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Abstract. This article presents new enumerative results related to symmetric planar maps.
In the first part a new way of enumerating rooted simple quadrangulations and rooted simple
triangulations is presented, based on the description of two different quotient operations on
symmetric simple quadrangulations and triangulations. In the second part, based on results
of Bouttier, Di Francesco and Guitter and on quotient and substitution operations, the
series of three families of symmetric quadrangular and triangular dissections of polygons are
computed, with control on the distance from the central vertex to the outer boundary.

Introduction

Enumeration of families of plane maps, that is, plane embeddings of graphs, has received
a lot of attention since the 60’s; several methods can be applied: the recursive method
introduced by Tutte [15], the random matrix method introduced by Brézin et al [4], and the
bijective method introduced by Cori and Vauquelin [7] and Schaeffer [12]. In the first part of
this note, we show another method for the enumeration of rooted simple quadrangulations
and triangulations based on quotienting symmetric simple versions of them. Historically, the
enumeration of symmetric maps of order k (i.e., such that a rotation of order k fixes the map)
was reduced to the enumeration of rooted maps via a quotient argument, a method used by
Liskovets [10]. We proceed in the reverse way, namely we use two quotient operations on
symmetric simple quadrangulations and triangulations to build in each case an algebraico-
differential equation (Equations (3) and (8)) satisfied by the generating series of rooted
corresponding simple maps, which can be explicitly solved to obtain the formulas for the
number of rooted simple quadrangulations (due to Tutte [15] and bijectively proved by
Schaeffer [12]) and of rooted simple triangulations (due to Tutte [14] and bijectively proved
by Poulalhon and Schaeffer [11]). One quotient operation is classical and is decribed in
Section 1; the other quotient operation is new and, as described in Section 2, relies deeply
on the existence and properties of α-orientations; the new equations for generating series of
simple quadrangulations and triangulations are derived and solved in Section 3.

The results in the second part are expressions of the series of several families of symmetric
quadrangular and triangular dissections with control on the distance from the central vertex
to the outer boundary. We recall that symmetric dissections have been counted according
to the number of inner faces by Brown [5, 6] using the recursive method (Liskovet’s quo-
tient method [10] can also be applied, reducing the enumeration to rooted quadrangular
dissections). Our approach, developed in Sections 4 and 5, relies on the quotient method
and substitution operations combined with results by Bouttier et al. [1, 3], which express
the series of quadrangulations or triangulations with a marked vertex and marked edge at
prescribed distance from each other. Our expressions illustrate again the property that the
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series expression of a “well behaved” map family M refined by a distance parameter d is
typically expressed in terms of the dth power of an algebraic series of singularity type z1/4

(implying that asymptotically the distance parameter d on a random map of size n in M
converges in the scale n1/4 as a random variable).

1. Plane maps, symmetry and classical quotient

1.1. Triangulations, quadrangulations and dissections. A plane map is a connected
graph embedded in the plane up to continuous deformation; the unique unbounded face of a
plane map is called the outer face, the other ones are called inner faces. Vertices and edges
are also called outer if they belong to the outer face and inner otherwise. A map is said to
be rooted if an edge of the outer face is marked and oriented so as to have the outer face on
its left. This edge is the root edge, and its origin is the root vertex. A map is pointed if one
of its inner vertices is marked. For any map M , we denote by V(M), F(M), E(M) its sets of
vertices, faces and edges, and by v(M), f(M), e(M) their cardinalities.

Triangulations and quadrangulations are respectively maps with all faces of degree 3 or
4, and to avoid the degenerated cases, the outer face is required to be a simple cycle. For
k > 1 and d > 3, a d-angular dissection of a k-gon or d-angular k-dissection is a map whose
outer face contour is a simple cycle of length k, and with all inner faces of one and the same
degree d. A dissection is said to be triangular if d equals 3, quadrangular if d equals 4.
Observe that quadrangular k-dissections can only exist for even k.

A map is said to be simple if it has no multiple edges; a d-angular k-dissection is called
irreducible if the interior of every cycle of length at most d is a face.

1.2. Symmetric maps and classical quotient. For k > 2, a dissection D is said to be
k-symmetric if its plane embedding (conveniently deformed) is invariant by a 2π/k-rotation
centered at a vertex – called the center of D.

As observed by Liskovets [10], any two semi-infinite straight lines starting from the center
and forming an angle of 2π/k delimit a sector of D. When keeping only this sector and
pasting these two lines together, we obtain a plane map, called the k-quotient map of D.
In other words, the 2π/k-rotation defines equivalence relations on the sets V(D) and E(D),
and the quotient map of D is the map in which equivalent vertices and equivalent edges are
identified. Figure 1 shows the example of two symmetric dissections of an hexagon and their
quotients. Denote by o(D) the degree of the outer face of a dissection. The following lemma
is straightforward:

Lemma 1.1. For k > 2, let D be a k-symmetric dissection, and E its k-quotient; we have:

v(D)− 1 = k (v(E)− 1), e(D) = k e(E), f(D)− 1 = k (f(E)− 1), o(D) = k o(E).

The quotient operation clearly preserves the degrees of vertices and faces, hence quotients
of d-angular dissections are d-angular dissections. More precisely, as any k-symmetric dis-
section is implicitly pointed (at the center), its k-quotient is a pointed dissection. We define
the radial distance r(D) of a pointed dissection D as the distance between its marked vertex
and the outer face boundary (for instance, the example of Figure 1(b) has radial distance 2
while that of Figure 1(d) has radial distance 1). We also `(D) the length of a shortest cycle
strictly enclosing u. The following lemma summarizes the relations between distances in
k-symmetric dissections and their k-quotients:
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(a) (b) (c) (d)

Figure 1. Examples of symmetric 6-dissections. A 3-symmetric quadrangu-
lar dissection (a). Its 3-quotient (b) is a pointed quadrangular 2-dissection. A
2-symmetric triangular dissection (c). Its 2-quotient (d) is a pointed triangu-
lation.

Lemma 1.2. For k > 2, let D be a k-symmetric dissection, and E its k-quotient; we have:

r(D) = r(E) and `(D) = k `(E).

Proof. Let P be a pointed dissection, with pointed vertex u. A labelling-function is a function
λ : V(P)→ Z such that λ(u) = 0 and for all adjacent vertices v and v′, |λ(v)−λ(v′)| 6 1. It
is easy to check that the function δP giving the distance from u, called distance-labelling, is
the unique labelling-function such that each vertex v 6= u has a neighbour of smaller label.
With this characterization, it is straightforward that δE is the quotient of δD; in particular,
the radial distance is the same in D as in E.

The second statement is equivalent to the following one: one among the cycles of minimal
length stricly enclosing the center is itself symmetric. Indeed, let C be a cycle of minimal
length `(D) strictly enclosing the center that is minimal for inclusion, and suppose that C

is asymmetric. Let C̃ be its image by the π/k-rotation; as they both enclose the center, C
and C̃ are intersecting cycles and hence define two other cycles enclosing the center with
total length 2`(D), hence each of length `(D); one of these two cycles is included in C and C̃,
contradiction. �

1.3. Symmetric simple quadrangulations and triangulations. A pointed dissection is
called quasi-simple if the pointed vertex lies strictly in the interior of every 1-cycle or 2-cycle;
in particular each vertex can carry at most one loop, otherwise the two loops would form
a 2-cycle that does not contain the pointed vertex. Unlike that of simple dissections, the
family of quasi-simple dissections is stable under quotient:

Lemma 1.3. For k > 2, let D be a k-symmetric dissection and E its k-quotient – both
canonically pointed. Then D is quasi-simple if and only if E is quasi-simple.

Proof. This just follows from the fact that any 2-cycle of D not enclosing the pointed vertex
yields a 2-cycle of E not enclosing the pointed vertex, and reciprocally. �

Note also that, according to Lemma 1.2, no cycle enclosing the center of a k-symmetric
dissection D can be of length smaller than k. In particular, D has no loop, and no 2-cycle
enclosing the center if k > 2. Hence if k > 2, k-symmetric quasi-simple dissections are indeed
simple.
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Symmetric simple quadrangulations. Lemma 1.1 implies that quadrangulations, having outer
degree 4, may only be 2- or 4-symmetric. Moreover, their quotients are quadrangular dissec-
tions, hence they are bipartite, which prevents them of containing loops, in particular the
outer face has length at least 2. Hence quadrangulations may only be 2-symmetric (which
we simply call symmetric), and quotients of symmetric quadrangulations are pointed quad-
rangular 2-dissections. This implies also that quasi-simple symmetric quadrangulations are
indeed simple. Hence the following proposition is a direct consequence of Lemma 1.3:

Proposition 1.4. The 2-quotient is a one-to-one correspondence between symmetric simple
quadrangulations with 2n inner faces and quasi-simple pointed 2-dissections with n inner
faces.

Symmetric simple triangulations. Similarly, triangulations may only be 3-symmetric (which
we simply call symmetric), and the 3-quotient of a symmetric triangulation is a pointed
triangular 1-dissection. Note that a quasi-simple symmetric triangulation is simple (indeed,
by Lemma 1.2, a 3-symmetric dissection D satisfies `(D) > 3). Hence:

Proposition 1.5. The 3-quotient is a one-to-one correspondence between symmetric simple
triangulations with 3n inner faces and quasi-simple pointed triangular 1-dissections with n
triangular faces, where n is any positive odd integer.

2. Another quotient for symmetric simple quadrangulations and
triangulations

In this section, we only consider simple quadrangulations and triangulations, and show
that a specific quotient can be defined for these families, using their characterization in terms
of d-orientations.

2.1. The minimal 2- or 3-orientation. An orientation of a plane map is the choice of
an orientation for each of its inner edges. An orientation without counterclockwise cycle is
said to be minimal. A d-orientation of a map is an orientation such that the outdegree of
each inner vertex is equal to d, while outer vertices have outdegree equal to zero.

An important property of simple quadrangulations and triangulations is that they can be
characterized in terms of d-orientations:

Proposition 2.1 ([13],[8],[9]). A quadrangulation is simple if and only if it admits a 2-
orientation. A triangulation is simple if and only if it admits a 3-orientation. In both cases,
there exists a unique minimal such orientation.

Figure 2(a) and 3(a) show two examples of a simple quadrangulation and a simple trian-
gulation respectively endowed with their minimal 2- or 3-orientation.

Now let M be a k-symmetric map endowed with a d-orientation O; then the image of O by
the 2π/k-rotation is clearly a d-orientation, and it is minimal if O is minimal. Hence:

Lemma 2.2. The unique minimal 2-orientation ( resp. 3-orientation) of a symmetric simple
quadrangulation ( resp. triangulation) is itself symmetric.

2.2. Leftmost paths. Let M be a plane map endowed with an orientation. For each inner
vertex u of M , a leftmost path starting at u is a maximal oriented path P starting at u such
that for any triple v, v′, v′′ of successive vertices along P , (v′, v′′) is the first outgoing edge
after (v, v′) in clockwise order around v′.
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(a) Symmetric simple quadrangulation

↗
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(b) Classical identification
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w3

(c) New identification

−→

−→

(d) Classical quotient

(e) New quotient

Figure 2. Classical 2-quotient (b), (d) and the new quotient (c), (e) of a
symmetric simple quadrangulation endowed with its minimal 2-orientation (a).

Lemma 2.3. If M is a simple quadrangulation or triangulation endowed with its minimal 2-
or 3- orientation, P is necessarily a simple path ending at one outer vertex of M.

Proof. Assume by contradiction that P is self intersecting and let v0, v1, . . . , vl = v be a
sequence of vertices of P explored successively in this order and forming a cycle. Since the
orientation O of M is chosen to be minimal, this cycle is necessarily clockwise. Hence, since P

is a left-most path, the outgoing edges of each vertex of the cycle lie in the interior region of
the cycle (except eventually the other outgoing edges of v0, if v0 is the starting point of the
path), hence denoting by R the enclosed region, e(R) is at least 2v(R)− 1 (resp. 3v(R)− 2).
Euler relation leads to a contradiction: if the length of the cycle is `, Euler formula implies
that 2v(R) = e(R)+2+`/2 (resp. 3v(R) = e(R)+2+`). Note that this is in accordance with
the well-known property that inner edges of a simple triangulation (resp. quadrangulation)
can be partitionned into three (resp. two) spanning trees (see [13]). �

In the next two subsections, we use leftmost paths starting at the center to decompose
symmetric simple quadrangulations and triangulations in 2 (resp. 3) sectors, and show how
this particular sector can be sticked together again in a non-classical way to obtain a simple
quadrangulation or triangulation.

2.3. A new way of quotienting symmetric simple quadrangulations. Let Q be a
symmetric simple quadrangulation, u the central vertex, e1, e2 its two outgoing edges, and
P1 = (u = v0, v1, . . . , vp), P2 = (u = w0, w1, . . . , wp) the leftmost paths of e1 and e2 respec-
tively. Clearly P1 and P2 map to one another by the π-rotation. Hence P1 and P2 cannot
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meet except at their starting point u, otherwise they would meet twice, which would imply
the existence of an oriented cycle without outgoing edges, leading to the same contradiction
as in Lemma 2.3.

Let us cut Q along P1 ∪P2 to split Q into two isomorphic dissections, see Figure 2(c), and
define Q1 as the one with clockwise contour u, v1, v2, . . . , w1. If Q1 is a quadrangulation, we
set Φ(Q) := Q1 and mark the edge (u, v1). Otherwise, for any i 6 p − 2, we identify in Q1

vertices vi+2 with wi, and merge corresponding edges; this defines the map Φ(Q), in which
we then mark the edge (v1, v2).

Concerning orientations, the identification of vi+2 with wi creates an orientation conflict
only when merging (u, v1) with (v1, v2). We choose to orient the merged edge from v1
to v2. With this convention, Φ(Q) is naturally endowed with its minimal 2-orientation
and the leftmost path of the marked edge (v1, v2) is (v1, v2, . . . , vp) (to justify that the 2-
orientation of Φ(Q) thus obtained is minimal, one just has to observe that no oriented path
goes from some vertex wi to some vertex vj, hence when doing the identifications of vertices
no counterclockwise circuit is created). It is then easy to describe the inverse mapping and
to obtain:

Theorem 2.4. The mapping Φ is a one-to-one correspondence between symmetric simple
quadrangulations with 2n inner faces and simple quadrangulations with n inner faces and a
marked edge.

2.4. A new way of quotienting symmetric simple triangulations. Let T be a simple
symmetric triangulation endowed with its minimal 3-orientation. Let u be its central vertex,
e1, e2 and e3 its three outgoing edges, and P 1 = (u = v0, v1, . . . , vp), P 2 = (u = w0, w1, . . . , wp)
and P 3(u = x0, x1, . . . , xp) the leftmost paths of e1, e2 and e3 respectively. Clearly P 1, P 2

and P 3 maps respectively onto P 2, P 3 and P 1 by the 2π/3-rotation centered at u. Hence
they cannot meet except at their starting point u. Let us cut T along P 1 ∪ P 2 ∪ P 3 to split
T into three isomorphic dissections, see Figure 3(c), and define T 1 as the one with clockwise
contour u, v1, v2, . . . , w1. If T 1 is a triangulation, we set Φ4(T) := T 1 and mark the edge
(u, v1). Otherwise, for any i 6 p − 2, we identify in T 1 vertices vi+2 with wi, and merge
corresponding edges; this defines the map Φ4(T), in which we then mark the edge (v1, v2).

Concerning orientations, the identification of vi+2 with wi creates an orientation conflict
only when merging (u, v1) with (v1, v2). We choose to orient the merged edge from v1 to
v2. With this convention, Φ(Q) is naturally endowed with its minimal 3-orientation and the
leftmost path of the marked edge (v1, v2) is (v1, v2, . . . , vp). It is then easy to describe the
inverse mapping and to obtain:

Theorem 2.5. The mapping Φ4 is a one-to-one correspondence between symmetric simple
triangulations with 3n inner faces and simple triangulations with n inner faces and one
marked edge, for any positive odd integer n.

3. Simple quadrangulations and triangulations via symmetric ones

3.1. Getting a functional equation for simple quadrangulations. Proposition 1.4
and Theorem 2.4 describe two bijections between symmetric simple quadrangulations and
two other families that are hence also in one-to-one correspondence: quasi-simple pointed
2-dissections and simple quadrangulations with a marked edge. Because 2-dissections are
bipartite, each pointed 2-dissection corresponds to two different rooted pointed 2-dissections.
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(a) Symmetric simple triangulation
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(d) Classical 3-quotient
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Figure 3. Classical 3-quotient (b), (d) and the new quotient (c), (e) of a
symmetric simple triangulation endowed with its minimal 3-orientation (a).

Similarly, any edge of a simple quadrangulation has an implicit orientation given by its
minimal 2-orientation, hence a simple quadrangulation with a marked edge corresponds to
two distincts quadrangulations with a marked oriented edge, that can be seen as rooted
simple quadrangulations with a marked face (possibly the outer one). Hence we obtain:

Corollary 3.1. Rooted simple quadrangulations with n inner faces and a marked face are in
one-to-one correspondence with rooted quasi-simple pointed 2-dissections with n inner faces.

This correspondence allows us to get a functional equation for the generating series of the
familyQ of non-degenerated (meaning, with at least 2 faces) rooted simple quadrangulations.
Let q(x) =

∑
n>2 qnx

n be the series ofQ according to the number of faces (including the outer
one). The generating series of rooted simple quadrangulations with a marked face is then
equal to q′(x). We want to express also the family D4 of rooted quasi-simple 2-dissections in
terms of Q.

Observe that for any D ∈ D4, its separating 2-cycles are nested and therefore ordered from
innermost to outermost. This yields a decomposition of D4 as a sequence of components. Let
A� (resp. A−) be the family of rooted 2-dissections with a marked inner vertex (resp. with
a marked inner edge) and where the unique 2-cycle is the outer face contour. We can cut D
along the nested 2-cycles to obtain a pointed 2-dissection in A� and a sequence of maps in
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A−

A�

(a) Nested 2-cycles (b) Element of A� (c) Element of A−

Figure 4. The decomposition of a quasi-simple quadrangular 2-dissection.

A− (see Figure 4). Denoting respectively by d(x), a�(x), a−(x) the generating series of D,
A�, and A− according to the number of quadrangular faces, this gives:

(1) d(x) =
a�(x)

1− a−(x)
.

Deleting the non-root outer edge of a rooted 2-dissection gives a rooted quadrangulation
(possibly degenerated). Taking into account the marked inner vertex or edge, respectively
chosen among the n inner vertices and 2n− 1 inner edges, we get:

(2)

{
a�(x) = 2x+

∑
n>2 nqnx

n = 2x+ xq′(x)

a−(x) = 2x+
∑

n>2(2n− 1)qnx
n = 2x+ 2xq′(x)− q(x)

Putting together Equations (1) and (2), Corollary 3.1 implies:

Proposition 3.2. The series q(x) satisfies the following equation:

(3) x · [2q′(x)2 + 3q′(x) + 2] = q′(x) · [1 + q(x)].

From this equation, written as q′ = x(2 + 2q′2 + 3q′)/(1 + q), one readily extracts the
development of q(x) incrementally:

q(x) = x2 + 2x3 + 6x4 + 22x5 + 91x6 + 408x7 + 1938x8 + . . .

As shown next, the exact expression of the coefficients (first obtained by Tutte from the
recursive method [15] and subsequently recovered by Schaeffer [12] using a bijection with
ternary trees) can also be recovered from (3):

Corollary 3.3. For n > 1, the number of rooted simple quadrangulations with n faces is
equal to:

4(3n)!

n!(2n+ 2)!
.

Equivalently, the series q(x) is expressed as q(x) = x[α(x)− 2][1− α(x)], where α ≡ α(x) is
the series of rooted ternary trees, specified by α = 1 + xα3.

Proof. Equation (3) above admits a unique power series solution that is equal to 0 at 0,
hence it suffices to check that f ≡ f(x) := x[α(x) − 2][1 − α(x)] is indeed solution of (3);
note that x and f(x) have rational expressions in terms of α, hence this also holds for f ′(x),
since f ′(x) = df

dα
/ dx
dα

. We have:

x =
α− 1

α3
, f(x) =

(α− 1)2(2− α)

α3
, and f ′(x) = 2α− 2.
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Plugging these expressions in Equation (3), the two handsides coincide, which concludes the
proof.

As Alin Bostan showed us, Equation (3) can however be solved directly, without guessing
the solution. Let r ≡ r(x) = q′(x), Equation (3) rewrites:

1 + q = x · 2r2 + 3r + 2

r
,

hence, taking the derivative:

(4) r =
2r2 + 3r + 2

r
+ 2xr′

r2 − 1

r2
, i.e. (r + 1) · [r(r + 2) + 2xr′(r − 1)] = 0,

or, assuming r 6= 2:

(5) (r + 1) · r2

(r + 2)2
· d

dx

(
x(r + 2)3

r

)
= 0.

Assuming now that r 6= 0 and r 6= 1, we get x(r(x) + 2)3 − cr(x) = 0 for some constant c.
On the other hand, Equation (4) implies that

d

dx

(
4q(x)− 2xr(x) + xr(x)2

)
= 0, hence q(x) =

1

2
xr(x) +

1

4
xr(x)2 + c′

for some constant c′; q(0) = r(0) = 0 implies that c′ = 0. Thus the non affine solutions of
Equation (3) have the following form:

c+ x · (αc(x)− 1)(2− αc(x)) where xαc(x)3 = c(αc(x)− 1).

Initial conditions for q imply that c = 1. �

3.2. Getting a functional equation for simple triangulations. The case of simple
triangulations is very similar to the one described above for quadrangulations; only the
decomposition is more complicated.

Proposition 1.5 and Theorem 2.5 describe bijections between symmetric simple triangula-
tions and two families that are hence also in one-to-one correspondence:

Corollary 3.4. Simple triangulations with 2n faces and one marked edge are in one-to-one
correspondence with quasi-simple pointed 1-dissections with 2n faces.

Let T be the family of rooted simple triangulations and let t(x) =
∑

n>1 tnx
n be the

series of T according to half the number of faces, i.e. tn is the number of rooted simple
triangulations with 2n faces. We want to use Corollary 3.4 to derive a functional equation
for t(x), which requires to first express the family S of simple triangulations with a marked
edge and the family D3 of quasi-simple pointed 1-dissections in terms of T .

According to the Schnyder tree decomposition of simple triangulations, each edge is canon-
ically associated to one of the three outer edges, hence simple triangulations with a marked
edge are exactly rooted simple triangulations with a marked edge chosen among the n edges
in the tree rooted at the root edge. Hence:

(6) s(x) =
∑
n>1

ntnx
n = xt′(x).

The enumeration of quasi-simple pointed triangulations can be carried out similarly to
quasi-simple pointed quadrangulations, but extra care has to be taken in order to deal with
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T �

(a)

1 + U

(b)

1 + U T •−

(c)

V T − \ T •−

(d)

Figure 5. The four cases in the decomposition of an element of U .

special conditions for both loops and 2-cycles. Observe that any 1-dissection D in D3 is
implicitly rooted, and that removing the outer loop yields either a unique edge or a quasi-
simple pointed triangular 2-dissection that can be canonically rooted with the same root
vertex as D, with the additional constraint that there is no loop incident to the root vertex;
let us call U this family and u its generating series according to half the number of triangular
faces. Then the generating series d3 of D3 is given by:

d3(x) = x · [1 + u(x)].

Note that removing the non-root edge incident to the outer face of a triangular 2-dissection
produces a rooted triangulation with one face less. Hence families of rooted triangular 2-
dissections (such as U) and families of rooted triangulations can be naturally identified. To
decompose elements of U , let V be the family of quasi-simple triangular 2-dissections and
T �, T − and T •− be respectively the families of rooted simple triangulations (or equivalently,
triangular 2-dissections with neither loop nor 2-cycle except the outer face) with respectively
a marked inner vertex, a marked inner edge, and a marked inner edge incident to the root
vertex. Let us also denote v, t�, t− and t•− the corresponding generating series according to
half the number of triangular faces.

Let us now proceed to the decomposition of an element of U , four different configurations
can appear (see Figure 5):

(a) either the outer face is the only 2-cycle;
(b) or the outer face is incident to a single face, the third side of which is a loop;
(c) or the outermost 2-cycle (other than the outer face) is incident to the root vertex;
(d) or the outermost 2-cycle (other than the outer face) is not incident to the root vertex.

Note that each inner edge of a simple triangulation, and in particular of any map T in T •−
is naturally oriented according to the minimal 3-orientation of T . Hence there is a canonical
way of plugging a rooted 2-dissection in the (rooted) 2-cycle obtained by opening the marked
edge of a map in T −. Hence:

U = T � + X · (1 + U) + T •− · U + (T − \ T •−) · V ,
where X is an atom representing a triangle. A similar decomposition can be written for V ,
and putting things together and translating them into the language of generating series, we
obtain: {

u = t� + x(1 + u) + t•−u+ (t− − t•−)v,

v = t� + 2x(1 + u) + t−v.

The series t�, t− and t•−can now be expressed in terms of t as follows. A triangulation with
2n faces has 3n edges and n + 2 vertices, so removing the non-root outer edge and taking
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into account the marked inner vertex or edge, we get:{
t�(x) =

∑
n>1 ntnx

n = xt′(x),

t−(x) =
∑

n>1(3n− 1)tnx
n = 3xt′(x)− t(x).

The computation of t•−(x) is a little more complicated. Let T be a simple rooted triangulation
with at least four faces. By merging the two ends of the root edge of T and collapsing the inner
triangle incident to it into an edge, we obtain a 2-dissection that is canonically rooted with
same root vertex as T , and with a marked edge incident to that vertex. This triangulation
is not far from being simple: it has no loop and the only 2-cycles separate the two marked
edges. Hence, decomposing this map along the sequence of nested cycles, we get a sequence
of elements of T •−, hence:

t(x)− x
x

=
∑
n>2

tnx
n =

t•−(x)

1− t•−(x)
, from which we obtain t•−(x) =

t(x)− x
t(x)

.

Combining all these equations and with the help of computer algebra, we obtain the following
expression for the generating series of rooted quasi-simple triangular 1-dissections:

(7) d3(x) =
x · [1 + t(x)− 2xt′(x)]

1− 2x+ 2t(x)− 3xt′(x) + t(x)2 − 3xt′(x)t(x)
.

The following result is then obtained by gathering Corollary 3.4 and Equations (6) and (7),
after some easy simplifications:

Proposition 3.5. The generating series t(x) of rooted simple triangulations according to
half the number of faces is the unique solution of the following equation:

(8) 3xt′(x)2 + 1 = [t(x) + 1] · t′(x),

which takes value 0 at 0.

From this equation, written as t′ = (3xt′2+1)/(t+1), one readily extracts the development
of t(x) incrementally:

t(x) = x+ x2 + 3x3 + 13x4 + 68x5 + 399x6 + 2530x7 + 16965x8 + . . .

As in the quadrangular case, the exact expression of the coefficients (first obtained by Tutte
from the recursive method [15] and subsequently recovered by Poulalhon and Schaeffer [12]
using a bijection with some decorated trees that are in bijection with quaternary trees) can
also be recovered from (8):

Corollary 3.6. For n > 1, the number of rooted simple triangulations with 2n faces is equal
to:

2(4n− 3)!

n!(3n− 1)!
.

Equivalently, the series t(x) is expressed as t(x) =
(α(x)− 2)(1− α(x))

α(x)2
, where α ≡ α(x) is

the series of rooted quaternary trees, specified by α = 1 + xα4.
11



Proof. Equation (8) above admits a unique power series solution that is equal to 0 at 0, so
it suffices to check that f ≡ f(x) := (α(x)− 2)(1−α(x))/α(x)2 is solution of (8). Note that
x and f(x) have rational expressions in terms of α, and so does f ′(x) = df

dα
/ dx
dα

:

x =
α− 1

α4
, f(x) =

(α(x)− 2)(1− α(x))

α(x)2
, and f ′(x) = α2,

and these expressions satisfy Equation (8), which concludes the proof.
Now as for Equation (3), a direct proof without guessing the solution is possible; first

let r(x) = t′(x), Equation (8) rewrites 1 + t = 3xr + 1/r, hence r = 3r′ + 3r − r′/r2,
i.e. u′(3xu2 − 1) + 2u3 = 0. Then we seek for A, B such that d

dx
(A(r)x+B(r)) = 0.

Easy computations show that xr3/2 + r−1/2 is suitable. Using initial conditions, we get
xr2 + 1 = r1/2, i.e., with α = xr2 + 1, 1 + xα4 = α. �

4. Radial distance of symmetric quadrangular dissections

For k > 2, i > 0, and D(k) a family of k-symmetric dissections, let D(k)
i be the family of

dissections in D(k) where the central vertex is at distance i from the outer face boundary;
define the size of a k-symmetric quadrangular (resp. triangular) dissection D as the integer

n such that D has kn inner faces (resp. (2n+ 1)k inner faces). Let D
(k)
i (x) be the generating

series of D(k)
i with respect to the size.

We compute here the expression of D
(k)
i (x) for general, simple, and irreducible k-symmetric

quadrangular 2k-dissections and triangular k-dissections. So from now on D(k) is either a
family of k-symmetric quadrangular 2k-dissections or a family of k-symmetric triangular k-
dissections. Quadrangular and triangular dissections are treated respectively in this section

and in the next one (Section 5). Note that, when k = 2, D
(k)
i (x) = 0 for quadrangular

irreducible dissections and for triangular simple and irreducible dissections, and when k = 3,

D
(k)
i (x) = 0 for triangular irreducible dissections.
We use the letter F , G, H (instead of D) for the general, simple, and irreducible case

respectively. To obtain the generating function expressions, we combine results of Bouttier et
al. [1, 2] on the 2-point functions of general quadrangulations with quotient and substitution
operations, and Lemma 1.2.

Remark 1. Lemma 1.2 implies that a k-symmetric quadrangular dissection has no cycle of
length less than 2k that strictly encloses the central vertex (indeed the k-quotient has only
faces of even degree, hence is bipartite, hence has no loop). And a k-symmetric triangular
dissection has no cycle of length less than k that strictly encloses the central vertex.

4.1. Symmetric quadrangular dissections. Define the algebraic generating function P ≡
P (x) by

(9) P = 1 + 3xP 2,

and define the algebraic generating function X ≡ X(x) by

(10) X +
1

X
+ 1 =

3

P − 1
.

Define also X∞ := P . The following result is very closely related to a result by Bouttier, Di
Francesco, and Guitter [1].

12



(a) The maximal 2-cycles, (b) and the simple core.

Figure 6. A 3-symmetric quadrangulation and its simple 3-symmetric core,
obtained by collapsing all maximal 2-cycles into edges.

Proposition 4.1. For each i > 1 and k > 2, the generating function F
(k)
i (x) has the

following expression (which does not depend on k):

F
(k)
i (x) = Xi+1 −Xi, where Xi = X∞

(1−X i)(1−X i+3)

(1−X i+1)(1−X i+2)
.

Proof. If we take the k-quotient of dissection in F (k)
i we obtain a quadrangular 2-dissection

with a pointed inner vertex at distance i from the outer 2-gon, according to Lemma 1.2.
Notice that the outer 2-cycle can be contracted (on the sphere) into a single edge e. This
yields a quadrangulation of the sphere with a marked edge e and pointed vertex v at distance

i from e (i.e., the extremity of e closest from v is at distance i from v). Hence F
(k)
i (x) is equal

to the generating function Fi(x) of quadrangulations with a marked edge e and a marked

vertex v at distance i from e. The algebraic expression of F
(k)
i (x) = Fi(x), as Xi+1−Xi, has

been obtained by Bouttier et al. [1]. �

4.2. Symmetric simple quadrangular dissections. We now compute y 7→ G
(k)
i (y). We

classically proceed by substitution (a substitution approach is also discussed in [2] for rooted

quadrangulations). The core of γ ∈ F (k)
i is obtained by collapsing each maximal 2-cycle

(for the enclosed area) of γ into a single edge (note that no 2-cycle can strictly enclose the

central vertex, according to Remark 1), see Figure 6. This yields a simple dissection in G(k)i ,
and the distance of the central vertex to the outer boundary is still i (because there is no

way of shortening this distance by travelling inside a 2-cycle). Conversely each γ ∈ F (k)
i

is uniquely obtained from κ ∈ G(k)i —with nk inner faces— where each of the (2n + 1)k
edges is either left unchanged or blown into a double edge in the interior of which a rooted
quadrangulation is patched, in a way that respects the symmetry of order k (that is, the
k edges in an orbit of edges of κ undergo the same substitution operation). Denoting by
f ≡ f(x) the series of rooted quadrangulations according to the number of faces, we obtain

F
(k)
i (x) =

∑
n>1[y

n]G
(k)
i (y) · xn · (1 + f)2n+1. In other words,

(11) F
(k)
i (x) = (1 + f) ·G(k)

i (x · (1 + f)2).
13



The series f = f(x) is well known to be algebraic, having a rational expression in terms of
P : f = P (4− P )/3− 1 (we will need this expression a few times).

Define Q ≡ Q(y) as the algebraic series in y defined by

(12) Q = 1 + yQ3.

Lemma 4.2. Let K(x) and let L(y) be related by K(x) = L(x(1 + f)2). Let K̂(P ) and

L̂(Q) be the expressions of K(x) and L(y) in terms of P ≡ P (x) and Q ≡ Q(y), i.e.,

K(x) = K̂(P (x)) and L(y) = L̂(Q(y)). Then

L̂(Q) = K̂
(

4− 3/Q
)
.

Proof. The change of variable relation is y = x(1 + f)2. We have

y = x(1 + f)2 =
P − 1

3P 2

(
P

4− P
3

)2
=
P − 1

3

(4− P
3

)2
Hence, if we write Q ≡ Q(y) = 3/(4−P (x)), we have y = (1−1/Q)Q−2, so that Q = 1+yQ3.
In addition P (x) = 4− 3/Q(y). �

For the rest of this subsection, when we have y and x together in an equation we assume y
and x to be related by y = x(1+f)2. Define Y∞(y) := X∞(x)/(1+f), Yi(y) := Xi(x)/(1+f),
and Y (y) := X(x). The expression of Xi(x) in terms of X∞(x) and X(x) ensures that (we
do not need Lemma 4.2 at this step):

Yi = Y∞
(1− Y i)(1− Y i+3)

(1− Y i+1)(1− Y i+2)
.

In addition, since G
(k)
i (y) = F

(k)
i (x)/(1 + f), we have

G
(k)
i (y) = Yi+1 − Yi.

We now apply Lemma 4.2 to get an algebraic expression of G
(k)
i (y), written in terms of

Q(y). We have

Y∞(y) =
X∞(x)

1 + f(x)
=

3

4− P
.

Then Lemma 4.2 ensures that Y∞(y) = Q(y). Lemma 4.2 and the relation X + 1/X + 1 =
3/(P − 1) ensure that Y ≡ Y (y) is the algebraic generating function specified by

(13) Y +
1

Y
=

1

Q− 1
.

To summarize we obtain:

Proposition 4.3. For each i > 1 and k > 2, the generating function G
(k)
i (y) has the

expression (with Y∞ = Q):

G
(k)
i (y) = Yi+1 − Yi, where Yi = Y∞

(1− Y i)(1− Y i+3)

(1− Y i+1)(1− Y i+2)
.
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(a) The maximal non empty 4-cycles, (b) and the irreductible core.

Figure 7. A 3-symmetric simple quadrangulation and its irreductible 3-
symmetric core, obtained by emptying all maximal 4-cycles into faces.

4.3. Symmetric irreducible quadrangular dissections. We now use a substitution ap-

proach at faces (instead of edges) to get an expression for H
(k)
i (z) for k > 3 and i > 0.

The core of γ ∈ G(k)i is obtained by emptying each maximal (for the enclosed area) 4-cycle
of γ (note that no 4-cycle strictly encloses the central vertex, according to Remark 1), see

Figure 7. This yields a symmetric irreducible dissection κ ∈ H(k)
i , and the distance of the

pointed vertex to the outer boundary is still i (because there is no way of shortening this

distance by travelling inside a 4-cycle). Conversely each γ ∈ G(k)i is uniquely obtained from

κ ∈ H(k)
i where at each face a rooted simple quadrangulation (with at least one inner face)

is patched, in a way that respects the symmetry of order k (i.e., the k faces of an orbit
undergo the same patching operation). Denoting by g ≡ g(y) the series of rooted simple
non-degenerated quadrangulations according to the number of inner faces, we obtain, for
k > 3 and i > 0:

G
(k)
i (y) = H

(k)
i (g(y)).

Again the series g ≡ g(y) is well known to be algebraic, having a rational expression in terms
of Q: g = 3Q−Q2 − 2.

Define the algebraic series R ≡ R(z) by

(14) R = z +R2.

Lemma 4.4. Let L(y) and let M(z) be related by L(y) = M(g(y)). Let L̂(Q) and M̂(R) be

the expressions of L(y) and M(z) in terms of Q ≡ Q(y) and R ≡ R(z), i.e., L(y) = L̂(Q(y))

and M(z) = M̂(R(z)). Then

M̂(R) = L̂(R + 1).

Proof. The change of variable relation is z = g(y). We have

z = g(y) = 3Q−Q2 − 2 = −(Q− 1)2 + (Q− 1)

Hence, if we write R ≡ R(z) = Q(y) − 1, we have z = −R2 + R, so that R = z + R2. In
addition Q(y) = R(z) + 1. �

For the rest of this subsection, when we have z and y together in an equation we assume z
and y to be related by z = g(y). Define Z∞(z) := Y∞(y), Zi(z) := Yi(y), and Z(z) := Y (y).
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The expression of Yi(y) in terms of Y∞(y) and Y (y) ensures that (we do not need Lemma 4.4
at this step):

Zi = Z∞
(1− Zi)(1− Zi+3)

(1− Zi+1)(1− Zi+2)
.

In addition, since H
(k)
i (z) = G

(k)
i (y), we have

H
(k)
i (z) = Zi+1 − Zi.

We now apply Lemma 4.4 to get an algebraic expression of H
(k)
i (z), written in terms of

R(z). We have
Z∞(z) = Y∞(y) = Q(y) = R(z) + 1.

Lemma 4.4 and the relation Y + 1/Y = 1/(Q−1) also ensure that Z ≡ Z(z) is the algebraic
generating function specified by

(15) Z +
1

Z
=

1

R
.

To summarize we obtain:

Proposition 4.5. For each i > 1 and k > 3, the generating function H
(k)
i (z) has the

expression (with Z∞ = R + 1):

H
(k)
i (z) = Zi+1 − Zi, where Zi = Z∞

(1− Zi)(1− Zi+3)

(1− Zi+1)(1− Zi+2)
.

5. Radial distance of symmetric triangular dissections

5.1. Symmetric triangular dissections. Define the algebraic generating function P ≡
P (x) by

(16) P 2 = 1 + 8xP 3,

and define the algebraic generating function X ≡ X(x) by

(17) X +
1

X
+ 2 =

8

P 2 − 1
.

Define also X∞ ≡ X∞(x) and A∞ ≡ A∞(x) by

(18) X∞ = P, A∞
2 =

2P (P − 1)

(1 + P )
.

As for quadrangulations the following result is very closely related to a result by Bouttier
and Guitter [3].

Proposition 5.1. For each i > 1 and k > 2, the generating function F
(k)
i (x) has the

following expression (which does not depend on k):

F
(k)
i (x) = Xi+1 −Xi−1 + Ai

2 − Ai−12,
where

Xi = X∞ ·
(1−X i)(1−X i+2)

(1−X i+1)2
, Ai = A∞ ·

(
1− P + 1

4
X i (1−X)(1−X2)

(1−X i+1)(1−X i+2)

)
.

Proof. We recall the result in [3] about triangulations:
16



• the series Ui of triangulations of the sphere with a pointed vertex u and a marked
edge e = (v, v′) with v at distance i and v′ at distance i − 1 from u is given by
Ui = Xi −Xi−1,
• the series Vi of triangulations of the sphere with a pointed vertex u and a marked

oriented edge e = (v, v′) with v and v′ at distance i from u is given by Vi = Ai
2−Ai−12.

(Note that the series Vi decomposes as Vi,loop + Vi,distinct, whether the extremities of
the marked edge are equal or distinct.)

The k-quotient of a dissection in F (k)
i is a triangular 1-dissection D with a pointed inner

vertex u at distance i from the outer loop, according to Lemma 1.2. The vertex incident
to the outer loop is called the root-vertex and denoted by v. If we delete the outer loop

we obtain a map D̃ with an outer face of degree 2 and all inner faces of degree 3. Two

cases can occur: either the outer face contour of D̃ is a 2-gon or is made of two adjacent
loops. In the first case let v′ be the other vertex of the 2-gon: v′ is at distance either i− 1,
i + 1, or i from u, giving respective contributions Ui, Ui+1, Vi,distinct. In the second case we
have an ordered pair D1, D2 of 1-dissections, and one of these two dissections contains a
marked vertex at distance i from v. Orient the outer loop of D1 clockwise and the outer
loop of D2 counterclockwise, and paste D1 and D2 together at their outer loops. This yields
a triangulation of the sphere with a pointed vertex u and a marked oriented loop whose
incident vertex is at distance i from u. The corresponding contribution is Vi,loop. Gathering

all cases we obtain F
(k)
i = Ui + Ui+1 + Vi,distinct + Vi,loop = Ui + Ui+1 + Vi. �

5.2. Symmetric simple triangular dissections. Call a rooted triangulation simply-rooted

if the root-edge is not a loop. To compute y 7→ G
(k)
i (y), we proceed very similarly as for

quadrangulations. Each γ ∈ F (k)
i (for k > 3) is uniquely obtained from κ ∈ G(k)i —with

(2n+ 1)k inner faces— where each of the (3n+ 2)k edges is either left unchanged or blown
into a double edge in the interior of which a simply-rooted triangulation is patched, in a
way that respects the symmetry of order k (that is, the k edges in an orbit of edges of κ
undergo the same substitution operation). Denoting by f ≡ f(x) the series of simply-rooted

triangulations according to half the number of faces, we obtain F
(k)
i (x) =

∑
n>1[y

n]G
(k)
i (y) ·

xn · (1 + f)3n+2. In other words,

(19) F
(k)
i (x) = (1 + f)2 ·G(k)

i (x · (1 + f)3).

The series f = f(x) is algebraic, with a rational expression in terms of P : 1 + f = −P (P 2−
9)/8.

Define Q ≡ Q(y) as the algebraic series in y given by

(20) Q =
y

(1−Q)3
,

and define also Q̃ ≡ Q̃(y) as Q̃ := (1 + 8Q)1/2.

Lemma 5.2. Let K(x) and L(y) be related by K(x) = L(x(1 + f)3). Let K̂(P ) and L̃(Q̃) be

the expressions of K(x) and L(y) in terms of P ≡ P (x) and Q̃ ≡ Q̃(y), i.e., K(x) = K̂(P (x))

and L(y) = L̃(Q̃(y)). Then the expressions are the same, i.e.,

L̃ = K̂.
17



Proof. The change of variable relation is y = x(1 + f)3. We have:

y = x(1 + f)3 = − 1

212
(P 2 − 1)(P 2 − 9)3.

Hence, if we write Q ≡ Q(y) = (P (x)2 − 1)/8, we have y = Q(1 − Q)3. In addition

P (x) = Q̃(y), hence L̃ = K̂. �

Define (with y and x related by y = x(1 + f)3):

Y∞(y) :=
X∞(x)

(1 + f)2
, Yi(y) :=

Xi(x)

(1 + f)2
, Y (y) := X(x),

and define

B∞(y) =
A∞(x)

(1 + f)
, Bi(y) :=

Ai(x)

(1 + f)
.

The expression of Xi(x) in terms of X∞(x) and X(x) ensures that

Yi = Y∞
(1− Y i)(1− Y i+2)

(1− Y i+1)2
.

The expression of Ai(x) in terms of A∞(y) and X(x) and Lemma 5.2 (to replace P by Q̃ in
the expression) ensure that

Bi = B∞ ·
(

1− Q̃+ 1

4
Y i (1− Y )(1− Y 2)

(1− Y i+1)(1− Y i+2)

)
.

In addition, since G
(k)
i (y) = F

(k)
i (x)/(1 + f)2, we have

G
(k)
i (y) = Yi+1 − Yi−1 +Bi

2 −Bi−1
2.

Using Lemma 5.2 we obtain (after simplifications)

(21) Y∞ =
1

Q̃(1−Q)2
, B∞

2 =
16 ·Q

Q̃(1 + Q̃)2(1−Q)2
.

Lemma 5.2 and the relation X + 1/X + 1 = 8/(P 2 − 1) also ensure that Y ≡ Y (y) is the
algebraic generating function specified by

(22) Y +
1

Y
+ 2 =

1

Q
.

To summarize we obtain:

Proposition 5.3. For each i > 1 and k > 3, the generating function G
(k)
i (y) has the

following expression (which does not depend on k):

G
(k)
i (y) = Yi+1 − Yi−1 +Bi

2 −Bi−1
2,

where

Yi = Y∞
(1− Y i)(1− Y i+2)

(1− Y i+1)2
, Bi = B∞ ·

(
1− Q̃+ 1

4
Y i (1− Y )(1− Y 2)

(1− Y i+1)(1− Y i+2)

)
.

18



5.3. Symmetric irreducible triangular dissections. We now use a substitution ap-

proach at faces to get an expression for H
(k)
i (z) for k > 4 and i > 0. Similarly as in

the quadrangulated case, each γ ∈ G(k)i (for k > 4) is uniquely obtained from κ ∈ H(k)
i

—with (2n + 1)k inner faces— where at each face a rooted simple triangulation (with at
least one inner face) is patched, in a way that respects the symmetry of order k (i.e., the k
faces of an orbit undergo the same patching operation). Denoting by g ≡ g(y) the series of
rooted simple triangulations according to half the number of faces, we obtain, for k > 4 and
i > 0:

G
(k)
i (y) =

g

y
H

(k)
i (g2/y).

Again the series g ≡ g(y) is well known to be algebraic, having a rational expression in terms
of Q: g = Q− 2Q2.

Define the algebraic series R ≡ R(z) by

(23) R =
z

(1−R)2
.

Define also R̃ ≡ R̃(z) as R̃ :=
√

1 + 9R/
√

1 +R.

Lemma 5.4. Let L(y) and let M(z) be related by L(y) = M(g(y)2/y). Let L̃(Q̃) and

M̃(R̃) be the expressions of L(y) and M(z) in terms of Q̃ ≡ Q̃(y) and R̃ ≡ R̃(z), i.e.,

L(y) = L̃(Q̃(y)) and M(z) = M̃(R̃(z)). Then the expressions are the same, i.e.,

M̃ = L̃.

Proof. The change of variable relation is z = g(y)2/y. We have

z = g(y)2/y = Q
(1− 2Q)2

(1−Q)3
.

Hence, if we write R ≡ R(z) = Q(y)/(1 − Q(y)), we have z = R(1 − R)2, so that R =

z/(1− R)2. In addition we have Q(y) = R(z)/(1 + R(z)), so that Q̃(y) = (1 + 8Q(y))1/2 =√
1 + 9R(z)/

√
1 +R(z) = R̃(z). Hence M̃ = L̃. �

Define (with z and y related by z = g(y)2/y):

Z∞(z) :=
y

g
Y∞(y), Zi(z) :=

y

g
Yi(y), Z(z) := Y (y),

and define

C∞(z)2 :=
y

g
B∞(y)2, Ci(z)2 :=

y

g
Bi(y)2.

The expression of Yi(y) in terms of Y∞(y) and Y (y) ensures that

Zi = Z∞
(1− Zi)(1− Zi+2)

(1− Zi+1)2
.

The expression of Bi(y) in terms of B∞(y) and Y (y) and Lemma 5.4 (to replace Q̃ by R̃ in
the expression) ensure that

Ci = C∞ ·
(

1− R̃ + 1

4
Zi (1− Z)(1− Z2)

(1− Zi+1)(1− Zi+2)

)
.
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In addition, since H
(k)
i (z) = y

g
G

(k)
i (y), we have

H
(k)
i (z) = Zi+1 − Zi−1 + Ci

2 − Ci−12.
Using Lemma 5.4 we obtain (after simplifications):

(24) Z∞ =
1

R̃(1−R)
, C∞

2 =
16 ·R

(R̃ + 1)2R̃(1−R2)
.

Lemma 5.4 and the relation Y + 1/Y + 2 = 1/Q also ensure that Z ≡ Z(z) is the algebraic
generating function specified by

(25) Z +
1

Z
+ 1 =

1

R
.

To summarize we obtain:

Proposition 5.5. For each i > 1 and k > 4, the generating function H
(k)
i (z) has the

following expression (which does not depend on k):

H
(k)
i (z) = Zi+1 − Zi−1 + Ci

2 − Ci−12,
where

Zi = Z∞
(1− Zi)(1− Zi+2)

(1− Zi+1)2
, Ci = C∞ ·

(
1− R̃ + 1

4
Zi (1− Z)(1− Z2)

(1− Zi+1)(1− Zi+2)

)
.
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I, 1998.

[13] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.
[14] W. T. Tutte. A census of planar triangulations. Canad. J. Math., 14:21–38, 1962.
[15] W. T. Tutte. A census of planar maps. Canad. J. Math., 15:249–271, 1963.
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