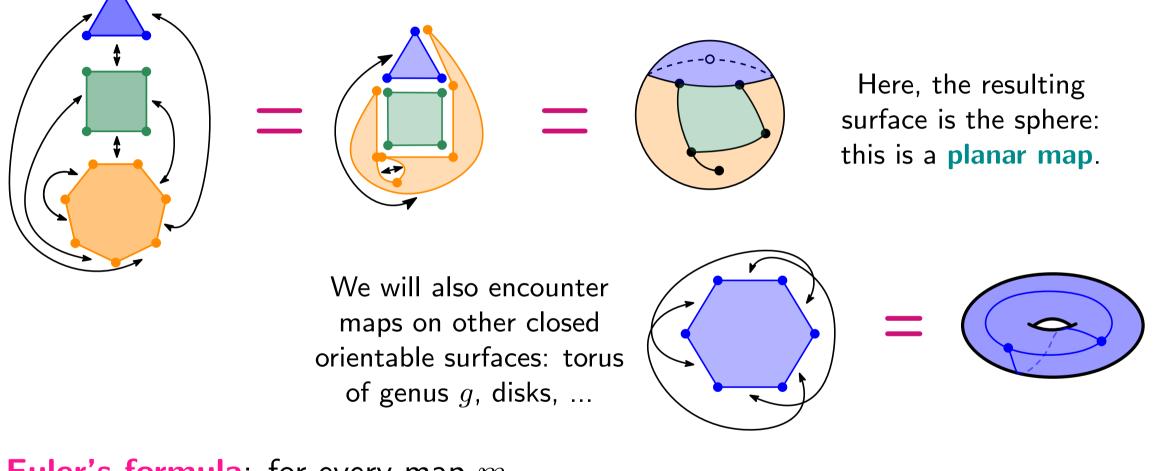
A map is a collection of polygons glued along their sides (with some technical conditions).



Euler's formula: for every map m (on a closed surface without boundary),



A map is a collection of polygons glued along their sides (with some technical conditions).

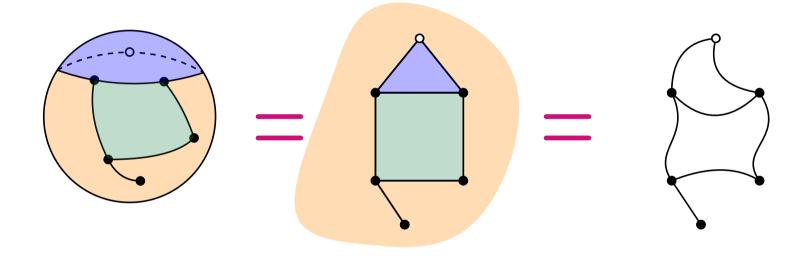


Euler's formula: for every map m,

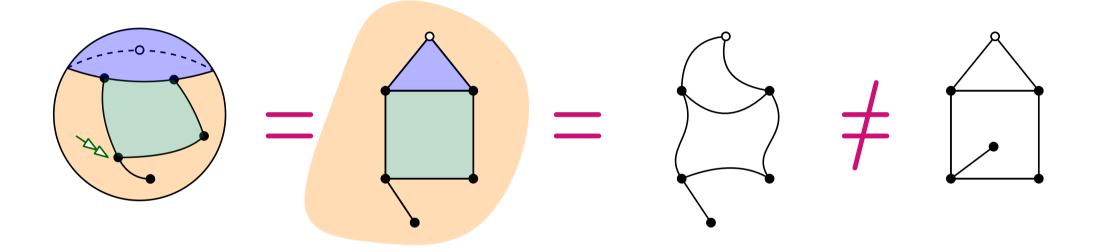
$$|V(m)| + |F(m)| = 2 + |E(m)| - 2g(m)$$

If all the polygons have p sides, the map is called a **p-angulation** 3-angulation = **triangulation**, 4-angulation = **quadrangulation**

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

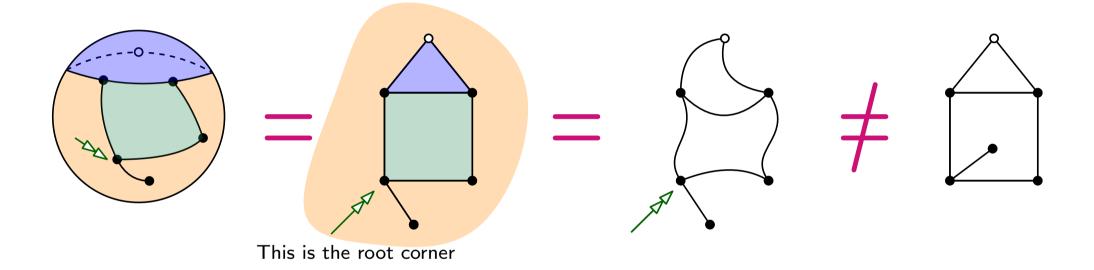


A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



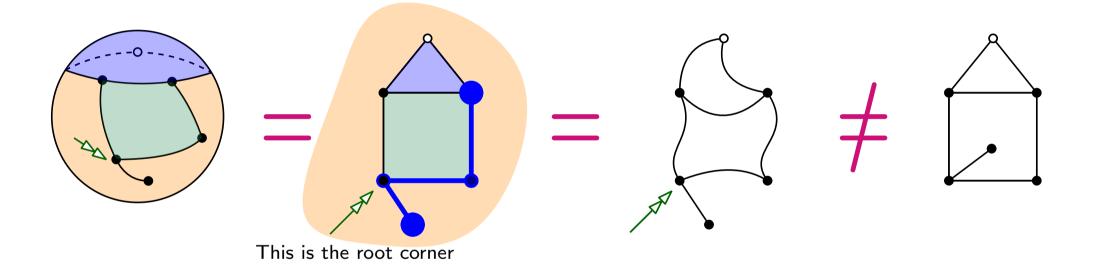
Planar map = planar graph + cyclic order of edges around each vertex.

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



Planar map = planar graph + cyclic order of edges around each vertex. To avoid dealing with symmetries: maps are **rooted** (a corner is marked).

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

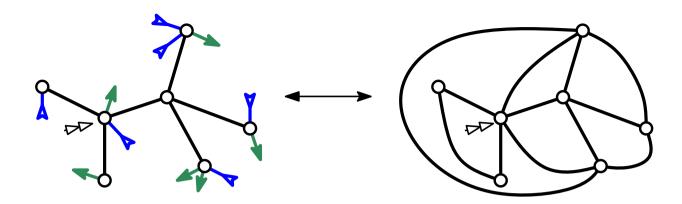


Planar map = planar graph + cyclic order of edges around each vertex. To avoid dealing with symmetries: maps are **rooted** (a corner is marked).

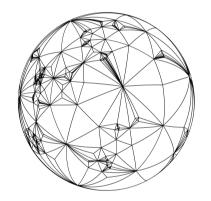
A map M defines a discrete **metric space**:

- points: set of vertices of M = V(M).
- distance: graph distance = d_{gr} .

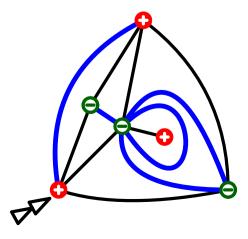
I - Bijective enumeration of maps



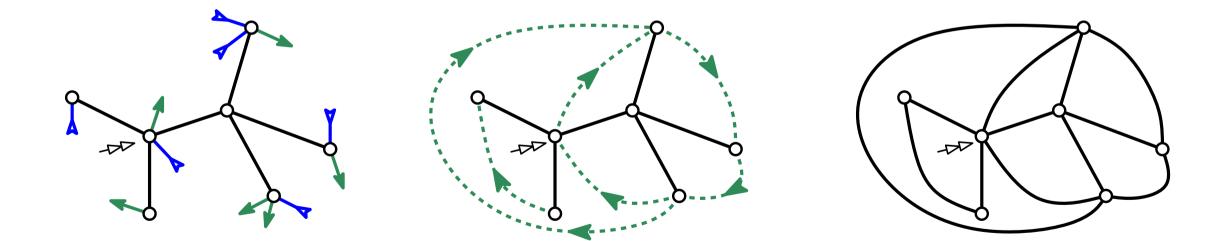
II - Scaling limits of random planar maps



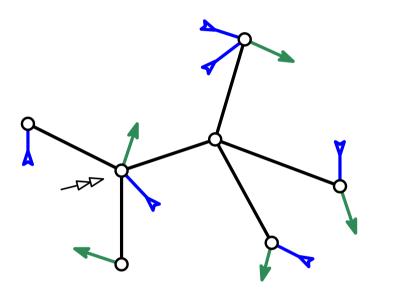
III - Local limit of Ising-weighted random triangulations



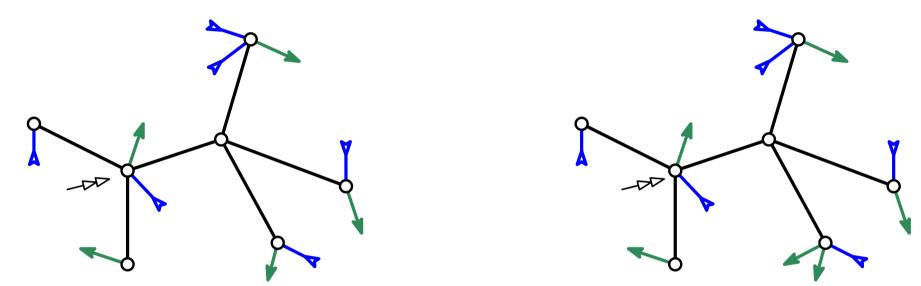
I - Bijective enumeration of maps a tribute to blossoming bijections.



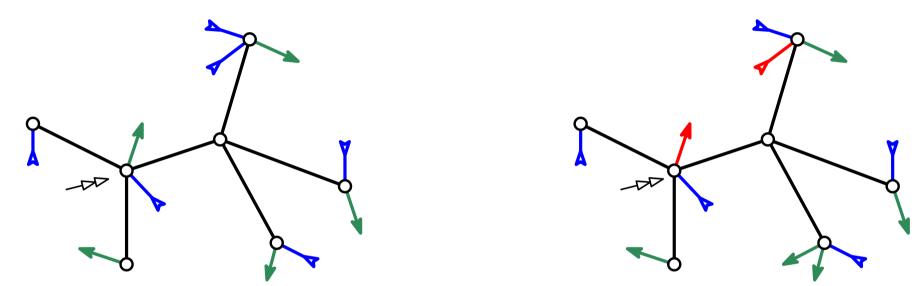
A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:



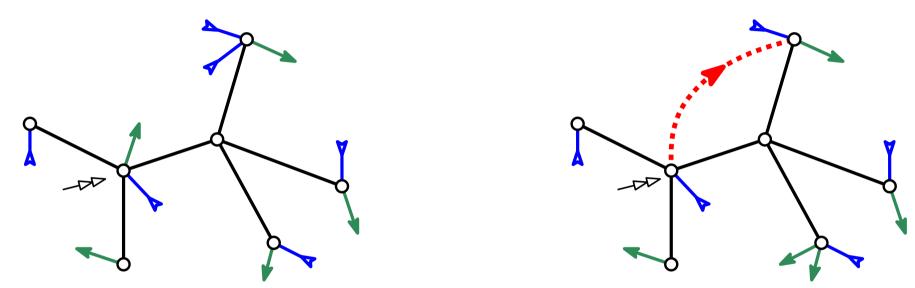
A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:



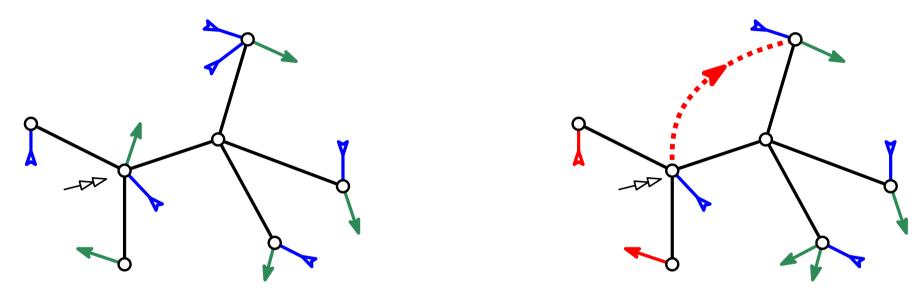
A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:



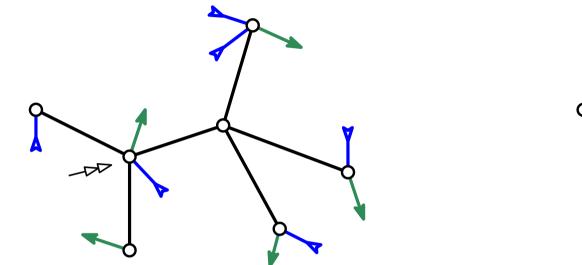
A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

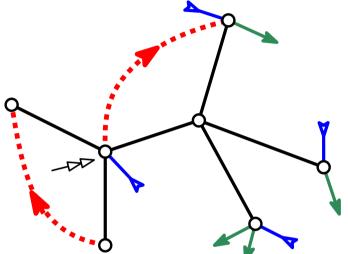


A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

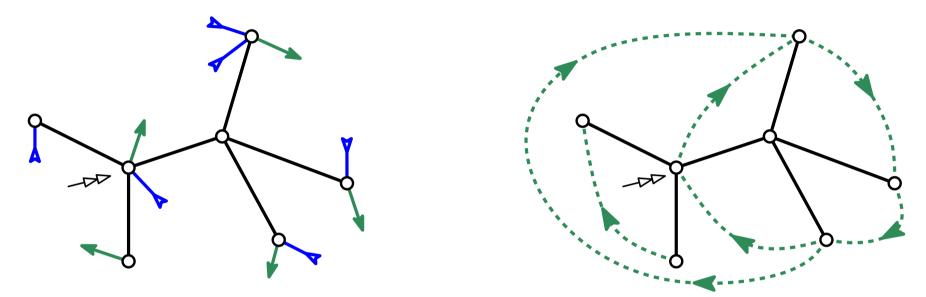


A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:



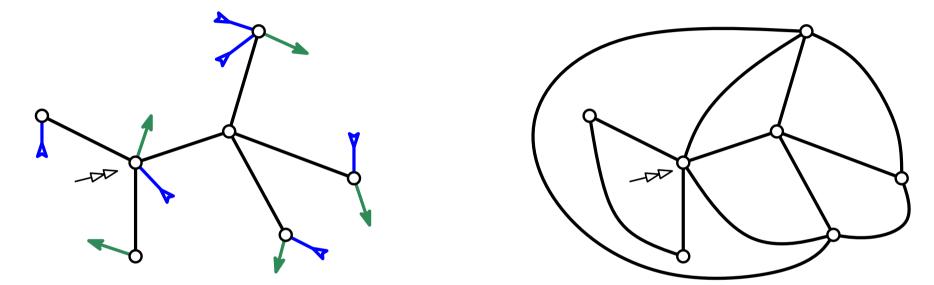


A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:



A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

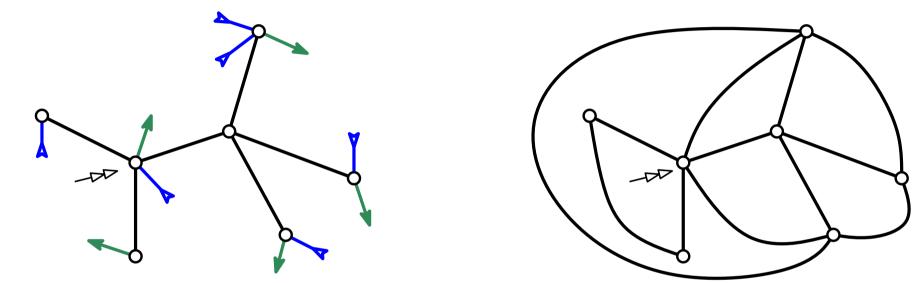
closing stems = # opening stems



Via this construction, a planar map is canonically associated to a blossoming tree.

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

closing stems = # opening stems



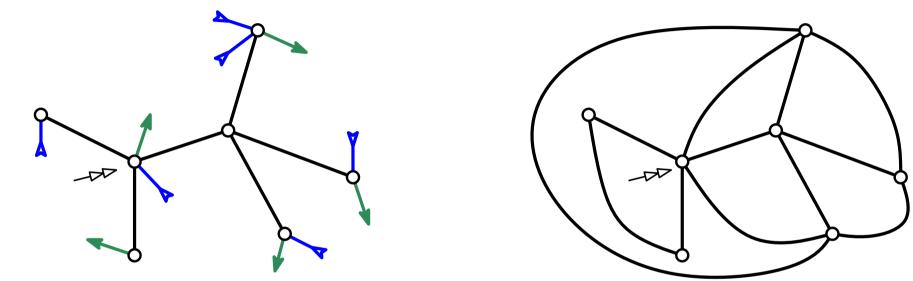
Via this construction, a planar map is canonically associated to a blossoming tree.

Can we reverse the construction ?

i.e. can we determine a canonical spanning tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

closing stems = # opening stems



Via this construction, a planar map is canonically associated to a blossoming tree.

Can we reverse the construction ?

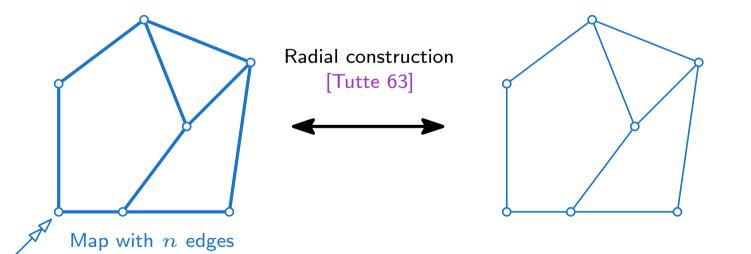
i.e. can we determine a canonical spanning tree ?

Yes...

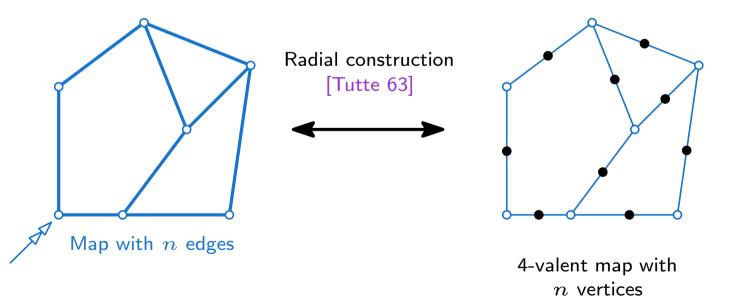
e.g.
$$\# \{ \text{rooted planar maps with } n \text{ edges} \} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]

e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]

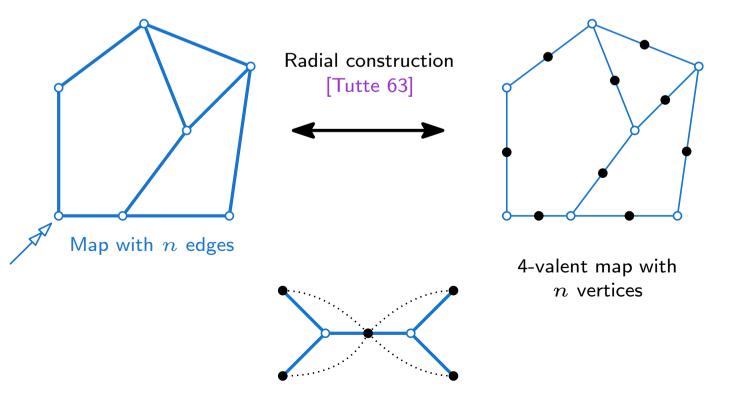
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]



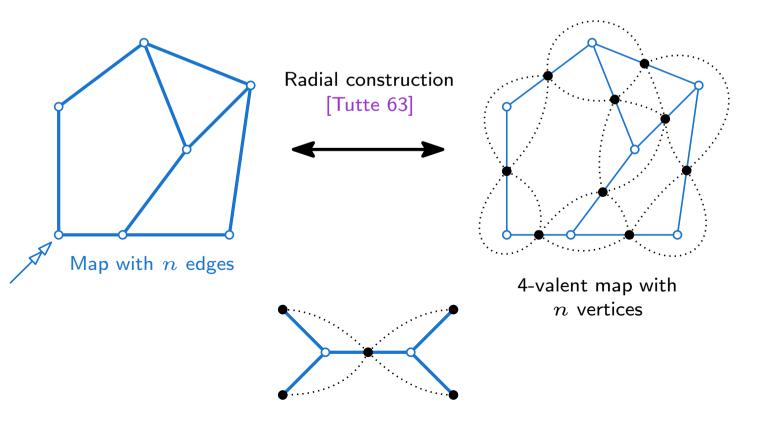
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]



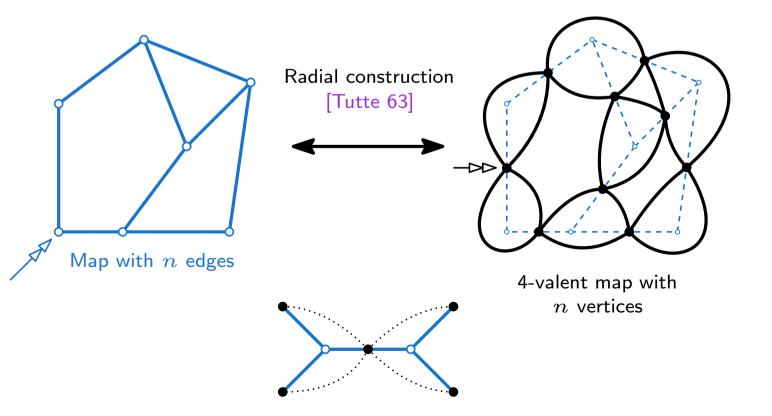
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]



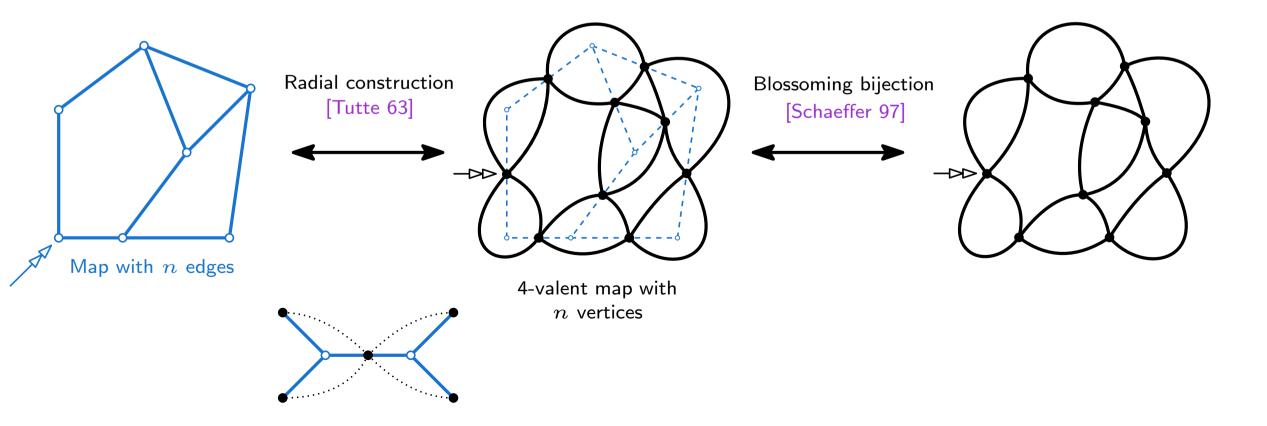
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]



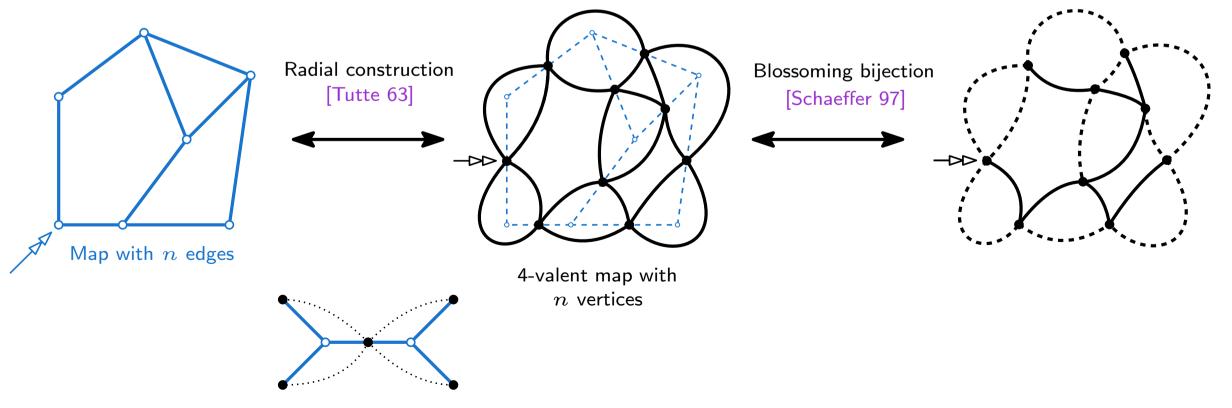
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]

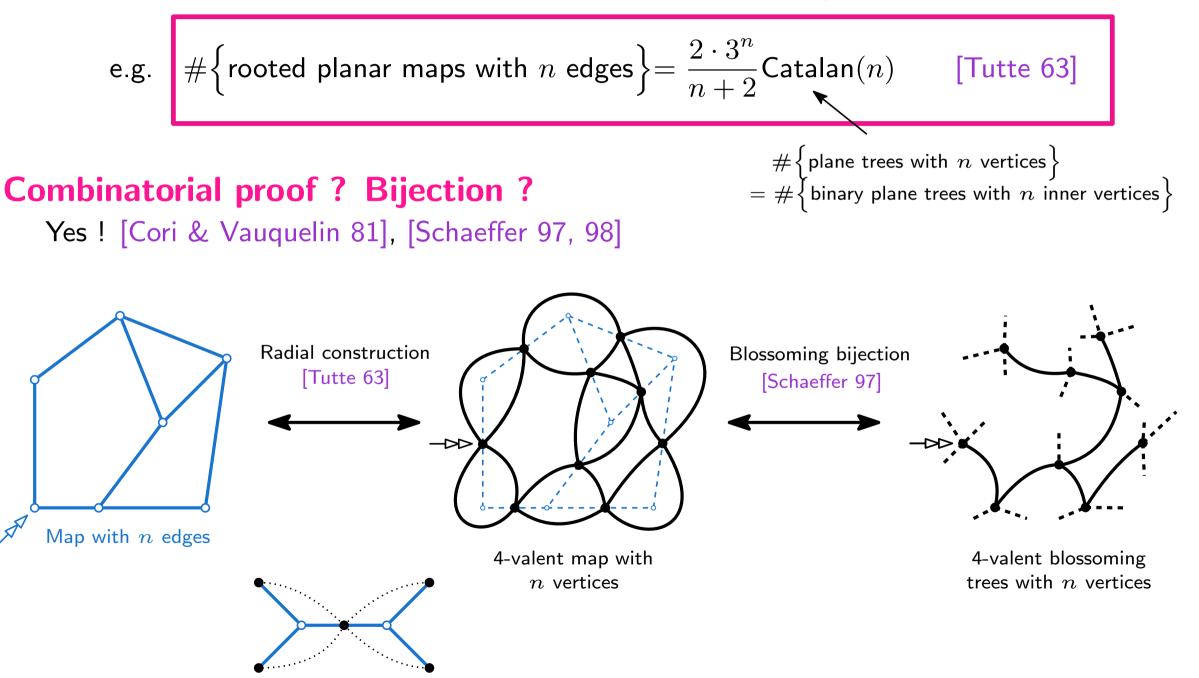


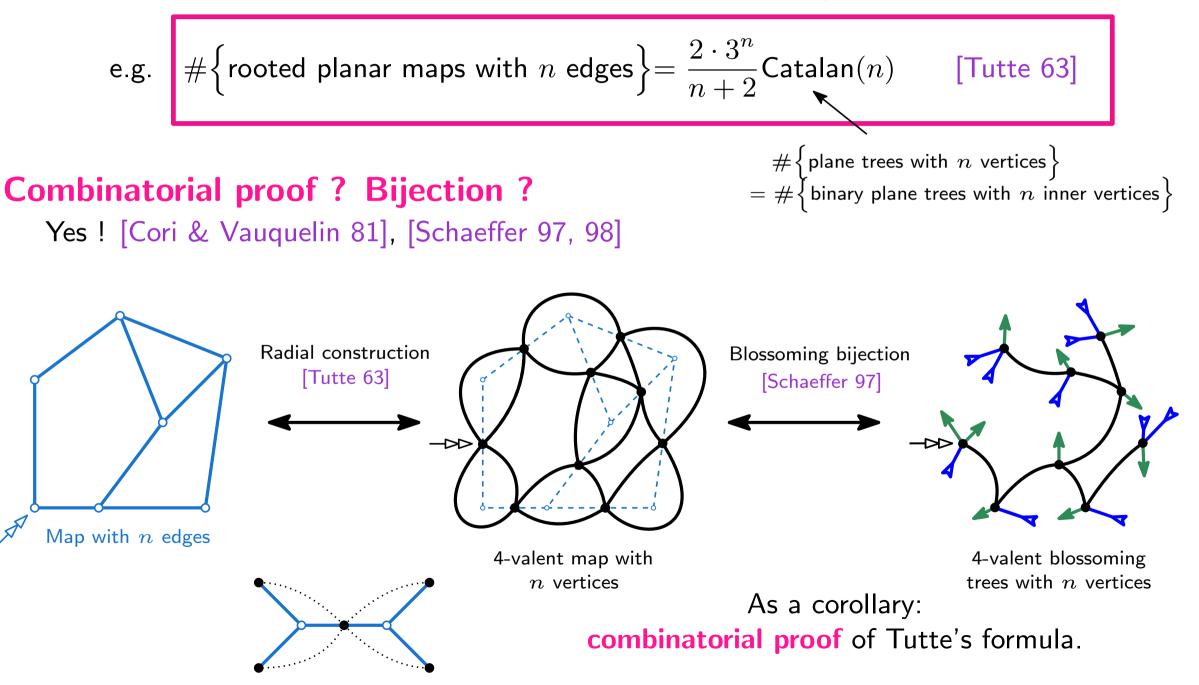
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]



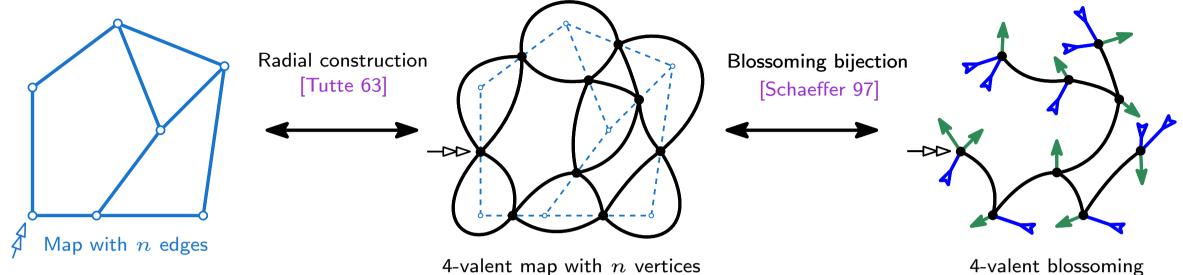
e.g.
$$\#\{\text{rooted planar maps with } n \text{ edges}\} = \frac{2 \cdot 3^n}{n+2} \text{Catalan}(n)$$
 [Tutte 63]
Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]
 $\#\{\text{plane trees with } n \text{ vertices}\} = \#\{\text{binary plane trees with } n \text{ inner vertices}\}$





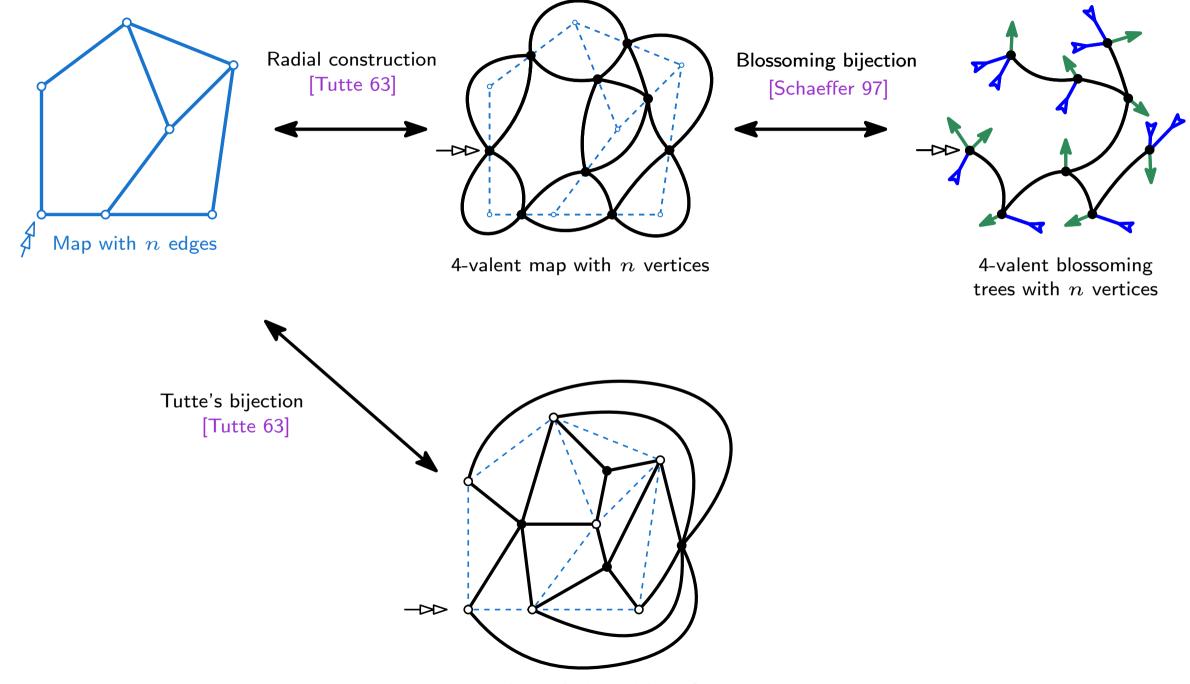


Enumeration of planar maps: a dichotomy of bijections



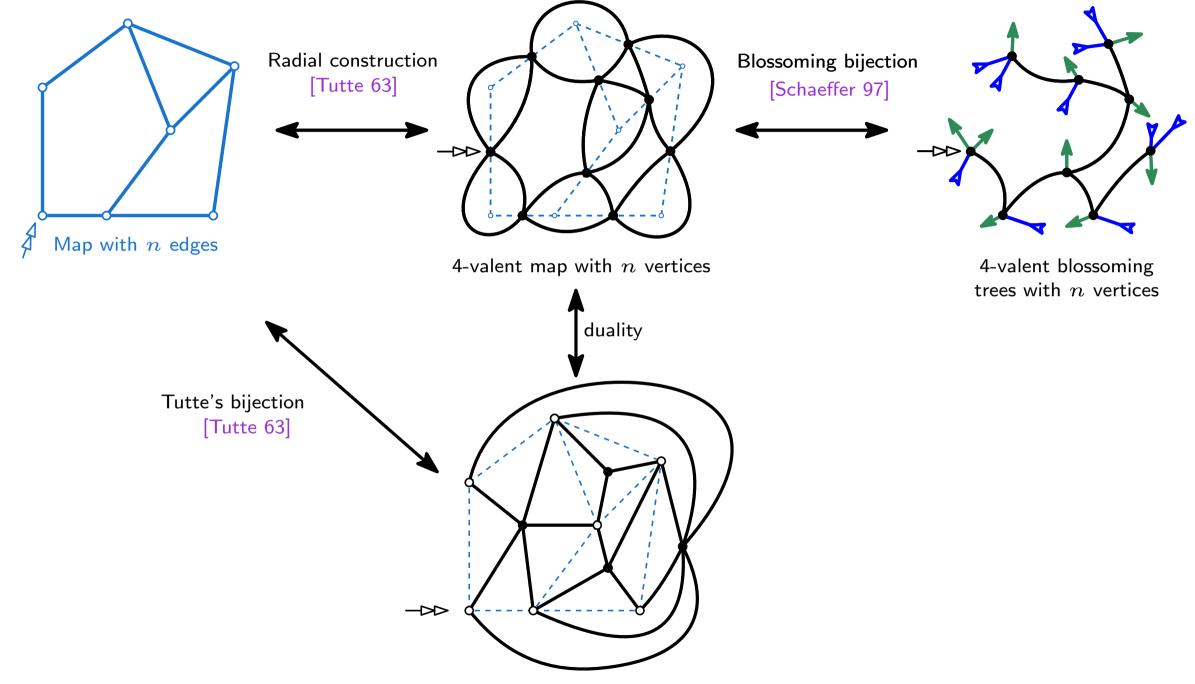
4-valent blossoming trees with n vertices

Enumeration of planar maps: a dichotomy of bijections

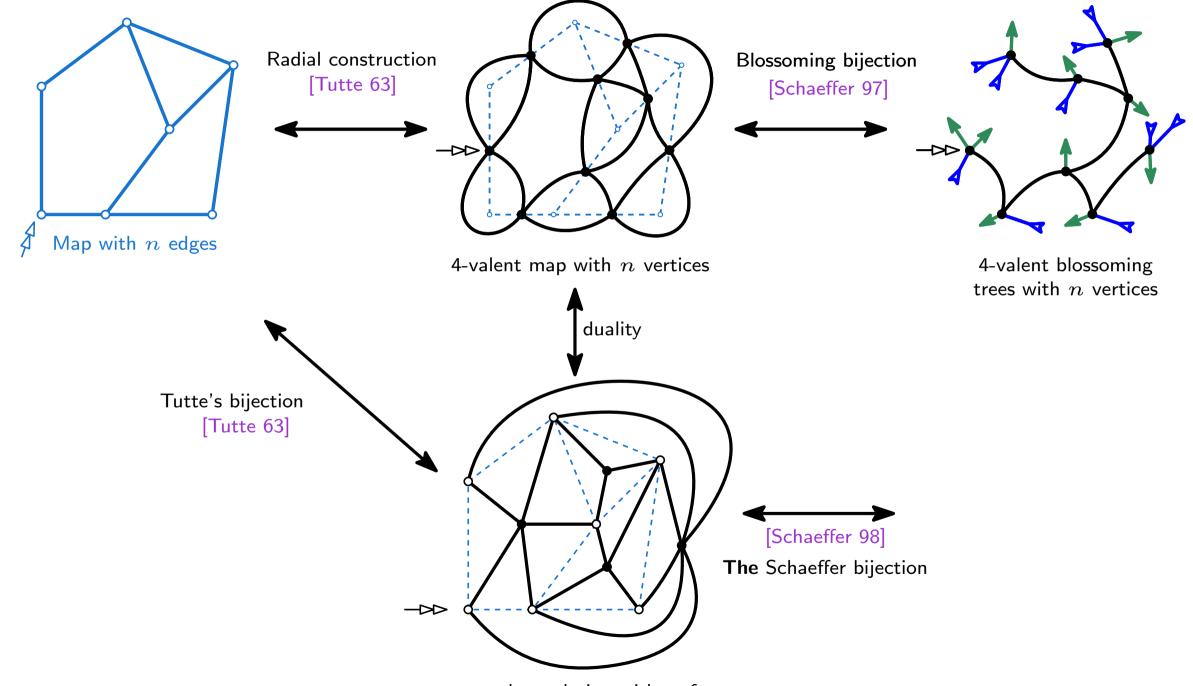


quadrangulation with \boldsymbol{n} faces

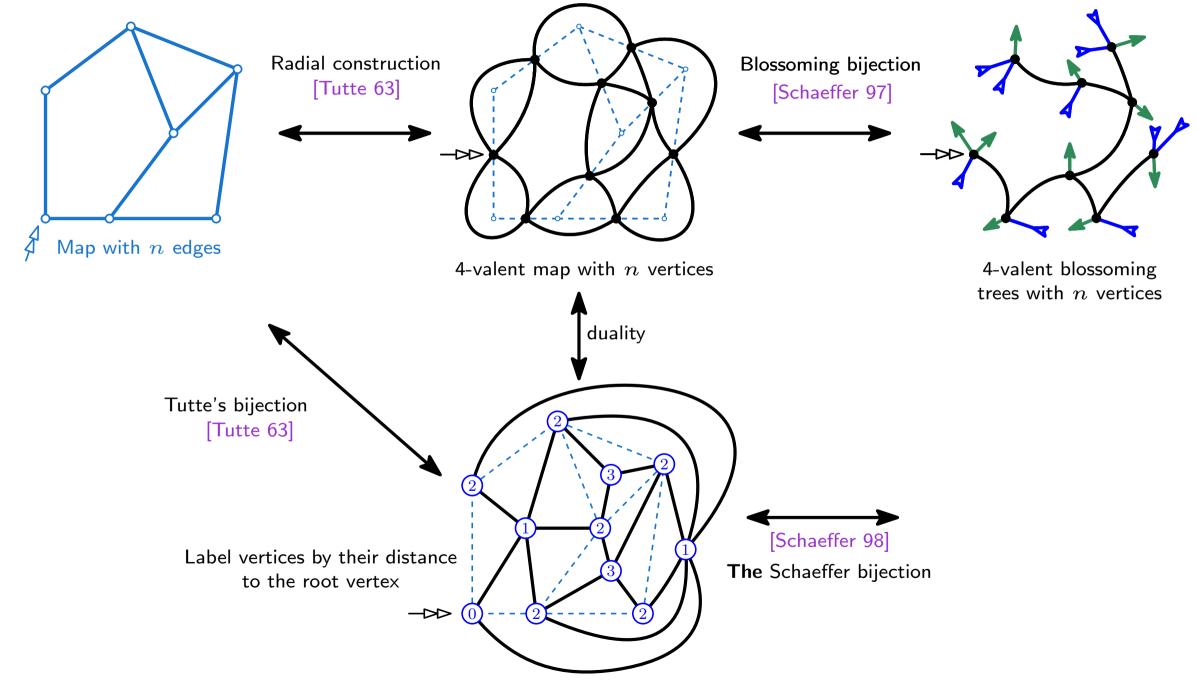
Enumeration of planar maps: a dichotomy of bijections



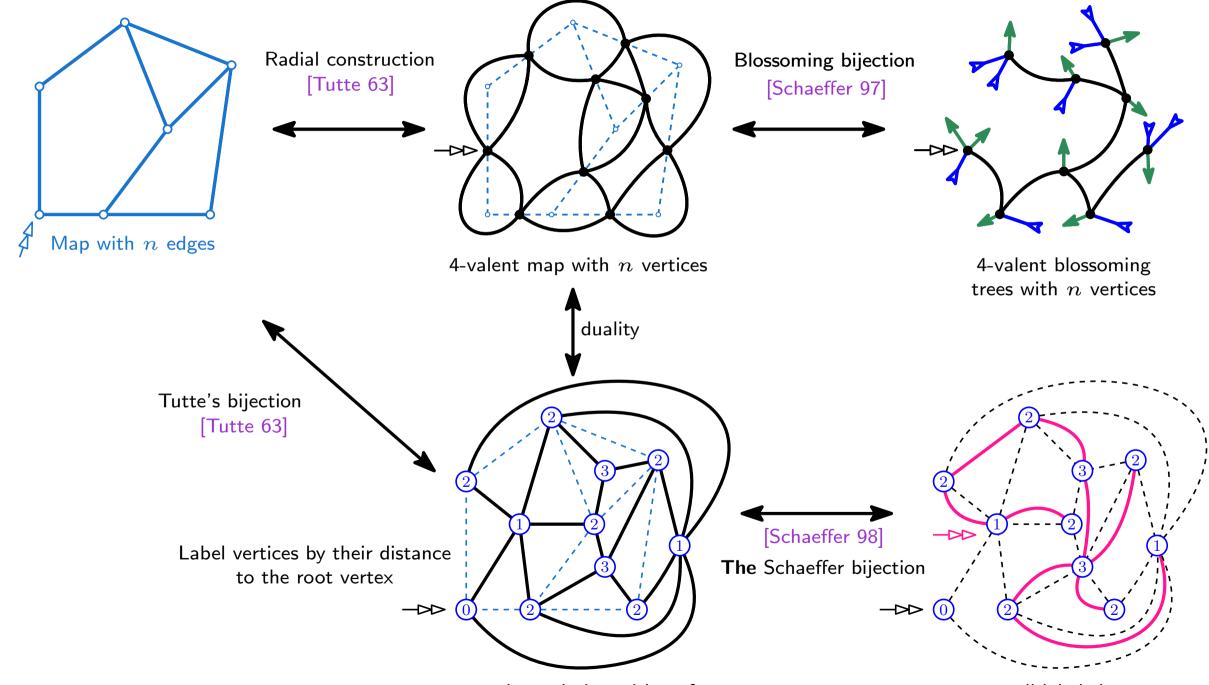
quadrangulation with n faces



quadrangulation with n faces

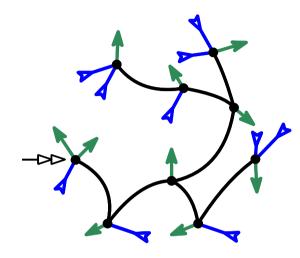


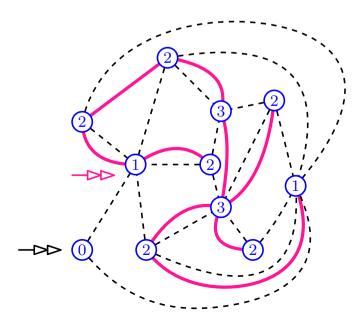
quadrangulation with \boldsymbol{n} faces

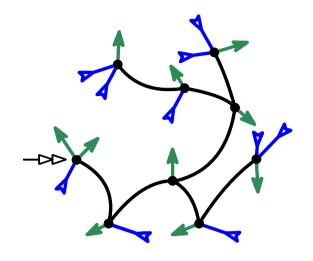


quadrangulation with n faces

well-labeled tree



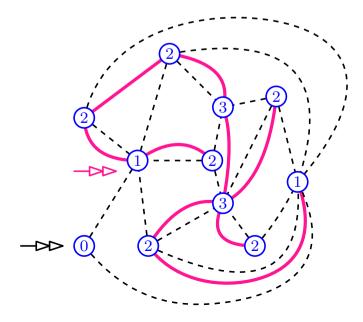


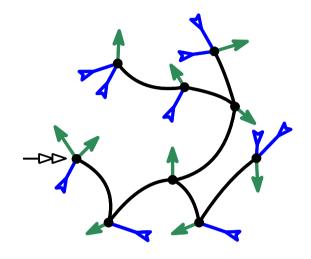


Blossoming bijections

- Eulerian maps [Schaeffer 97]
- General maps with prescribed vertices degree sequences [Bouttier, Di Francesco, Guitter 02]
- Constellations [Bousquet-Mélou, Schaeffer 00]
- Bipartite maps [Bousquet-Mélou, Schaeffer 02]
- Simple triangulations [Poulalhon, Schaeffer 05], simple quadrangulations [Fusy 07]

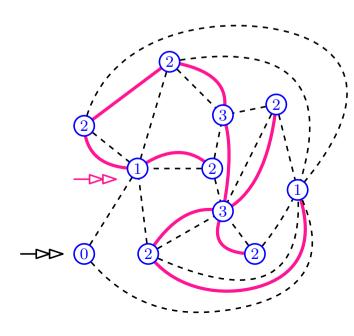
(without loops nor multiple edges)





Blossoming bijections

- Eulerian maps [Schaeffer 97]
- General maps with prescribed vertices degree sequences [Bouttier, Di Francesco, Guitter 02]
- Constellations [Bousquet-Mélou, Schaeffer 00]
- Bipartite maps [Bousquet-Mélou, Schaeffer 02]
- Simple triangulations [Poulalhon, Schaeffer 05], simple quadrangulations [Fusy 07]
 - (without loops nor multiple edges)

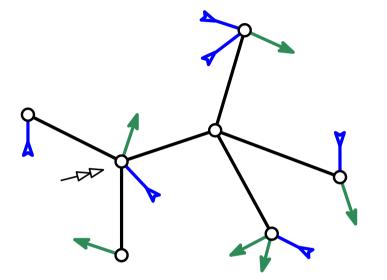


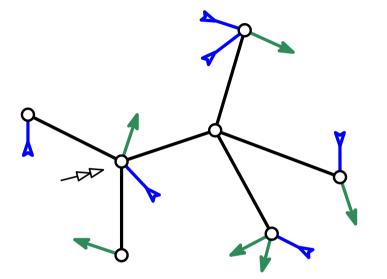
Mobile type bijections

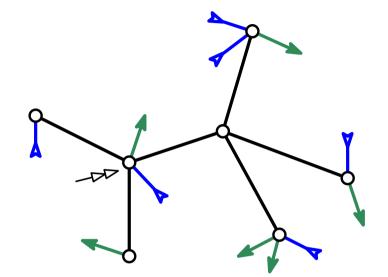
- Quadrangulations [Schaeffer 98]
- General maps with prescribed faces degree sequences [Bouttier, di Francesco, Guitter 04] = BDG bijection
- Maps with sources and delays [Miermont 09],

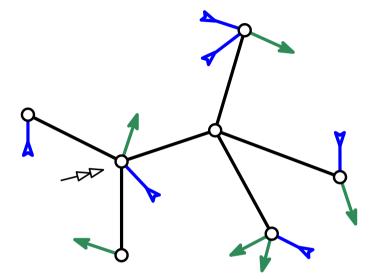
[Bouttier, Fusy, Guitter 14]

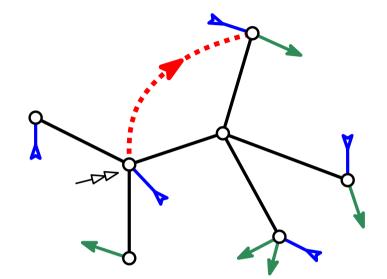
• Extension to higher genus [Chapuy, Marcus, Schaeffer 09],

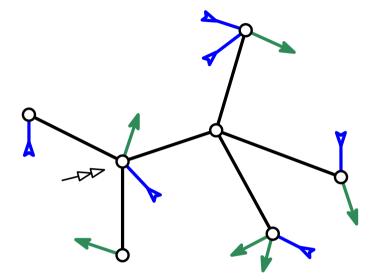


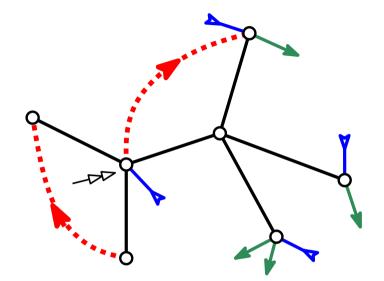


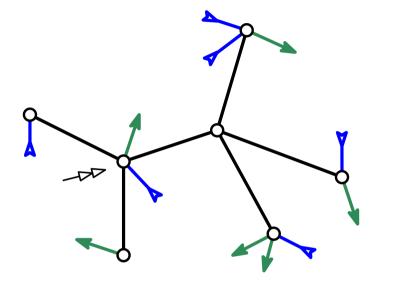


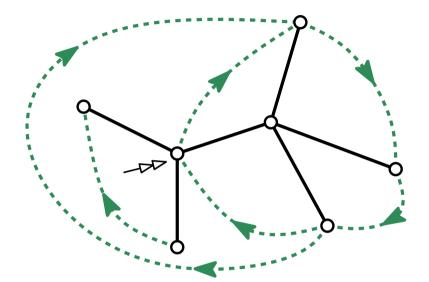


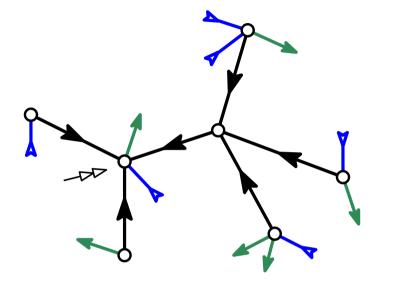


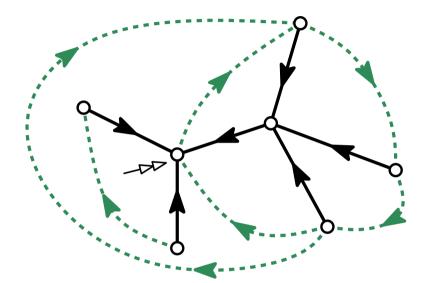




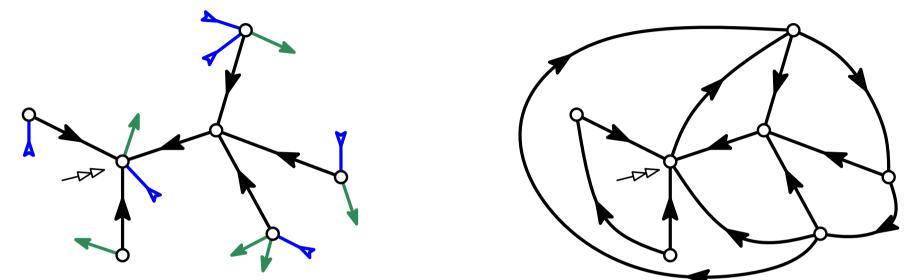






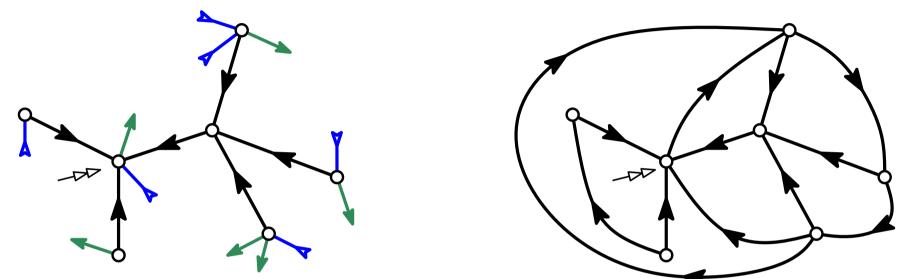


Can we unify all the blossoming bijections ?



Via this construction, an **oriented** planar map is canonically associated to a blossoming tree.

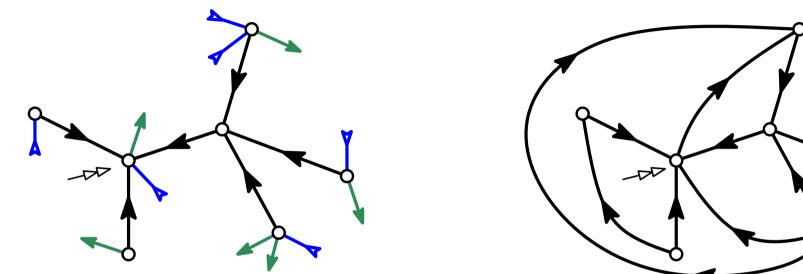
Can we unify all the blossoming bijections ?



Via this construction, an **oriented** planar map is canonically associated to a blossoming tree.

Can we reverse the construction ??

Can we unify all the blossoming bijections ?



Via this construction, an **oriented** planar map is canonically associated to a blossoming tree.

Can we reverse the construction ?? Yes, by a **generic bijective scheme**:

Theorem: [A., Poulalhon 15] (generalization of results of [Bernardi '07]) If a planar map M is endowed with a "nice orientation" of its edges, then there exists a **unique** blossoming tree whose closure is M endowed with its orientation.

Can we reverse the construction ?? Yes, by a **generic bijective scheme**:

Theorem: [A., Poulalhon 15](generalization of previous results in [Bernardi '07]) If a planar map M is endowed with a "nice orientation" of its edges, then there exists a **unique** blossoming tree whose closure is M endowed with its orientation.

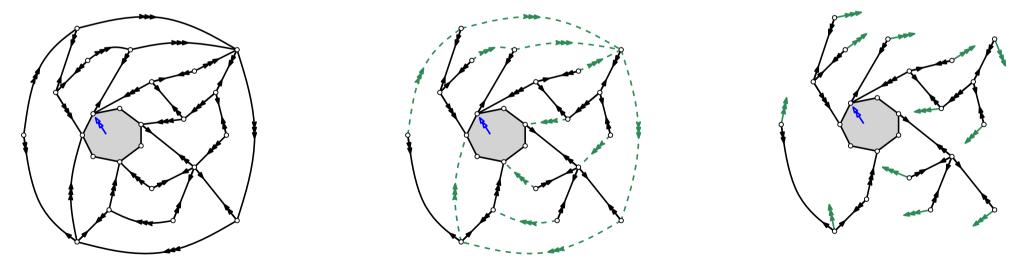
Combined with the general theory of c-orientations [Propp 03] and/or α -orientations [Felsner 04], this allows to retrieve all the bijections mentioned above and to obtain new bijections for which no enumerative formulas are available (cf also [Bernardi, Fusy 12]).

Can we reverse the construction ?? Yes, by a **generic bijective scheme**:

Theorem: [A., Poulalhon 15](generalization of previous results in [Bernardi '07]) If a planar map M is endowed with a "nice orientation" of its edges, then there exists a **unique** blossoming tree whose closure is M endowed with its orientation.

Combined with the general theory of c-orientations [Propp 03] and/or α -orientations [Felsner 04], this allows to retrieve all the bijections mentioned above and to obtain new bijections for which no enumerative formulas are available (cf also [Bernardi, Fusy 12]).

Often easier to "guess" the right orientations than the right families of trees.



Blossoming bijection for *d*-angulations of girth d with a boundary, [A., Poulalhon 15].

= length of the smallest cycle

Theorem: [Tutte 63], bijective proof in [Schaeffer 97] $M(z) = \sum_{m} z^{|E(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$ Then: $M = T^2(1 - 4T) \text{ where } T \text{ unique formal power series defined by } T = z + 3T^2$

Theorem: [Tutte 63], bijective proof in [Schaeffer 97] $M(z) = \sum_{m} z^{|E(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$ Then: $M = T^2(1 - 4T) \text{ where } T \text{ unique formal power series defined by } T = z + 3T^2$

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19+]

For any
$$g \ge 1$$
, let $M_g(z) = \sum_m z^{|E(m)|}$, where $m \in \left\{ \text{maps of genus } g \right\}$.

Then M_g is a rational function of T.

Idea of proof: Generalization of Schaeffer's blossoming bijection to higher genus. Careful analysis of the blossoming **unicellular** maps

Theorem: [Tutte 63], bijective proof in [Schaeffer 97] $M(z) = \sum_{m} z^{|E(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$ Then: $M = T^2(1 - 4T) \text{ where } T \text{ unique formal power series defined by } T = z + 3T^2$

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19+]

For any
$$g \ge 1$$
, let $M_g(z) = \sum_m z^{|E(m)|}$, where $m \in \left\{ \text{maps of genus } g \right\}$.

Then M_g is a rational function of T.

Idea of proof: Generalization of Schaeffer's blossoming bijection to higher genus. Careful analysis of the blossoming **unicellular** maps

Result not available with the "mobile-type" bijection of [Chapuy – Marcus – Schaeffer]

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$M(z_{\bullet}, z_{\circ}) = \sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$$
Then $M = T_{\circ}T_{\bullet}(1 - 2T_{\circ} - 2T_{\bullet})$ where $\begin{cases} T_{\bullet} = z_{\bullet} + T_{\bullet}^{2} + 2T_{\circ}T_{\bullet} \\ T_{\circ} = z_{\circ} + T_{\circ}^{2} + 2T_{\bullet}T_{\circ} \end{cases}$

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

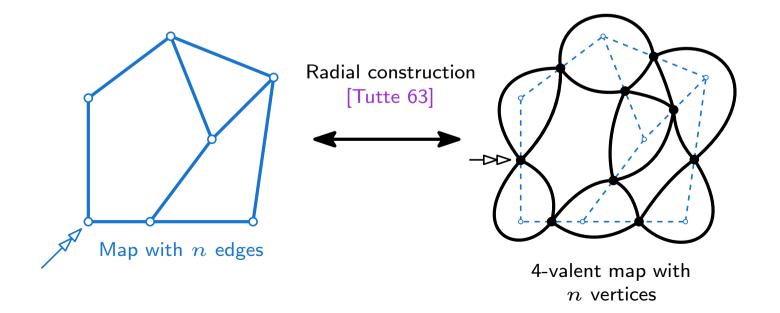
$$M(z_{\bullet}, z_{\circ}) = \sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$$
Then $M = T_{\circ}T_{\bullet}(1 - 2T_{\circ} - 2T_{\bullet})$ where $\begin{cases} T_{\bullet} = z_{\bullet} + T_{\bullet}^{2} + 2T_{\circ}T_{\bullet} \\ T_{\circ} = z_{\circ} + T_{\circ}^{2} + 2T_{\bullet}T_{\circ} \end{cases}$

Euler's formula: |V(m)| + |F(m)| = 2 + |E(m)| - 2g(m)

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$M(z_{\bullet}, z_{\circ}) = \sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$$
Then $M = T_{\circ}T_{\bullet}(1 - 2T_{\circ} - 2T_{\bullet})$ where $\begin{cases} T_{\bullet} = z_{\bullet} + T_{\bullet}^{2} + 2T_{\circ}T_{\bullet} \\ T_{\circ} = z_{\circ} + T_{\circ}^{2} + 2T_{\bullet}T_{\circ} \end{cases}$

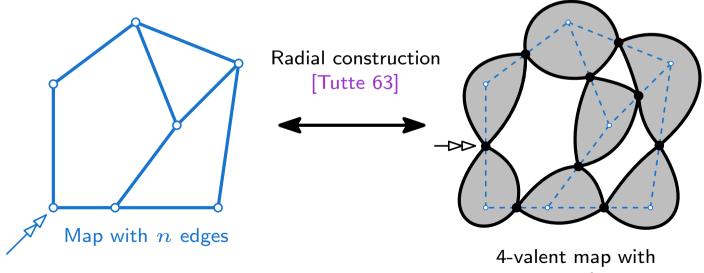
Euler's formula: |V(m)| + |F(m)| = 2 + |E(m)| - 2g(m)



Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$M(z_{\bullet}, z_{\circ}) = \sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$$
Then $M = T_{\circ}T_{\bullet}(1 - 2T_{\circ} - 2T_{\bullet})$ where $\begin{cases} T_{\bullet} = z_{\bullet} + T_{\bullet}^{2} + 2T_{\circ}T_{\bullet} \\ T_{\circ} = z_{\circ} + T_{\circ}^{2} + 2T_{\bullet}T_{\circ} \end{cases}$

Euler's formula: |V(m)| + |F(m)| = 2 + |E(m)| - 2g(m)



Already for planar maps, this result is not accessible with mobile-type bijections.

n vertices

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$M(z_{\bullet}, z_{\circ}) = \sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text{ where } m \in \left\{ \text{planar maps} \right\}.$$
Then $M = T_{\circ}T_{\bullet}(1 - 2T_{\circ} - 2T_{\bullet})$ where $\begin{cases} T_{\bullet} = z_{\bullet} + T_{\bullet}^{2} + 2T_{\circ}T_{\bullet} \\ T_{\circ} = z_{\circ} + T_{\circ}^{2} + 2T_{\bullet}T_{\circ} \end{cases}$

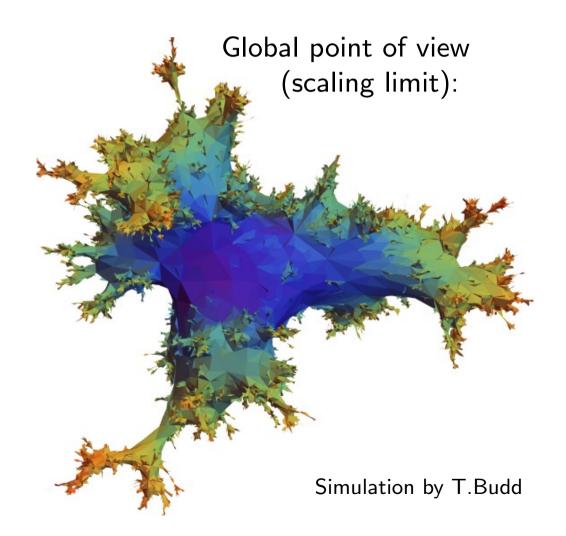
Euler's formula: |V(m)| + |F(m)| = 2 + |E(m)| - 2g(m)

Theorem: [Bender, Canfield, Richmond 95], bijective proof in [A.,Lepoutre 20+] For any $g \ge 1$, let $M_g(z_{\bullet}, z_{\circ}) = \sum_m z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}$, where $m \in \{\text{maps of genus } g\}$.

Then M_g is a rational function of T_{\bullet} and T_{\circ} .

Idea of proof: Same bijection but different proof for the analysis of the unicellular blossoming maps (gives also a simpler proof of the univariate case).

II - Scaling limits of random maps

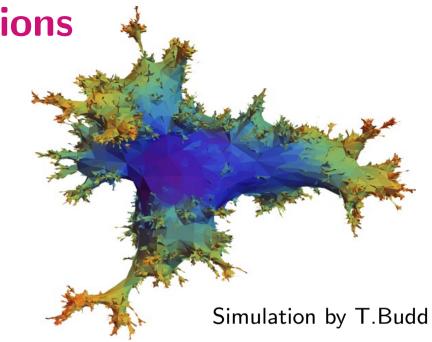


Scaling limit of random quadrangulations

 $Q_n = \{ \mathsf{Quadrangulations of size } n \}$

= n+2 vertices, n faces, 2n edges

 $Q_n = \mathsf{Uniform}$ random element of \mathcal{Q}_n



Scaling limit of random quadrangulations

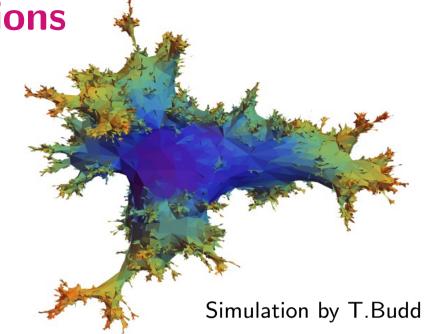
 $Q_n = \{ \mathsf{Quadrangulations of size } n \}$

= n+2 vertices, n faces, 2n edges

 $Q_n = \mathsf{Uniform}$ random element of \mathcal{Q}_n

When the size of the map goes to infinity, so does the typical distance between two vertices.

Idea: "scale" the map = length of edges decreases with the size of the map. Goal: obtain a limiting (non-trivial) compact object



Scaling limit of random quadrangulations

 $Q_n = \{ \mathsf{Quadrangulations of size } n \}$

= n+2 vertices, n faces, 2n edges

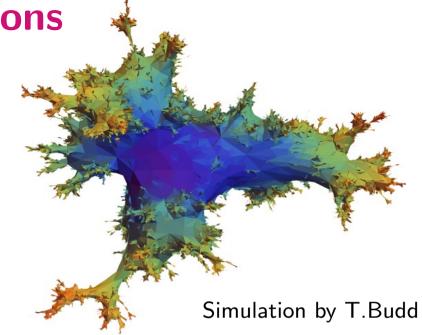
 $Q_n = \mathsf{Uniform}$ random element of \mathcal{Q}_n

When the size of the map goes to infinity, so does the typical distance between two vertices.

Idea: "scale" the map = length of edges decreases with the size of the map. Goal: obtain a limiting (non-trivial) compact object

Motivations:

- Natural random discretization of a continuous surface.
- Construction of a 2-dim. analogue of the Brownian motion: The Brownian Map [Miermont 13],[Le Gall 13].
- Link with Liouville Quantum Gravity, [Duplantier, Sheffield 11], [Duplantier, Miller, Sheffield 14], [Miller, Sheffield 16,16,17]



Scaling limit of uniform quadrangulations

Idea: "scale" the map = length of edges decreases with the size of the map. Goal: obtain a limiting (non-trivial) compact object

For quadrangulations : well understood

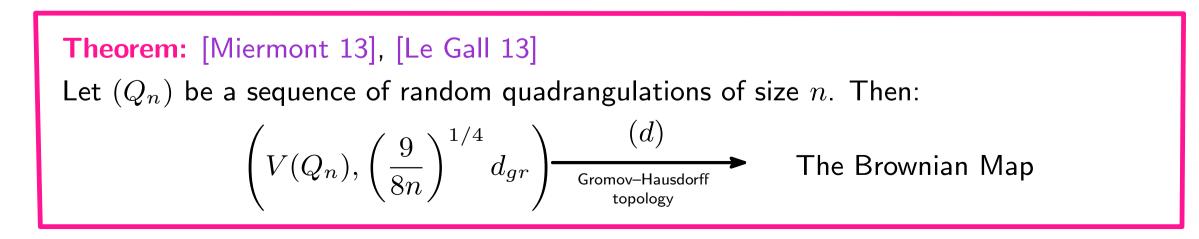
• The bijection of Schaeffer: quadrangulations \leftrightarrow labeled trees. Labels in the trees = distances between the vertices and the root.

ullet distance between two random points $\sim n^{1/4}$ + law of the distance [Chassaing-Schaeffer '04]

• cvgence of normalized quadrangulations + properties of the limit [Marckert-Mokkadem '06], [Le Gall '07], [Le Gall, Paulin '08] [Miermont '08]

Hausdorff dimension = 4

topology of the limit = sphere



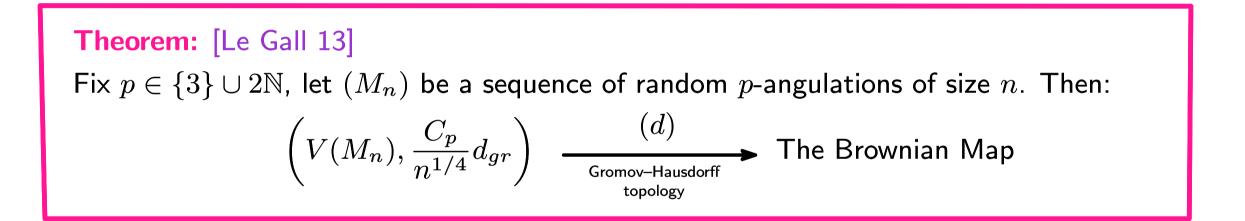
what if quadrangulations are replaced by triangulations, maps, simple triangulations, ...?

Idea : The Brownian map is a universal limiting object.

All "reasonable models" of maps (properly rescaled) are expected to converge towards it.

what if quadrangulations are replaced by triangulations, maps, simple triangulations, ...?

Idea : The Brownian map is a universal limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.



Idea of the proof:

Replace Schaeffer's bijection by the bijection of [Bouttier, Di Francesco, Guitter 04].

Le Gall's magic trick:

Since uniform quadrangulations are invariant by rerooting, the fact that they converge to the Brownian map, implies that the **Brownian map is invariant by rerooting**.

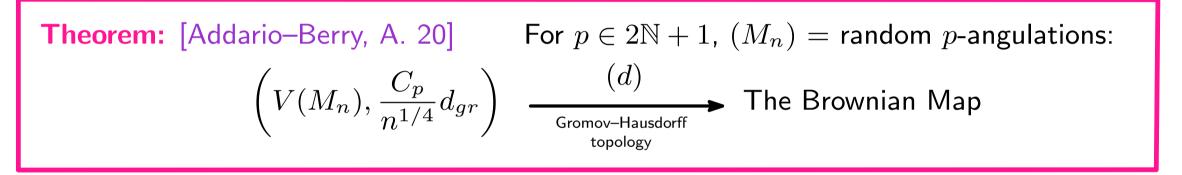
 \rightarrow Use this invariance to prove the convergence of others models of maps.

To prove that another model of maps converges to the Brownian map:

- 1. encode the maps by some labeled trees,
- 2. study the limits of the labeled trees,
- 3. interpret the distance in the maps by some function of the labeling of the tree.

To prove that another model of maps converges to the Brownian map:

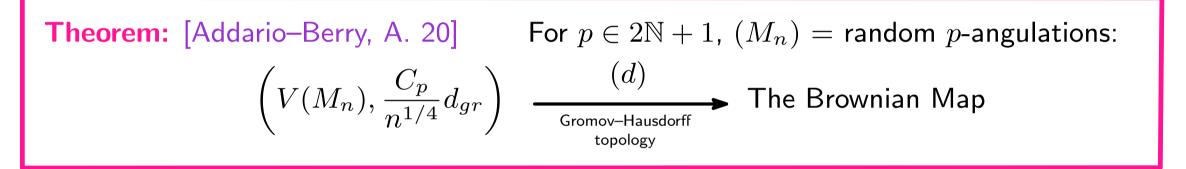
- 1. encode the maps by some labeled trees,
- 2. study the limits of the labeled trees,
- 3. interpret the distance in the maps by some function of the labeling of the tree.



Difficulty: 2. The labeled trees obtained by the BDG bijection are not "nice".

To prove that another model of maps converges to the Brownian map:

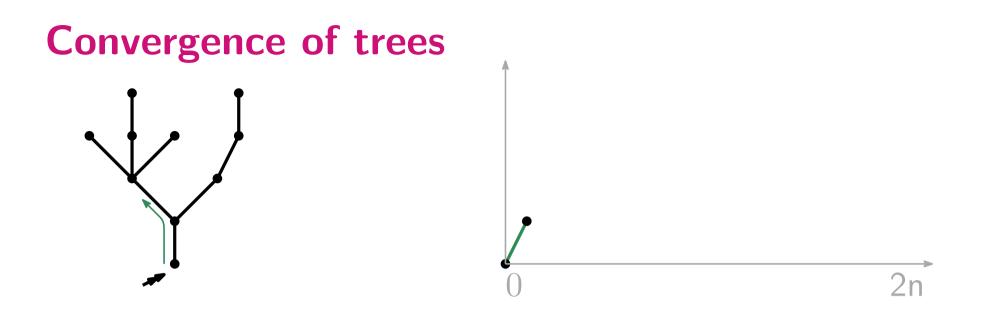
- 1. encode the maps by some labeled trees,
- 2. study the limits of the labeled trees,
- 3. interpret the distance in the maps by some function of the labeling of the tree.

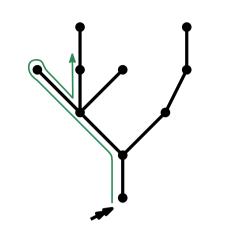


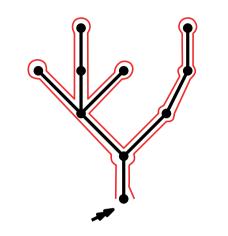
Difficulty: 2. The labeled trees obtained by the BDG bijection are not "nice".

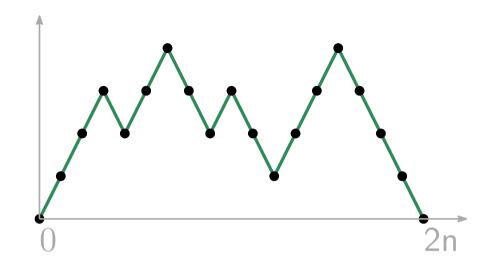
Theorem: [Addario–Berry, A. 15] Let
$$(\Delta_n) =$$
 random simple triangulations:
 $\left(V(\Delta_n), \left(\frac{3}{4n}\right)^{1/4} d_{gr}\right) \xrightarrow[\text{Gromov-Hausdorff}]{}$ The Brownian Map

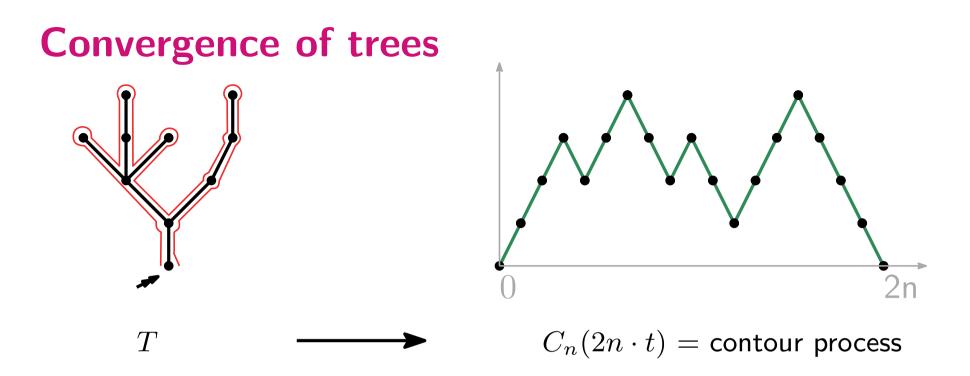
Difficulty: 3. Track distances in blossoming bijections.

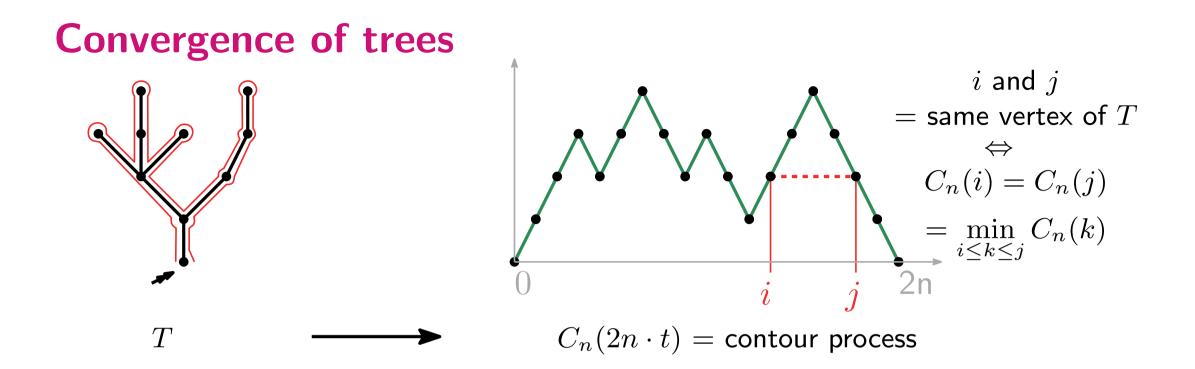


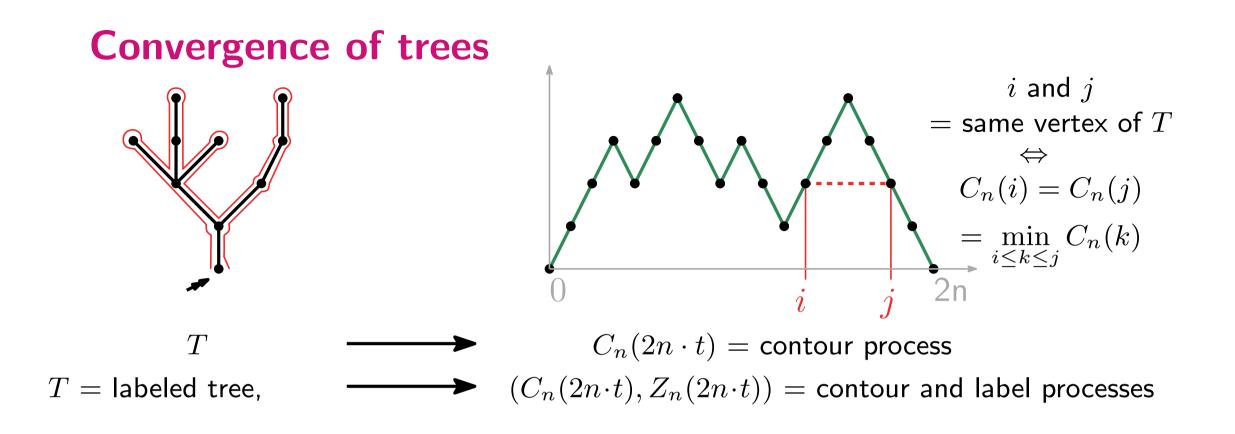


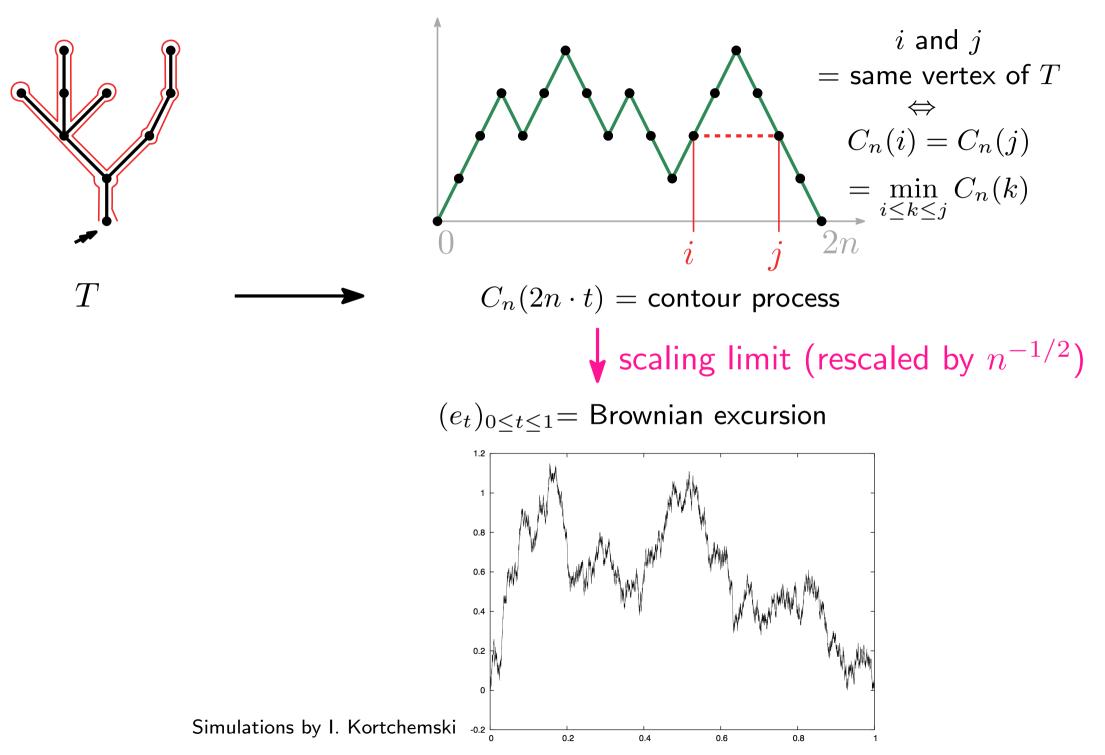


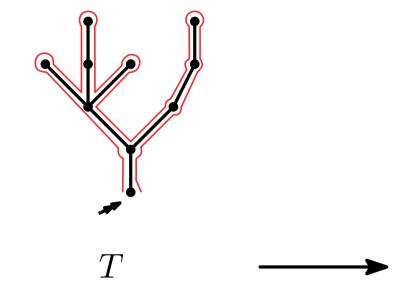






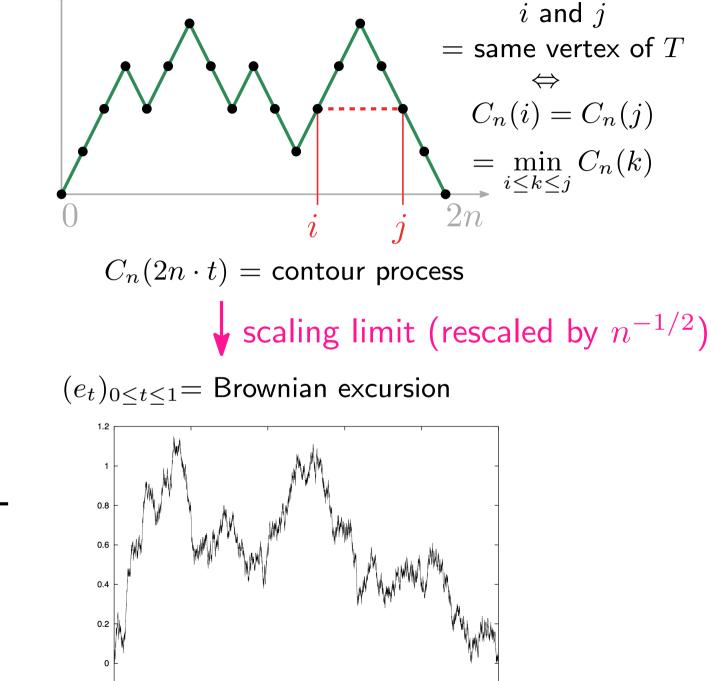






Continuum Random Tree

 \mathcal{T}_e , [Aldous¹91]



0.6

0.8

0.2

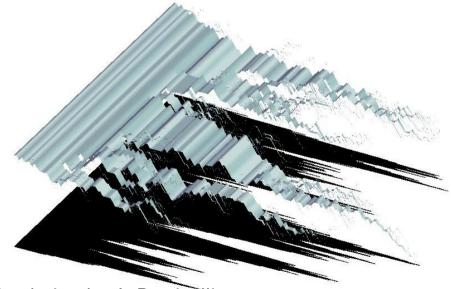
0.4

Simulations by I. Kortchemski

Convergence of trees of labeled trees 1st step : the Brownian tree Simulations by 1. Kortchemski

Convergence of trees of labeled trees 1st step : the Brownian tree

2nd step : Brownian snake



Simulation by J. Bettinelli

 $(e_t, Z_t) =$ Brownian snake [Le Gall 93] Simulations by I. Kortchemski

Theorem: [Janson, Marckert 04], [Miermont 08],... For a sequence (T_n) of "nice" random labeled trees:

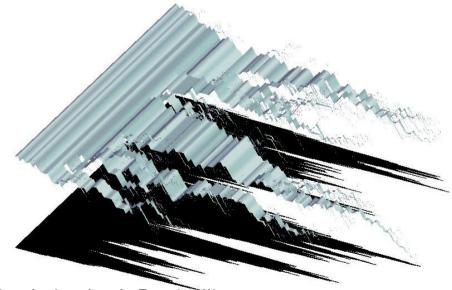
$$\left(\frac{aC_n(2nt)}{\mathbf{n^{1/2}}}, \frac{bZ_n(2nt)}{\mathbf{n^{1/4}}}\right) \xrightarrow{(d)} (e_t, Z_t)$$

for the uniform topology of $\mathcal{C}([0,\,1],\,\mathbb{R})^2$,

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_{\rho} = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$. $Z \sim$ Brownian motion on the tree

Convergence of trees of labeled trees 1st step : the Brownian tree

2nd step : Brownian snake



Simulation by J. Bettinelli

 $(e_t, Z_t) =$ Brownian snake [Le Gall 93]

Simulations by I. Kortchemski

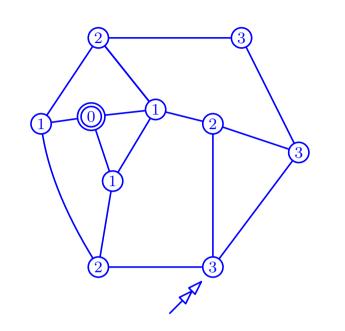
Theorem: [Janson, Marckert 04], [Miermont 08],... For a sequence (T_n) of "nice" random labeled trees:

$$\left(\frac{aC_n(2nt)}{\mathbf{n^{1/2}}}, \frac{bZ_n(2nt)}{\mathbf{n^{1/4}}}\right) \xrightarrow{(d)} (e_t, Z_t)$$

for the uniform topology of $\mathcal{C}([0,1],\mathbb{R})^2$,

Conditional on \mathcal{T}_e , Z a centered Gaussian process with $Z_{\rho} = 0$ and $E[(Z_s - Z_t)^2] = d_e(s, t)$. $Z \sim$ Brownian motion on the tree

Nice = typically Galton-Watson trees, with **centered** increments of labels along edges.



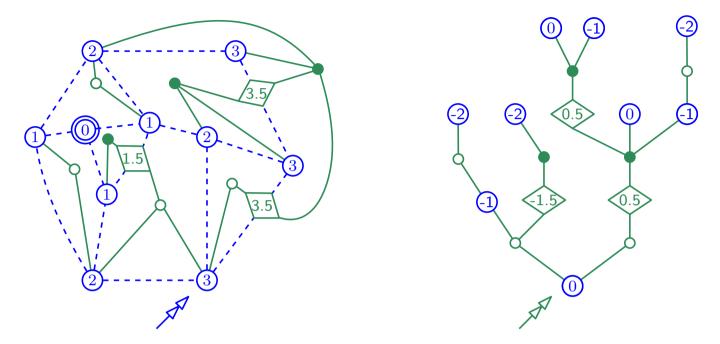


Illustration of the Bouttier – Di Francesco – Guitter bijection for a non-bipartite map.

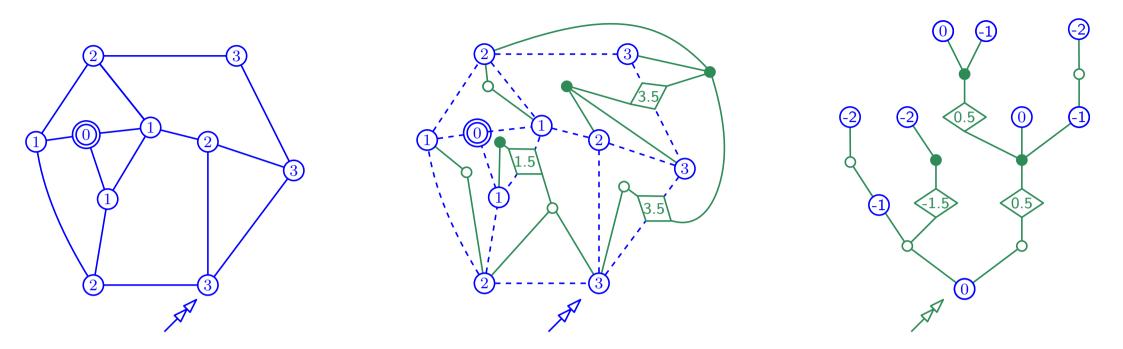


Illustration of the Bouttier – Di Francesco – Guitter bijection for a non-bipartite map.

Labeled tree obtained = 4-type Galton-Watson tree T + random label increments along edges.

Problem: For *e* an edge of *T*, $\mathbb{E}[\text{label increments along } e] \neq 0$ i.e. the **the label increments are not centered**.

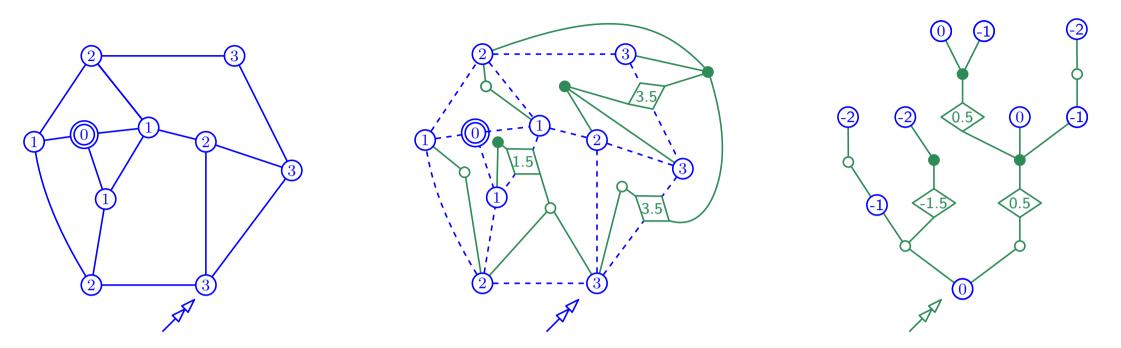
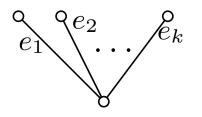


Illustration of the Bouttier – Di Francesco – Guitter bijection for a non-bipartite map.

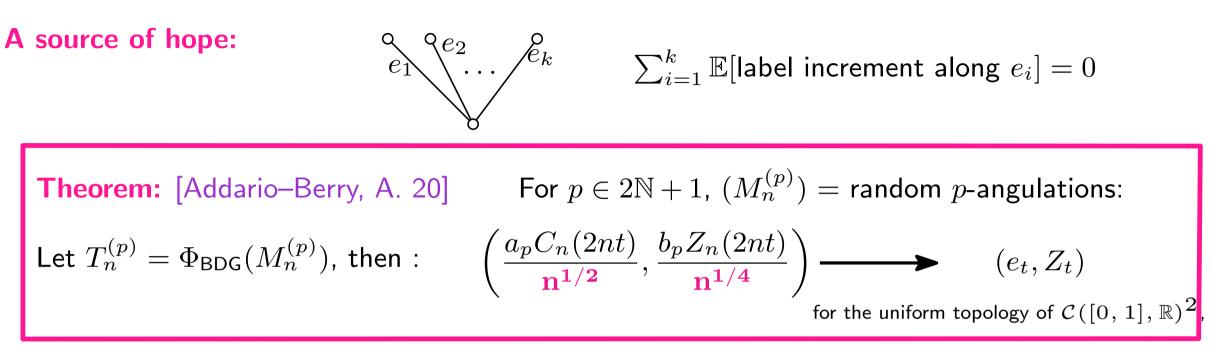
Labeled tree obtained = 4-type Galton-Watson tree T + random label increments along edges.

Problem: For e an edge of T, $\mathbb{E}[\text{label increments along } e] \neq 0$ i.e. the the label increments are not centered. \Rightarrow Known results of convergence do not apply.

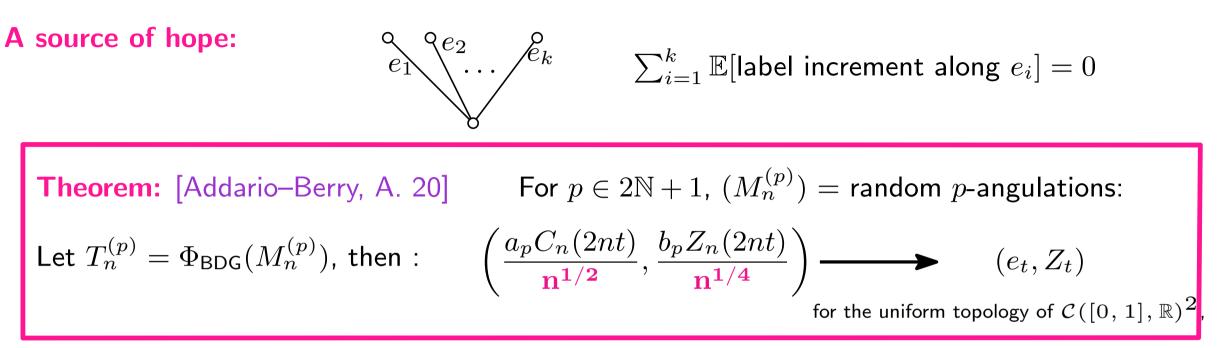
A source of hope:



 $e_1 \qquad e_2 \\ \cdots \\ e_k \qquad \sum_{i=1}^k \mathbb{E}[\text{label increment along } e_i] = 0$



[Marckert 07] convergence in this setting (with even weaker "centering assumption") but requires **monototype** GW trees + **bounded** number of children.



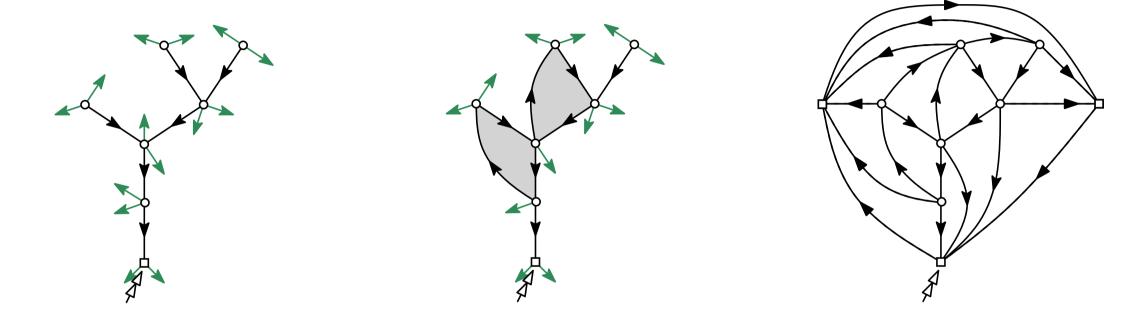
[Marckert 07] convergence in this setting (with even weaker "centering assumption") but requires **monototype** GW trees + **bounded** number of children.

Strategy of proof: Randomly shuffle "our" trees to get a coupling with a "nice" model. in our case [Miermont 08] is the nice model but it gives a general **bootstrapping principle**.

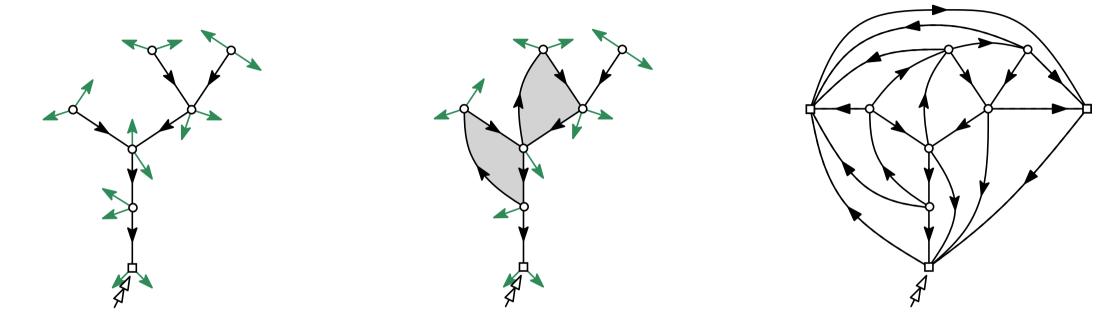
$$\sigma_u = (14)(23)$$

$$Q_{a} \stackrel{b \ c \ d}{u} = (14)(23) \qquad Q_{a} \stackrel{c \ b \ a}{u}$$

First step: blossoming bijection of [Poulalhon, Schaeffer 05] for simple triangulations.

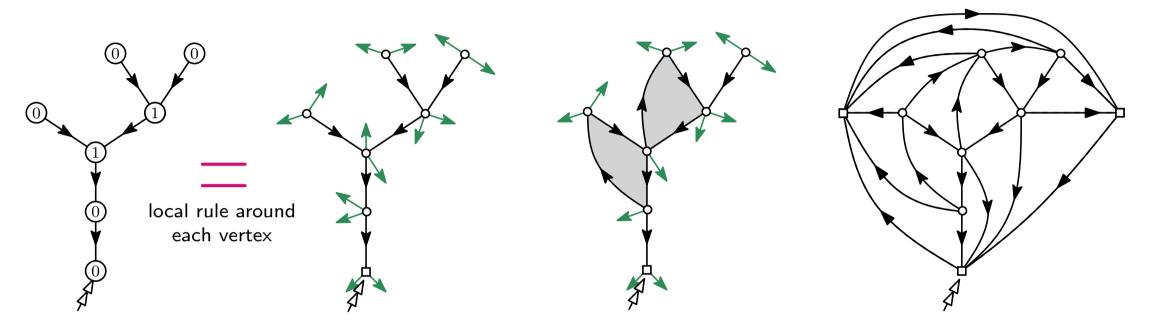


First step: blossoming bijection of [Poulalhon, Schaeffer 05] for simple triangulations.



Problem: How to track distances in the map in the blossoming tree ?

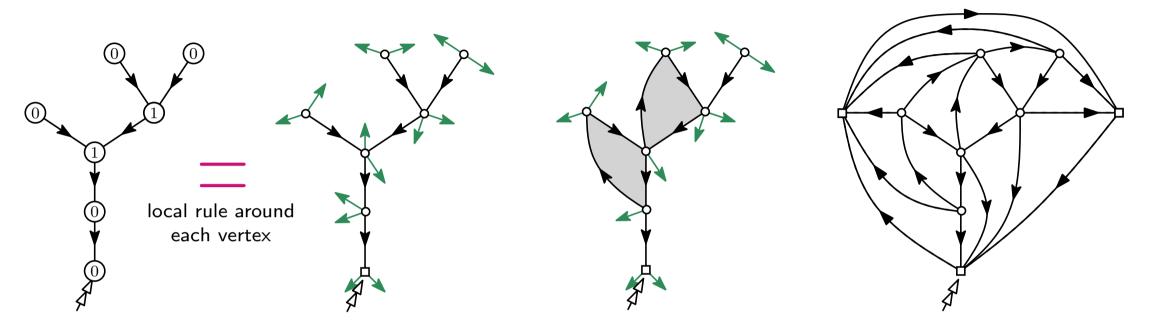
First step: blossoming bijection of [Poulalhon, Schaeffer 05] for simple triangulations.



Problem: How to track distances in the map in the blossoming tree ?

• Encode the blossoming trees by labeled trees Prove that the scaling limit of trees is the **Brownian snake**.

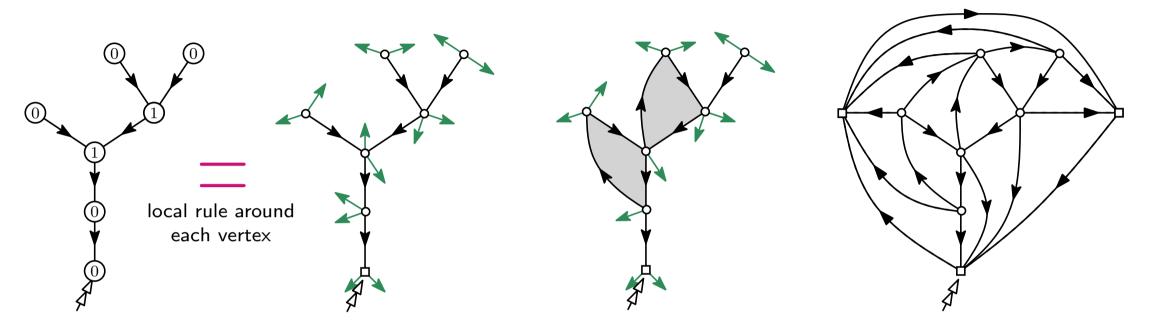
First step: blossoming bijection of [Poulalhon, Schaeffer 05] for simple triangulations.



Problem: How to track distances in the map in the blossoming tree ?

Encode the blossoming trees by labeled trees
 Prove that the scaling limit of trees is the Brownian snake.
 Requires the bootstrapping principle !

First step: blossoming bijection of [Poulalhon, Schaeffer 05] for simple triangulations.



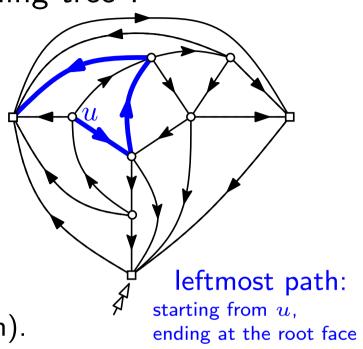
Problem: How to track distances in the map in the blossoming tree ?

- Encode the blossoming trees by labeled trees
 Prove that the scaling limit of trees is the Brownian snake.
 Requires the bootstrapping principle !
- Prove that the labels of the **tree** give some distance information in the **map**

Problem: How to track distances in the map in the blossoming tree ?

- Encode the blossoming trees by labeled trees Prove that the scaling limit of trees is the **Brownian snake**.
- Prove that the labels of the **tree** give some distance information in the **map**
- \rightarrow Two key combinatorial observations:

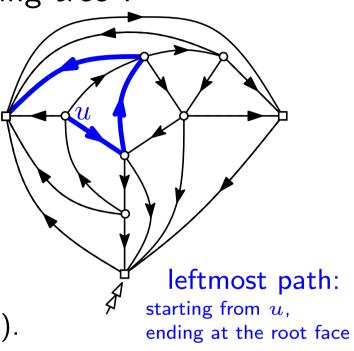
Labels in the tree = length of leftmost path in the map Leftmost paths are almost geodesic (up to $o(n^{1/4})$ error term).



Problem: How to track distances in the map in the blossoming tree ?

- Encode the blossoming trees by labeled trees Prove that the scaling limit of trees is the **Brownian snake**.
- Prove that the labels of the **tree** give some distance information in the **map**
- \rightarrow Two key combinatorial observations:

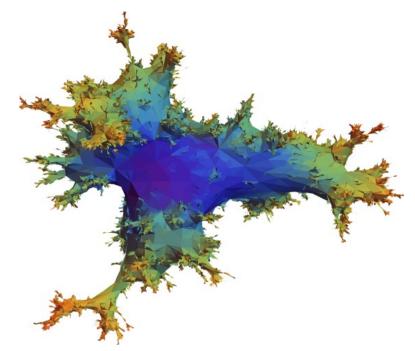
Labels in the tree = length of leftmost path in the map Leftmost paths are almost geodesic (up to $o(n^{1/4})$ error term).



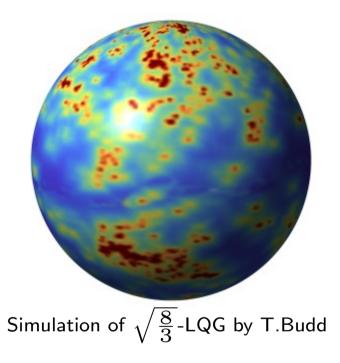
Theorem: [Addario–Berry, A. 15] Let $(\Delta_n) =$ random simple triangulations: $\left(V(\Delta_n), \left(\frac{3}{4n}\right)^{1/4} d_{gr}\right) \xrightarrow[formov-Hausdorff]{} \text{The Brownian Map}$

Same ideas sucessfully applied to study simple maps [Bernardi, Collet, Fusy 14], simple triangulations on the torus [Beffara, Huynh, Lévêque 20], simple triangulations with a boundary [A., Holden, Sun 20]

 $\gamma \in (0,2)$, γ -Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

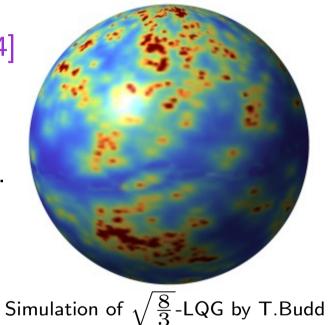


Simulation of the Brownian map by T.Budd



 $\gamma \in (0,2)$, γ -Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

Construction in the continuum. in the discrete setting ?

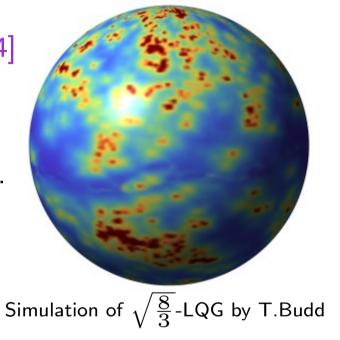


Simulation of the Brownian map by T.Budd

 $\gamma \in (0,2)$, γ -Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

[Duplantier, Miller, Sheffield 14] [Miller, Sheffield 16+16+17]

Construction in the continuum. in the discrete setting ?

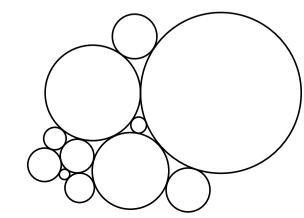


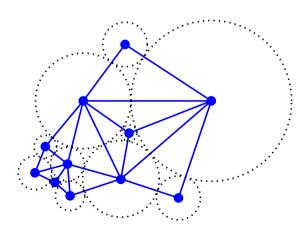
Simulation of the Brownian map by T.Budd

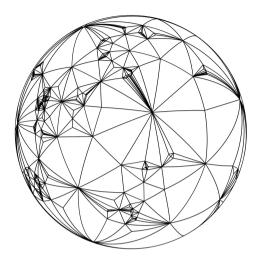
A priori , there is no canonical way to embed a planar map in the sphere.

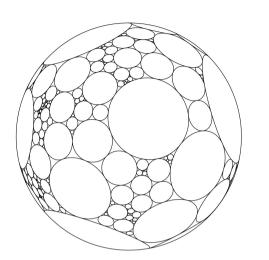
But, for simple triangulations: the **circle packing theorem** gives a canonical embedding.

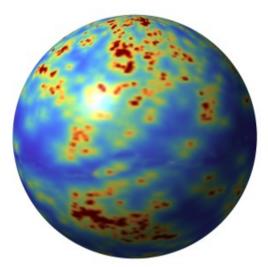
(Unique up to Möbius transformations.)









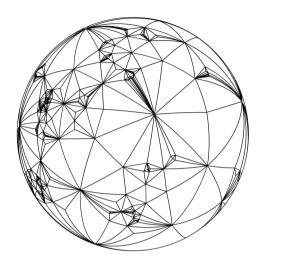


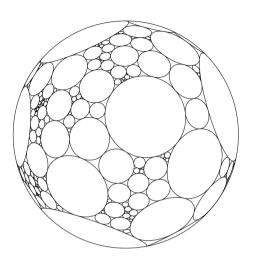
Simulation of a large simple triangulation embedded in the sphere by circle packing.

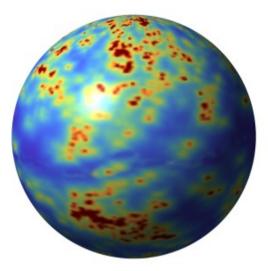
Simulation of $\sqrt{\frac{8}{3}}$ -LQG by T.Budd

Software CirclePack by K.Stephenson.

Motivation to study simple triangulations, but so far no results for random circle packings.







Simulation of a large simple triangulation embedded in the sphere by circle packing.

Simulation of $\sqrt{\frac{8}{3}}$ -LQG by T.Budd

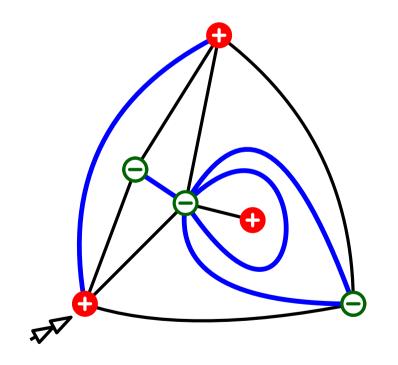
Software CirclePack by K.Stephenson.

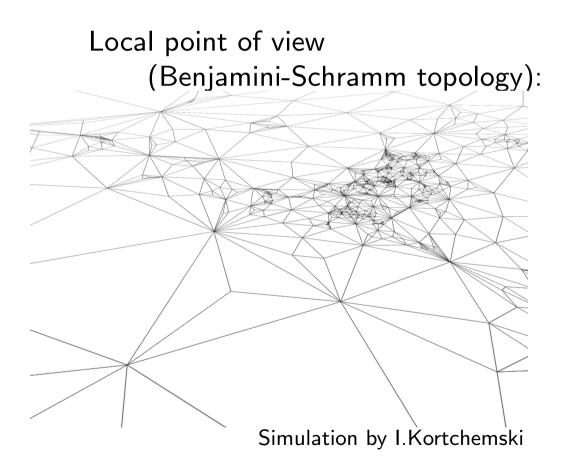
Motivation to study simple triangulations, but so far no results for random circle packings.

However, [Holden, Sun 19] proved that uniform triangulations (without multiple edges) embedded via the Cardy embedding converge towards $\sqrt{8/3}$ -LQG.

Proof is built on many results, among which [A., Holden, Sun '20] : the scaling limit of triangulations without multiple edges and with a boundary is the Brownian disk.

III - Local limit of lsing-weighted random triangulations





Take a random triangulation with n edges. What does it look like when $n \to \infty$?

Take a random triangulation with n edges. What does it look like when $n \to \infty$?

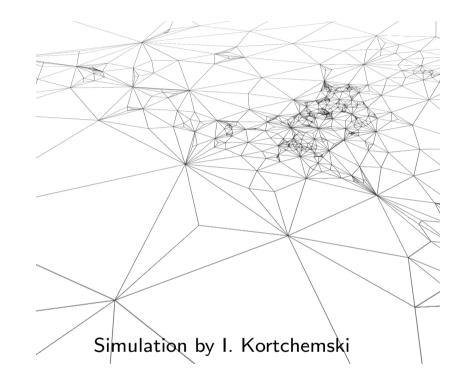
Local point of view :

Look at neighborhoods of the root

The **local topology** (= **Benjamini–Schramm topology**) on finite maps is induced by the distance:

$$d_{loc}(m, m') = \frac{1}{1 + \max\{r \ge 0 : B_r(m) = B_r(m')\}}$$

where $B_r(m) =$ ball of radius r centered at the root vertex of m.



Take a random triangulation with n edges. What does it look like when $n \to \infty$?

Local point of view :

Look at neighborhoods of the root

The **local topology** (= **Benjamini–Schramm topology**) on finite maps is induced by the distance:

$$d_{loc}(m, m') = \frac{1}{1 + \max\{r \ge 0 : B_r(m) = B_r(m')\}}$$

where $B_r(m) =$ ball of radius r centered at the root vertex of m.

Theorem [Angel – Schramm, '03] Let \mathbb{P}_n^{Δ} = uniform distribution on triangulations of size n. $\mathbb{P}_n^{\Delta} \xrightarrow{(d)} UIPT$, for the local topology UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.

Theorem [Angel – Schramm, '03] Let \mathbb{P}_n^{Δ} = uniform distribution on triangulations of size n. $\mathbb{P}_n^{\Delta} \xrightarrow{(d)} \text{UIPT}$, for the local topology UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel Schramm, 03]
- Volume (nb. of vertices) and perimeters of balls known to some extent. $\mathbb{E}\left[|B_r(\mathbf{T}_{\infty})|\right] \sim \frac{2}{7}r^4 \qquad \text{[Angel 04, Curien - Le Gall 12]}$
- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias 13]

Theorem [Angel – Schramm, '03] Let $\mathbb{P}_n^{\Delta} =$ uniform distribution on triangulations of size n. $\mathbb{P}_n^{\Delta} \xrightarrow{(d)} UIPT$, for the local topology UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.

Some properties of the UIPT:

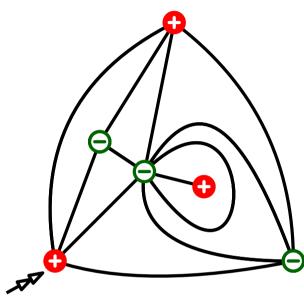
- The UIPT has almost surely one end [Angel Schramm, 03]
- Volume (nb. of vertices) and perimeters of balls known to some extent. $\mathbb{E}\left[|B_r(\mathbf{T}_{\infty})|\right] \sim \frac{2}{7}r^4 \qquad \text{[Angel 04, Curien - Le Gall 12]}$
- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias 13]

Universality: we expect the **same behavior** for other "reasonable" models of maps. In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])

First, **Ising model** on a finite deterministic planar triangulation T:

Spin configuration on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{ \Theta$

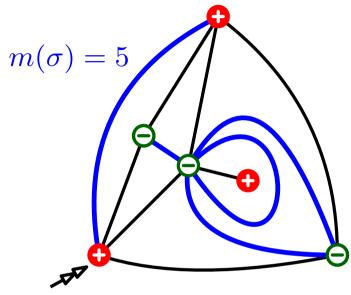
Ising model on T: take a random spin configuration with probability:

 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{l} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \end{array}$

h = 0: no magnetic field.

First, **Ising model** on a finite deterministic planar triangulation T:

Spin configuration on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{ \Theta$

Ising model on T: take a random spin configuration with probability:

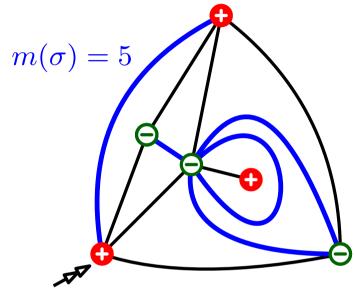
 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{c} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \end{array}$

h = 0: no magnetic field.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma) =$ number of monochromatic edges ($\nu = e^{\beta J}$).

First, **Ising model** on a finite deterministic planar triangulation T:

Spin configuration on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{ \quad \mathbf{O} \quad \mathbf{O}$

Ising model on T: take a random spin configuration with probability:

 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}}$

 $\beta > 0$: inverse temperature. $J = \pm 1$: coupling constant. h = 0: no magnetic field.

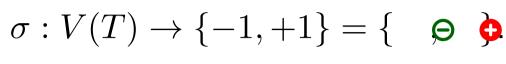
Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma)$ = number of monochromatic edges ($\nu = e^{\beta J}$).

Next step: Sample a triangulation of size ntogether with a spin configuration, with probability $\propto \nu^{m(T,\sigma)}$.

$$\begin{aligned} \mathbb{P}_{n}^{\nu} \bigg(\{ (T, \sigma) \} \bigg) &= \frac{\nu^{m(T, \sigma)} \delta_{|e(T)| = 3n}}{\mathcal{Z}_{n}}. \\ \mathcal{Z}_{n} &= \text{normalizing constant.} \end{aligned}$$

First, **Ising model** on a finite deterministic planar triangulation T:

Spin configuration on *T*:



Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}}$$

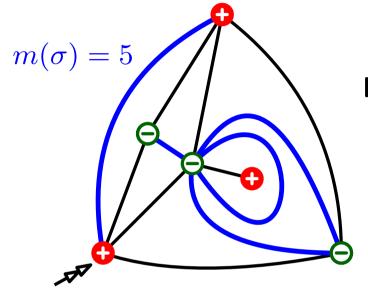
 $\beta > 0$: inverse temperature. $J = \pm 1$: coupling constant. h = 0: no magnetic field.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma)$ = number of monochromatic edges ($\nu = e^{\beta J}$).

Next step: Sample a triangulation of size ntogether with a spin configuration, with probability $\propto \nu^{m(T,\sigma)}$.

$$\mathbb{P}_{n}^{\nu} \left(\{ (T, \sigma) \} \right) = \frac{\nu^{m(T, \sigma)} \delta_{|e(T)|=3n}}{\mathcal{Z}_{n}}.$$
$$\mathcal{Z}_{n} = \text{normalizing constant.}$$

Remark: This is a probability distribution on triangulations with spins. But, forgetting the spins gives a probability a distribution on triangulations without spins different from the uniform distribution.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

coeff $[t^n]$ of generating series of (undecorated) maps $\sim \kappa \rho^{-n} n^{-5/2}$

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

where κ and ρ depend on the combinatorics of the model.

Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

coeff $[t^n]$ of generating series of (undecorated) maps $\sim \kappa \rho^{-n} n^{-5/2}$ (e.g.: triangulations, quadrangulations, general maps, simple maps,...) where κ and ρ depend on the combinatorics of the model.

Generating series of Ising-weighted triangulations:

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}.$$

Theorem [Bernardi – Bousquet-Mélou 11] For every $\nu > 0$, $Q(\nu, t)$ is algebraic and satisfies

$$[t^{3n}]Q(\nu,t) \sim_{n \to \infty} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

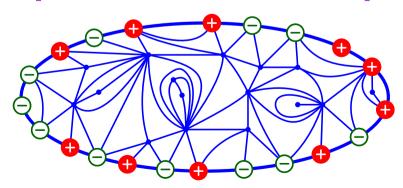
This suggests a **different behavior** of the underlying maps for $\nu = \nu_c$.

Theorem [A. – Ménard – Schaeffer, 21] Let $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution: $\mathbb{P}^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology ν -IIPT = ν -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations. Moreover, simple random walk is **recurrent** on the ν_c -IIPT.

Theorem [A. – Ménard – Schaeffer, 21] Let $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution: $\mathbb{P}^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology ν -IIPT = ν -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations. Moreover, simple random walk is **recurrent** on the ν_c -IIPT.

Strategy of proof:

• Refinement of enumerative results of [Bernardi, Bousquet-Mélou]



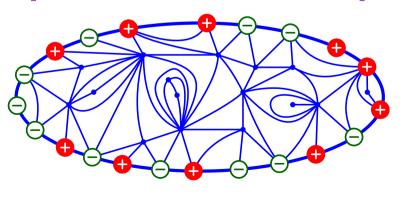
 $\begin{aligned} & \textbf{Theorem [A. - Ménard - Schaeffer 21]} \\ & \textbf{For every } \nu > 0, \text{ for every } \omega \in \{-1, +1\}^* \\ & [t^{3n}] Z_{\omega}(\nu, t) \underset{n \to \infty}{\sim} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases} \\ & \text{ with } Z_{\omega}(\nu, t) \text{ generating series of Ising-weighted} \end{aligned}$

triangulations with boundary condition given by ω .

Theorem [A. – Ménard – Schaeffer, 21] Let $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution: $\mathbb{P}^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology ν -IIPT = ν -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations. Moreover, simple random walk is **recurrent** on the ν_c -IIPT.

Strategy of proof:

• Refinement of enumerative results of [Bernardi, Bousquet-Mélou]



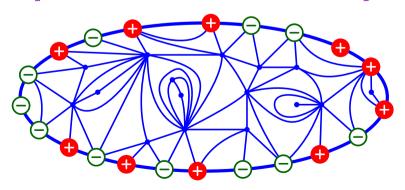
Theorem [A. – Ménard – Schaeffer 21] For every $\nu > 0$, for every $\omega \in \{-1, +1\}^*$ $[t^{3n}]Z_{\omega}(\nu, t) \sim_{n \to \infty} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$ with $Z_{\omega}(\nu, t)$ generating series of Ising-weighted triangulations with boundary condition given by ω .

We use the blossoming bijection of [Bousquet-Mélou, Schaeffer 02] to prove that !

Theorem [A. – Ménard – Schaeffer, 21] Let $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution: $\mathbb{P}^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology ν -IIPT = ν -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations. Moreover, simple random walk is **recurrent** on the ν_c -IIPT.

Strategy of proof:

• Refinement of enumerative results of [Bernardi, Bousquet-Mélou]



Theorem [A. – Ménard – Schaeffer 21] For every $\nu > 0$, for every $\omega \in \{-1, +1\}^*$ $[t^{3n}]Z_{\omega}(\nu, t) \sim_{n \to \infty} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$ with $Z_{\omega}(\nu, t)$ generating series of Ising-weighted triangulations with boundary condition given by ω .

• Proof of the tightness: combinatorial proof by a double counting argument.

Perspectives

- Blossoming bijections in higher genus ? Other rationality schemes to investigate ?
- Track distances in blossoming bijections to study more constrained models. e.g. scaling limit of planar graphs ?
- Extend bootstrapping principle for the convergence of trees to more general models. e.g. α -stable trees ?
- Study of the clusters of the ν -IIPT, following [Bernardi,Curien,Miermont, 15]
- Bijections for the Ising model, blossoming bijection by [Bousquet-Mélou, Schaeffer 02]. Can we find a "mating-of-tree" type bijection ?
- Can we say anything about the growth volume of the ν -IIPT ?

Thank you for your attention !

Un énorme merci à tous mes collaborateurs et collaboratrices :

Louigi Addario-Berry, Jérémie Bouttier, Éric Fusy, Lucas Gerin, Christina Goldschmidt, Nina Holden, Kolja Knauer, Mathias Lepoutre, Jean-François Marckert, Laurent Ménard, Philippe Nadeau, Dominique Poulalhon, Gilles Schaeffer, Xin Sun.