
Submitted to the Annals of Applied ProbabilityarXiv: math.PR/0805.1349A NOTE ON THE ENUMERATION OF DIRECTEDANIMALS VIA GAS CONSIDERATIONSBy Marie AlbenqueUniversité Bordeaux 1 and Université Paris 7In the literature, most of the results about the enumeration ofdireted animals on latties via gas onsiderations are obtained bya formal passage to the limit of enumeration of direted animals onylial versions of the lattie.Here we provide a new point of view on this phenomenon. Usingthe gas onstrution given in [10℄, we desribe the gas proess on theylial versions of the latties as a ylial Markov hain (roughlyspeaking, Markov hains onditioned to ome bak to their startingpoint). Then we introdue a notion of onvergene of graphs, suhthat if (Gn) → G then the gas proess built on Gn onverges indistribution to the gas proess on G. That gives a general tool toshow that gas proesses related to animals enumeration are oftenMarkovian on lines extrated from latties.We provide examples and omputations of new generating fun-tions for direted animals with various soures on the triangular lat-tie, on the Tn latties introdued in [6℄ and on a generalization ofthe Ln latties introdued in [5℄.1. Introdution. Let G = (V,E) be a direted graph with set of ver-ties V and set of oriented edges E. Let A and S be two subsets of V , with
S ⊂ A. We say that A is a direted animal (DA) with soure S if and onlyif any vertex of A an be reahed from an element of S through a diretedpath having all its verties in A (see Figure 1). The verties of A are alledells and the number of ells, denoted |A|, is the area of A. We denote GG

Sthe generating funtion (GF) for DA on G with soure S ounted aordingto their area:
GG

S (t) =
∑

A, DAwith soure S t|A| =
∑

k≥|S|
akt

k,where ak is the number of DA on G with soure S and area k.In the following, we will always assume that the ells of S form an inde-pendent set on the direted graph G � we say that S is a free set � theformal de�nition follows.AMS 2000 subjet lassi�ations: Primary 60K20, 60K35; seondary 68R05Keywords and phrases: Gas model, Cyli Markov hains, Direted animals, Graphsonvergene 1imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



2 M. ALBENQUE
Fig 1. Example of a DA with area 6. The ells of the DA are dark and the verties of thesoure double irled.Definition 1. Let G = (V,E) be an oriented graph and x and y be twoverties of G. We say that x is a father of y or equivalently that y is a hildof x if there is an edge from x to y.More generally, x is alled an anestor of y if there exists a direted pathfrom x to y.Let now S be a subset of V ; we say that S is a free set of verties of G ifand only if for every x, y ∈ S suh that x 6= y, x is not an anestor of y.In this artile we fous on the link between enumeration of DA and hardpartile gas models.Definition 2. Let G = (V,E) be a graph, a gas oupation or gason�guration on G is a map X from V to {0, 1}. The verties v ∈ V suhthat X(v) = 1 are said to be oupied, the others are said to be empty.A hard partile gas oupation of a graph is a gas oupation with theadditional onstraint that two oupied verties annot be neighbors (theoupied ells form then an independent set).A gas model is a probability law on gas oupations. For a given gasmodel, we all density in a vertex v the probability for v to be oupied,that is P(X(v) = 1).Sine the pioneering work of Dhar [7℄, the onnetion between DA and gasmodels have been widely exploited. We shall now give a short overview of thedi�erent ontributions on this subjet (we refer the reader to [4℄ and [10℄ formore exhaustive referenes). In [7℄, Dhar using some statistial mehanisshows that omputing the area generating funtion for DA on the squarelattie is equivalent to omputing the density of a hard partile gas model.This result was obtained after Nadal et al. [11℄ and Hakim and Nadal [9℄obtained the generating funtion of DA on some �ylindri� square latties.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 3
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Fig 2. The same DA on two representations of the ylindri version of the square lattiewith a width of 6.Those �ylindri� latties are de�ned as follows : let G be an orientedlattie � that is an oriented translation-invariant graph � with its vertiesindexed by a subset of Z
2. If we onsider that the absissa of the vertiesof G are labeled by elements of [N ] := Z/NZ instead of Z, we obtain thewidth-bounded variant of G with yli boundary onditions (see Figure 2).We denote it G(N) and all it the yli or ylindri version of G of width

N .In [4℄, Bousquet-Mélou extends Dhar's orrespondene between the hardpartile gas models and enumeration of DA on yli square latties. Par-tiularly, she shows that gas models allow the enumeration of DA not onlyaording to their area but also for instane aording to their left perimeteror their number of loops. Those results were then generalized to a family oflatties in a joint work with Conway [5℄. In [5℄ and [4℄ the gas models studiedare de�ned on the ylindri versions of graphs and the GF for DA is obtainedas the formal limit of the density of the gas when the width grows to in�nity.Sine omputing the density of the gas model is not always tratable, theformer result does not neessarily lead to e�etive results about enumera-tion of DA. However that new link establishes gas models as a powerful andpolyvalent tool for the ounting of DA.In the latter works, the link between DA and gas is formal and appearsbeause DA and gas models are shown to verify the same reursive deom-position along with the layers of the graph. It notably implies that thatapproah is only valid for graphs that an be deomposed niely into layers.In [10℄, Le Borgne and Markert give a new insight into the onnetionbetween gas and DA. They onstrut a oupling between random DA andrandom gas models and give a ombinatorial proof that for a free set S theGF of DA with soure S is equal to the probability for the verties of S to beoupied (a onstrution of that oupling is skethed in Setion 2). Contraryimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



4 M. ALBENQUEto the onstrution on ylinders, in [10℄ the gas model is well de�ned onany ayli graph and in partiular on the whole lattie, where some of itsstohasti properties an be studied. On the square lattie for instane, itsrestrition to a line is shown to be Markovian, whih allows to omputeexpliitly the GF for DA with any soure inluded in a line.We must mention that there exist other fruitful approahes to the ombi-natoris of DA. Some results have been obtained by establishing links withheaps of piees introdued by Viennot in [12℄ (see for instane [13℄, [3℄, [2℄,[6℄) or with paths in the plane [8℄ or via the ECO method [1℄.We now desribe the ontent of this paper and its organization. Our aimhere is to give a general framework that allows to redue the enumeration ofDA with various soures on a graph G to the same enumeration on �simpler�versions of G. As mentioned above, simplifying the graphs we work on is alassial idea. Here, the di�erene with the works ited above relies on thefat that thanks to the gas onstrution given in [10℄, we an now study theonvergene of the gas models as stohasti proesses and not only the formalonvergene of their density. This leads both to a better understanding ofthe gas models and to new results about enumeration of DA with varioussoures.The �rst point is to make the notion of �simpler� versions of G au-rate; in Setion 3.1 we provide a distane on the set of graphs with markedverties, orresponding to soures (see Equation 3.1). Roughly speaking Gnonverges to G for the notion of onvergene of graphs indued by that dis-tane (whih orresponds roughly to the onvergene of the neighborhoodof soures) implies that GGn

S onverges to GG
S . In terms of probability, thatmeans the onvergene of the �nite-dimensional laws of the gas under addi-tional assumptions (Theorem 2).Then we need to ompute the law of the limiting gas proess obtainedthanks to that onvergene. That is possible on some latties. The multi-pliative formula obtained for the distribution of gas restrited to a line onthe ylinder in [4℄ and [5℄ leads to the intuition that that multipliativestruture may be preserved when the width of the ylinder goes to in�nityand that the limiting proess obtained above should be Markovian. For thatreason, in Setion 3.2 we de�ne a yli Markov hain as a Markov hainonditioned to ome bak to its initial state after a �xed number of steps(De�nition 6). We then give a representation of the gas on the ylinder asa yli Markov hain. Then in broad terms when the width of the ylin-der grows, the onditioning indued by the yli ondition is less and lessonstraining. At the limit, it eventually disappears whih therefore yieldsimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 5that the limiting proess is Markovian. We provide in Theorem 3 a formalstatement of those two ideas; that provides a frame in whih the gas proesson a line is Markovian.We de�ne in Setion 4.1 the family of latties (LR)R⊂N, whih extendsthe family of latties (Ln)n≥2 introdued in [5℄. We apply Theorem 2 andTheorem 3 to it, to the triangular lattie and to the family of Tn lattiesintrodued in [6℄. In Setion 4, we show that for those three examples, therestrition of the gas proess to a line is Markovian. Thanks to the linkbetween gas models and GF of DA, that allows to obtain some GF for DAwith various soures, see for example Proposition 1 for some results on thetriangular lattie.2. De�nition of the gas model. We sketh the onstrution of thegas model given in [10℄ and its link with enumeration of DA aording totheir area. Let G = (V,E) be a direted graph without multiple edges nordireted yles and suh that the number of hildren of eah node is �nite.The probability spae we work on is Ω = {a, b}V endowed with the σ-�eld generated by the �nite subsets of verties. We equip that spae withthe produt probability Pp = (pδa + (1 − p)δb)
⊗V , where δa is the standardDira measure on {a}. In other terms, ω ∈ Ω is a oloring of G and under

Pp eah vertex has, independently of the others, olor a or b with respetiveprobabilities p and 1 − p. For x ∈ V , ω(x) gives the olor of x. From thatrandom oloring we onstrut DA and a model of gas. Notie that the DAand gas proess de�ned below are deterministi funtions of the randomoloring.Definition 3. Let S be a subset of V and ω be a random oloring of
G. We denote by S•(ω) = {x ∈ S, ω(x) = a}, the (random) subset of Swith olor a. We then de�ne the random variable A

S as the maximal DA forthe inlusion partial order with soure S•(ω) and set of ells the a-oloredverties x that an be reahed from S•(ω) by an a-olored path (see Figure 3).For a set S suh that |S| ≥ 1, the random DA A
S may be in�nite withpositive probability. Let pG

crit be the threshold for the existene of an in�niteDA with positive probability (it orresponds to the ritial probability forthe oriented perolation on G):(2.1) pG
crit := sup{p, S : Pp(|AS | < ∞) = 1 and |S| < ∞}.For a general graph G, pG

crit is di�ult to ompute and an even be equalto zero. In the examples given in Setion 4, the outdegree of any verteximsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



6 M. ALBENQUEis bounded and in that ase pcrit > 0 (see for instane Proposition 2.2 of[10℄). For any p < pG
crit a gas oupation XG on G is de�ned from a randomoloring ω = (ω(v))v∈V as follows (see Figure 3 for an example):(2.2) XG(v) =

{
0 if ω(v) = b∏

v′ hildren of v(1 − XG(v′)) if ω(v) = a
.The de�nition of pG

crit ensures that the gas proess is almost surely wellde�ned as its reursive omputation ends within a �nite number of steps forany p < pG
crit (see Proposition 2.4 of [10℄ for details). From now on we alwaysassume that p < pG

crit and that the gas model onsidered is the probabilitylaw denoted P
G
p indued by that onstrution.

0 0 0 0 0 0 0

1 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

Fig 3. The gas oupation (on the left) and the DA A
S on L3, obtained from the sameoloring of the verties. Cells olored with a (respetively b) are dark (respetively white)and the verties of S are double irled.The link between enumeration of DA and that gas model is given by thefollowing result:Theorem 1 (Le Borgne and Markert [10℄). Let G = (V,E) be a diretedgraph and S be a free set of G. For any p in [0, RG

S ), we have:(2.3) P
G
p (XG(v) = 1, v ∈ S) = (−1)|S|GG

S (−p).where RG
S is the radius of onvergene of GG

S .With that theorem, the omputation of the generating funtion for DAomes down to the omputation of the probability for some verties to beoupied for the gas model P
G
p . That explains why in the next setion, wefous only on the study of the gas model and resume the enumeration of DAin Setion 4.3. Convergene of graphs, gas models and DA. We develop inthat setion some tools allowing to redue to simpler graphs the study of thestohasti properties of a gas model on a graph.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 73.1. Convergene of graphs. As realled in the introdution, most of theresults obtained about the enumeration of DA on a lattie G via the studyof gas models have been proved by a passage to the limit. More preisely thegas models are studied on G(N), the ylindri version of G (see introdution).For a �xed size n, the set of DA with size n oinide on G and G(N) whensay N ≫ n. It amounts to saying that
GG(N)

{x} −→
N

GG
{x}or equivalently in the gas model's point of view that the density of the gasonverges formally (in the sense that ∑ an,kx

k −→
n

∑
akx

k if and only if
an,k −→

n
ak for every n ∈ N).The aim of this setion is to make lear a notion of onvergene of graphs(that is a topology on the set of graphs) whih indues the onvergene ofthe �nite-dimensional laws of the gas proess and hene the onvergene ofthe generating funtion of DA. That onvergene is no longer seen only asa formal onvergene of generating funtions but as the onvergene of thedistribution of a stohasti proess.In the following, we always assume that the graphs onsidered are direted,without direted yles nor multiple edges and that the number of hildrenof eah node is �nite (a node an though have an in�nite number of parents),so that the gas model given in Setion 2 is de�ned.Definition 4. We all marked direted graph, a pair (G = (V,E), Z)where Z is a subset of V . We denote by VZ the subset of V of nodes havingat least one anestor in Z, and by G(Z) the subgraph of G having as set ofnodes VZ (and set of edges the edges of E linking them).To see Z as a soure and G(Z) as the maximal DA on G with soure Zmay help to understand better Theorem 2.Definition 5. Two direted marked graphs (G = (V,E), Z) and (G′ =

(V ′, E′), Z ′) are said to be isomorphi � we write (G,Z) ∼ (G′, Z ′) � if G(Z)and G′(Z ′) are equal up to a relabeling of the verties, in other words if thereexists a bijetive appliation φ from VZ onto V ′
Z′ suh that for any x, y in

VZ , (x, y) ∈ E is equivalent to (φ(x), φ(y))∈E′.The relation ∼ is an equivalene relation on the set of marked diretedgraphs. We denote by O the set of direted graph quotiented by that relation.For any marked graph (G,Z) we denote by (G,Z) its lass in O.We denote AG
Z the set of DA on G with soure Z. The graph (G,Z) isthe right (or minimal) struture that provides all the knowledge neessaryimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



8 M. ALBENQUEto study the gas on�guration on Z and the DA with soure Z in G (thatdepends also on the oloring on (G,Z)). From the onstrution of the gasmodel and random DA given in Setion 2, it is lear that if (G,Z) ∼ (G′, Z ′)then |Z| = |Z ′| and GG
Z = GG′

Z′ and the appliation φ provides a probabilityisomorphism between the gas oupations on Z and Z ′, whih implies that
P

G
p (XG

s = 1, s ∈ Z) = P
G′

p (XG′

s = 1, s ∈ Z ′).For any r ≥ 0, we de�ne Br(G,Z) as the subgraph of (G,Z) ontainingonly the verties v of (G,Z) suh that d(v, Z) = infu∈Z d(u, v) ≤ r, wherethe distane must be understood as a direted distane on graphs, that is:
d(u, v) = inf{|w|, where w is an oriented path from u to v}.As announed above, we now de�ne a distane dO on O whih gives asuitable notion of onvergene of graphs: for any O and O′ in O, we set(3.1) dO(O,O′) = inf

{
1

r + 1
, r suh that Br(G,Z) ∼ Br(G

′, Z ′)
}

,where (G,Z) ∈ O and (G′, Z ′) ∈ O′ (we let the reader hek that that isindeed a distane in O and in partiular, that it does not depend on thehoies of (G,Z) and (G′, Z ′)).Theorem 2. Let (Gn = (Vn, En), Zn) be a sequene of direted markedgraphs, and (G = (V,E), Z) be a direted marked graph. Let an,k = #{A ∈
AGn

Zn
, |A| = k} be the number of DA with soure Zn in Gn having k ells, anddenote by ak = #{A ∈ AG

Z , |A| = k}.If dO
(
(Gn, Zn), (G,Z)

)
→ 0 then1. GGn

Zn
(p) =

∑
k≥|Zn| an,kp

k −→
n→∞ GG

Z (p) =
∑

k≥|Z| akp
k where the onver-gene holds formally in the set of formal series with oe�ient in N(that is for any k, an,k → ak when n → ∞).2. If there exists c, d ≥ 0 suh that for any n large enough:(3.2) an,k ≤ c dk for any k ≥ 1then for any p < 1/d, the �nite-dimensional laws of the gas oupa-tion on Zn aording to P

Gn

p onverge towards those on Z distributedaording to P
G
p , ie :

P
Gn

p (XGn

s = 1, s ∈ Zn) →
n

P
G
p (XG

s = 1, s ∈ Z).imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 9Proof. 1. First, if dO
(
(Gn, Zn), (G,Z)

)
→ 0, then for any r, when n islarge enough, the two graphs Br(Gn, Zn) and Br(G,Z) are isomorphi. Thatimplies that the oe�ients of GGn

Zn
and GG

Z oinides at least up to the rth.2. First, ondition 3.2 implies that pGn

crit ≥ 1/d therefore the gas model
P

Gn

p is well de�ned for any p < 1/d.From the onstrution of the gas model, we an notie that the event
{XG

s = 1, s ∈ Z} does not depend on the oloring of all the verties of G butonly on verties of A
Z (see De�nition 3). Sine we assume p < 1/d, A

Z isalmost surely �nite aording to P
G
p ; that implies that for any ε > 0, thereexists mε suh that P

G
p (|AZ | ≥ mε) < ε.As when n is large enough the two graphs Bmε

(Gn, Zn) and Bmε
(G,Z)are isomorphi, there exists an appliation φ that maps Bmε

(Gn, Zn) onto
Bmε

(G,Z). Thus φ indues a probability isomorphism between the oloringof Bmε
(Gn, Zn) and of Bmε

(G,Z). Therefore, onditionally on the event
{|AZ | < mε}, the image of A

Zn by φ is A
Z and we get :

P
Gn

p (XGn

s = 1, s ∈ Zn

∣∣ |AZ | < mε) = P
G
p (XG

s = 1, s ∈ Z
∣∣ |AZ | < mε).That onludes the proof, sine P

G
p (|AZ | < mε) ≥ 1 − ε by de�nition of

mε.Remark 1. Even if in the appliations of that theorem in Setion 4 wealways assume that Zn and Z are free sets. There is no suh assumption inthe theorem and Zn and Z an be any sets.3.2. A variation on Markov proesses. The spirit of this setion is guidedby the results obtained for enumeration of DA in [4℄ and [5℄. It often happensthat the probability distribution of the gas has a multipliative form onylinders. That leads to the intuition that the limiting proess obtained whenthe width goes to in�nity is Markovian. We give here an appropriate frameto make that intuition rigorous.In this setion, we always assume that E is a �nite state spae, ν aprobability measure on E and M a stohasti matrix on E. We say that
Y = (Yi)i∈N is a (ν,M)-MC if it is a Markov hain with ν as initial law and
M as transition matrix.Definition 6. For any non-negative N , we all yli Markov hainof length N on E with initial law ν and transition matrix M, a proess
(Xi)i∈{0,...,N−1} whih is a Markov hain onditioned to ome bak to itsstarting point after N steps and we say that X is a (ν,M,N)-yli MC.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



10 M. ALBENQUELet Y be a (ν,M)-MC, for any x0, . . . , xN−1 ∈ E, the law of (Xi)i∈{0,...,N−1}is equal to:(3.3)
P(X0 = x0, . . . ,XN−1 = xN−1) = P(Y0 = x0, . . . , YN−1 = xN−1 |Y0 = YN )In other words,(3.4) P(X0 = x0, . . . ,XN−1 = xN−1) =

ν(x0)
∏N−1

i=0 Mxi,xi+1

Z̃Nwhere xN = x0 and Z̃N =
∑

x′

0,...,x′

N−1
ν(x′

0)
∏N−1

i=0 Mx′

i
,x′

i+1
.Note that if X is a (ν,M,N)-yli MC, the distribution of X0 is givenby(3.5) P(X0 = x) =

ν(x)
(
M

N
)

x,x

Z̃N

, for any x ∈ Eand the distribution of X1 by(3.6) P(X1 = x1) =

(
∑

x0

ν(x0)Mx0,x1

(
M

N−1
)

x1,x0

)(
Z̃N

)−1
.Equation (3.5) implies that the distribution of X0 is not ν exept for exep-tional ases. Combining Equations (3.5) and (3.6) implies that if ν = UE,the uniform law on E, then the yli MC is stationary, i.e : for any x ∈ E,

P(Xi = x) = P(X0 = x).On the other hand, assume that the initial law ν is an invariant law for M,then a (ν,M, N)-yli MC is not neessarily stationary. Roughly speakingthe term (
M

N−1
)
x1,x0

whih appears in (3.6) prevents that probability tosimplifying even if ν is an invariant measure assoiated with M.We now give the main result about the onvergene of yli Markovhains.Theorem 3. Let E be a �nite state spae and V be a square non-negativematrix indexed by the elements of E suh that V admits a simple real eigen-value λ greatest in modulus than every other eigenvalues. Let (X(N))N≥1 bea family of stohasti proesses suh that for every N , X(N) is indexed by
{0, . . . , N − 1} and(3.7) P(X

(N)
0 = x0, . . . ,X

(N)
N−1 = xN−1) =

∏N−1
i=0 Vxi,xi+1

trace(VN )
,imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 11with the onvention xN = x0.Let R = (Ri)i∈E and L = (Li)i∈E be respetively a right and a lefteigenvetor assoiated with λ suh that their dot produt is equal to one,ie: ∑LiRi = 1.(i) For eah N ≥ 1, X(N) is a (UE ,M,N)-yli MC, where M is equal to :(3.8) Mi,j = Vi,j
Rj

λ · Ri
, for i, j ∈ E.(ii) Let now X = (Xi)i∈N be a (well-de�ned) stohasti proess and its �nite-dimensional laws are given, for any k ∈ N, by(3.9) µ({x0, . . . , xk}) = lim

N→∞
P(X

(N)
0 = x0, . . . ,X

(N)
k = xk).Under µ, X is a (ν,M)-MC, where M is de�ned as in Equation (3.8) and νis the invariant probability measure for M and is given by ν(x) = LxRx, for

x ∈ E.Proof. We begin with (ii) and show that the limit in (3.9) exists. Let
k ∈ N and x0, . . . , xk ∈ E, for any N > k we have :(3.10) P(X

(N)
0 = x0, . . . ,X

(N)
k = xk) =

(k−1∏

i=0

Vxi,xi+1

)
(
V

N−k
)
xk,x0

trace(VN )When N goes to in�nity, the only signi�ant terms of (VN−k
)
xk,x0

and
trace(VN ) are those in λN . More preisely,

(
V

N−k
)
xk,x0

= Rxk
Lx0λ

N−k +
∑

λ′ eigenvalue of V 6=λ

aλ′λ′N−k(3.11)
= Rxk

Lx0λ
N−k + o(λN−k)(3.12)as λ > |λ′|, besides trace(V N ) = λN + o(λN ) whih leads to(3.13) lim

N
P(X

(N)
0 = x0, . . . ,X

(N)
k = xk) =

Rxk
Lx0

λk

k−1∏

i=0

Vxi,xi+1.Let µ({x0, . . . , xk}) =
Rxk

Lx0

λk

∏k−1
i=0 Vxi,xi+1 , we an hek that ν is a prob-ability distribution. Indeed, from Equations (3.10) and (3.13)

∑

x∈E

ν(x) =
∑

x∈E

RxLx =
∑

x∈E

lim
N

(
V

N
)
x,x

trace
(
VN

) = lim
N

∑

x∈E

(
V

N
)
x,x

trace
(
VN

) = 1,imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



12 M. ALBENQUEwhere the inversion of the sum and the limit is immediate sine E is �nite.We hek similarly that the matrix M de�ned in (3.8) is stohasti.Now it is easy to see that the �nite-dimensional laws given in (3.9) areonsistent, the Kolmogorov extension Theorem applies and ensures that thestohasti proess X is well de�ned.Point (i) follows diretly from the de�nition of a yli Markov hain.4. Examples of graphs. We give in this setion some examples of re-sults that an be obtained by the appliation of Theorems 2 and 3. In thefollowing examples, we only onsider oriented latties with verties indexedby a subset of Z
2. The j-th line of the graph is the set of verties with se-ond oordinate equal to j. We will see why the restrition of the gas model�to a line� of the graph is Markovian. The general approah used is widelyinspired of the method developed in [4℄ and [5℄. For a given graph G, we �rstshow that the assumptions of Theorem 2 are veri�ed for G and the sequeneof latties (G(N))n, that implies that the gas proess on G(N) onverges indistribution to the gas proess on G. We then ompute the distribution ofthe gas on a line of G(N) and interpret it as a yli MC by heking thatits distribution an be written in a multipliative form as in Equation 3.7.Theorem 2 and Theorem 3 imply then that the gas proess restrited to aline is Markovian. We explain fully the �rst example and sketh the others.4.1. The family of latties (LR)R⊂N. We de�ne in this setion a newfamily of latties. For any �nite subset R of N suh that |R| ≥ 2, we de�ne

LR as the lattie with set of verties indexed by Z
2 and from eah vertex

(i, j), there are |R| emerging edges from (i, j) to (i + r, j + 1) for r ∈ R. Inthe following, we always assume that inf(R) = 0 without loss of generality.We set R̄ = sup(R).Note that L{0,1} orresponds to the square lattie. If R = {0, . . . , n − 1},then LR = Ln, whih orresponds to the family of latties introdued in [5℄and detailed in the following. Another example is given in Figure 4.Remark 2. For any �nite subset R of N, the lattie LR veri�es theassumption of Setion 2 so the gas model is well de�ned for any p < pLR

critand sine the outdegree of any vertex is equal to |R|, pLR

crit > 1/|R| > 0.For N > n + R̄, the balls or radius n of L(N)
R and of LR are isomorphi,moreover assumption 2 of Theorem 2 holds true with d = |R|, thus the�nite-dimensional laws of the gas model on LR onverge to the ones on

L(N)
R . imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 13
Fig 4. Example of a DA of size 10 on lattie LR, when R = {0, 1, 4}We denote X

(N)
j the N -tuple that gives the oupation of the gas on the

j-th line of L(N)
R and ompute its distribution. The onstrution of the gasmodel given in Setion 2 implies that, when j dereases, (X

(N)
j )j∈Z is a�vertial� Markov hain (with 2N states) under its stationary distribution.Markov hain theory implies that suh a distribution is unique (that one ofthe main tool in [5℄ and [4℄).For C ⊂ [N ], let F

(N)
C be the probability that the oupied verties of aline of the graph are exatly those with �rst oordinate lying in C. In otherterms, for a gas oupation XLR distributed aording to the gas model givenin Setion 2 :(4.1) F

(N)
C = P

L(N)
R

p (XL(N)
R (i, j) = 1 if and only if i ∈ C).Note that the onstrution of the gas model implies that F

(N)
C does notdepend on a partiular hoie of j.We tradue the fat that (X

(N)
j )j∈Z, j↓ is Markovian into reurrene rela-tions for F

(N)
C . To that purpose, we de�ne for any subset C of N :

N (C) =
⋃

i∈C

{i + r | r ∈ R}and
N̄ (C) =

⋃

i∈C

{i − r | r ∈ R},where the addition is taken in [N ]. Notie that {N (C)×{1}} and {N̄ (C)×
{−1}} orrespond respetively to the set of hildren and of fathers of theset {C × {0}} and that |N (C)| = | ¯N (C)|. We thus obtain the followingequations:(4.2) F

(N)
C =

( p

1 − p

)|C| ∑

D⊂(N (C))c

(1 − p)N−|N̄ (D)|F (N)
D .imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



14 M. ALBENQUEFollowing [5℄, we hek that the probability distribution de�ned by
F

(N)
C =

1

ZN

( p

1 − p

)|C|
(1 − p)|N (C)|,where

ZN =
∑

C⊂[N ]

p|C|(1 − p)N (C)−|C|is stationary for Equation (4.2).To obtain a matrix formulation of that distribution, we onsider the matrix
V indexed by the elements of {0, 1}R̄ and de�ned by, for σ = (s0, . . . , sR̄−1)and τ = (t1, . . . , tR̄):

Vσ,τ = 0 if (s1, . . . , sR̄−1) 6= (t1, . . . , tR̄−1)and otherwise :
Vσ,τ =





p if tR̄ = 1

1 − p if tR̄ = 0 and there exists r suh that sr = 1 and R̄ − r ∈ R

1 otherwise.The quantity F
(N)
C an then be rewritten as(4.3) F

(N)
C =

1

ZN

∏N−1

i=0
Vσi,σi+1 where { σN = σ0 and

σi(k) = 1 i� i + k − 1 ∈ Cwith
ZN =

∑
σ1,...,σN

(∏N−1

i=0
Vσi,σi+1

)
= trae(VN ).The expression given for F

(N)
C in Equation (4.3) is in the very same form asthe statement of Theorem 3. Furthermore it is immediate to hek that allthe oe�ients of V

R̄−1 are positive (for p ∈ (0, 1)) whih ensures that Vsatis�es the onditions of Theorem 3 by Perron-Frobenius theorem.As mentioned in Remark 2, the �nite dimensional laws of the gas oupa-tion on L(N)
R onverges to those on LR. We apply Theorem 3 and get:Theorem 4. Let X = (X(i, j))(i,j)∈Z2 be the gas proess on LR dis-tributed aording to P

LR
p , with p < pLR

crit. The stohasti proess (Σi)i∈Nde�ned by Σi = (X(i, 0), . . . ,X(i + R̄ − 1, 0)) is a Markov hain under itsstationary distribution.In other words, the stohasti proess (Xi = X(i, 0))i∈N
is a Markov hainwith memory R̄ − 1 under its stationary distribution.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 15
Fig 5. DA on the latties L3 and L4 (all the edges are oriented upwards). The ells areblak and the soures are irled.The family of latties Ln. The family of latties (Ln)n≥2 introdued in[5℄ orresponds to the partiular ase of LR when R = {0, 1, . . . , n − 1}(examples of DA on L3 and L4 are given in Figure 5). In [5℄ the GF for DAwith one soure is given as the solution of an algebrai solution of degree atmost n + 1;Theorem 5 (Bousquet-Mélou and A.Conway [5℄). The generating fun-tion G for DA on Ln with a single soure is solution of the following equation(4.4) t2(1 + t)n−1[1 + (n + 1)G]n+1 − [1 + t + (n − 1)G]n−1(t − 2G2) = 0.We give some examples of omputation obtained by the appliation ofTheorem 4 on the latties Ln. In the ase n = 2, the omputation of theeigenvalues and eigenvetors of V =

( 1 p
1−p p

) onstitutes an alternative proofof Theorem 3.3 of [10℄.For n = 3, the transition matrix an be given expliitly as (the oe�ientsof the matrix are indexed by the lexiographial order on {0, 1}2):(4.5) 


1/λ 1 − 1/λ 0 0
0 0 1 − p/2λ p/2λ
α 1 − α 0 0
0 0 1 − p/λ p/λ


 where α = (1−p)2p

(2−p−λ)λ

λ =
1+
√

1+4p−4p2

2For example we obtain as a onsequene of that formula that the generatingfuntion GL3
k for DA on L3 with a ompat soure of size k ≥ 2 is equal to :

GL3
k (t) =

1 − t
(√

1 − 4t − 4t2
)

1 − 4t − 4t2 + (1 + 2t)
√

1 − 4t − 4t2

( −2t

1 +
√

1 − 4t − 4t2

)k−1

.To obtain the GF as the solution of an algebrai equation, we use that in[5℄, the largest eigenvalue λ of V is shown to be solution of(4.6) λ2(1 − p)n−1 = λn−1(λ − 1)2.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



16 M. ALBENQUE
Fig 6. Examples of DA on the triangular lattie (left) and on T4 (right).For n ≥ 4, λ annot be omputed expliitly from Equation (4.6). Neverthe-less, sine L and R are eigenvetors assoiated to λ their oordinates an beomputed in linear time and are polynomial of degree one in λ. With theondition of renormalization ∑LiRi = 1, we obtain that for any free set S,the generating funtion for DA on Ln with soure S is a rational fration andits numerator and denominator are polynomial in λ. Moreover, we know that

λ is solution of Equation (4.6), whih implies that the generating funtion isalgebrai in p.4.2. The triangular lattie. The triangular lattie, denoted Tri, is de�nedas the oriented graph with set of verties (i, j) ∈ Z
2 suh that i and jhave the same parity and with set of oriented edges ((i, j), (i − 1, j + 1)

),(
(i, j), (i + 1, j + 1)

) and ((i, j), (i, j + 2)
) (see Figure 6).We follow some ideas used in [4℄ to ompute the law of the gas on thatlattie (note that in [4℄ the generating funtion for DA with one soure onthe triangular lattie is obtained by the study of an ad ho gas model).We work on Tri(N) the ylindri version of the triangular lattie. We keepthe de�nition of F

(N)
C introdued in Equation (4.1), but sine a vertex hashildren in the two following lines, we need to de�ne an extension of F

(N)
C toobtain reurrene relations. Let C and D be two subsets of [N ] and X a gasmodel on Tri(N), we denote F

(N)
C,D the probability that the verties oupiedin the line 0 (respetively the line 1) of Tri(N) are exatly the ones with �rstoordinate belonging to C (respetively to D), in other words, for C,D ∈ [N ]:

F
(N)
C,D = P

Tri(N)

p

(
XTri(N)

(i, ε) = 1 if and only if {ε = 0 and i/2 ∈ C, or
ε = 1 and (i − 1)/2 ∈ D

)
.We de�ne N (C) as ∪i∈C{i−1, i+1} whih leads to the following reurreneimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 17relation for C,D ∈ [N ] suh that N (C) ∩ D = ∅,(4.7) F
(N)
C,D =

(
p

1 − p

)|C| ∑

E⊂c(C∪N (D))

FD,E(1 − p)N−|N (D)∪E|.Notie that sine the sum is taken on sets E suh that N (D) ∩ E = ∅,
|N (D) ∪ E| is equal to |N (D)| + |E|. Therefore the distribution given by(4.8) FC,D =

p|C|p|D|

ZN
1N (C)∩D=∅ for C,D ∈ [N ]and where

ZN =
∑

C,D
N (C)∩D=∅

p|C|p|D|,is solution to the reurrene relation given in (4.7).Let V =
(

1 p
1 0

), we an rewrite Equation (4.8) as(4.9)
FC,D =

1

trace(VN )

2N−1∏

i=0

Vxi,xi+1, where xi =





1 if i is even and i ∈ C,

1 if i is odd and i ∈ D,

0 otherwise.Combining Equation (4.9) and Theorem 3 results in the following statement:Theorem 6. Let X = (X(i, j))(i,j)∈Tri be the gas proess under P
Tri
p , thestohasti proess Σ = (Σi)i∈Z de�ned by

Σi =

{
X(i, 0) if i is even,
X(i, 1) if i is oddis a Markov hain under its stationary distribution and its transition matrixis given by

W =

(
P(Σ1 = 0|Σ0 = 0) P(Σ1 = 1|Σ0 = 0)
P(Σ1 = 0|Σ0 = 1) P(Σ1 = 1|Σ0 = 1)

)
=

(
1/λ p/λ2

1 0

)
,where λ = 1+

√
1+4p
2 and its stationary distribution is given by

[P(Σ0 = 0), P(Σ0 = 1)] =
[
λ2/(p + λ2), p/(p + λ2)

]
.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



18 M. ALBENQUE
d1

d2 d3

d1 d2Fig 7. Examples of soures onsidered in Proposition 1 (i) on the left and in Proposition 1
(ii) on the right.Adding up Equation (4.8) for all possible D leads to(4.10) FC =

1

ZN

p|C|(1 + p)N−|N (C)|.Setting V =
( 1+p p

1 p

) enables to rewrite Equation (4.10) as(4.11) FC =
1

trace(V N )

N−1∏

i=0

Vxi,xi+1 where xi = 1 if and only if 2i ∈ CAgain Theorem 3 and Equation (4.11) lead toTheorem 7. Let X = (X(i, j))(i,j)∈Tri be the gas proess under P
Tri
p , thestohasti proess Σ = (Σi)i∈Z de�ned by Σi = X(2i, 0) is a Markov hainunder its stationary distribution and its transition matrix is given by :(4.12)

W =

(
P(Σ1 = 0|Σ0 = 0) P(Σ1 = 1|Σ0 = 0)
P(Σ1 = 0|Σ0 = 1) P(Σ1 = 1|Σ0 = 1)

)
=

(
1 − α◦ α◦

α• 1 − α•

)and its stationary distribution by [P(Σ0 = 0), P(Σ0 = 1)] =
[

α•

α◦+α•

, α◦

α•+α◦

],where
α◦ =

2p

1 +
√

1 + 4p
and α• =

1 +
√

1 + 4p

2
.The link between gas distribution and enumeration of DA given in Propo-sition 1 and a simple matrix omputation give the following reinterpretationin terms of enumeration of DA of Theorems 6 and 7 (see Figure 7 for anexample of the di�erent soures onsidered).Proposition 1. (i) Let S = {s1, . . . , sk} where si = (xi, ǫi) be somepoints on the triangular lattie with ǫi ∈ {0, 1} and suh that di := xi+1 − xifor i ∈ {1, . . . , k−1} are non smaller than 2. The GF of DA on the triangularimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 19lattie with soure S is given by
GTri

S (−p) = (−1)|S|
α

1 + α

k−1∏

i=1

(−α)di + α

1 + α
, where α =

1 + 2p2 +
√

1 + 4p2

2p2

(ii) Let S = {s1, . . . , sk} where si = (2xi, 0) be some verties on a line of thetriangular lattie, suh that di := xi+1 −xi for i ∈ {1, . . . , k− 1} are positiveintegers. The GF of DA on the triangular lattie with soure S is given by
GTri

S (−p) = (−1)|S|
α◦

α• + α◦

k−1∏

i=1

α•(1 − α• − α◦)di + α◦
α• + α◦In partiular, if Sn := {(i, 0), i = 1, . . . , n}, we obtain GTri

Sn
(−p) = α◦

α◦+α•

(1−
α•)n−1(−1)n. Then, the GF of DA on the triangular lattie with ompatsoures satis�es

∑

n≥1

GTri
Sn

(−p) =
∑

n≥1

α◦
α◦ + α•

(1 − α•)
n−1(−1)n =

−p

1 + 4p
.That formula was obtained in [8℄ by ombinatorial methods.4.3. The family of latties Tn. We now study the family of latties Tnintrodued by Corteel & al. in [6℄. The oriented lattie Tn is a ombinationof the lattie Ln and the triangular lattie, de�ned as follows:

• if n = 2k + 1, the verties of Tn are labeled by the elements of Z
2.From eah vertex (i, j) ∈ Z

2 there are n emerging edges from (i, j) to
(i + r, j + 1) for −k ≤ r ≤ k and one emerging edge from (i, j) to
(i, j + 2).

• if n = 2k, the verties are labeled by the elements (i, j) ∈ Z
2 suhthat i and j have the same parity. From eah vertex (i, j) there are nemerging edges from (i, j) to (i+ 2r + 1, y + 1) for −k ≤ r ≤ k− 1 andone emerging edge from (i, j) to (i, j + 2).The ase n = 2 orresponds to the triangular lattie, treated separatelyin Subsetion 4.2 for sake of larity. In [6℄, the generating funtion for DAon Tn with a single soure is shown to be solution of an algebrai equationgiven expliitly. The proof relies on a ombinatorial argument whih linksthe generating funtion for DA on Tn to that for DA on Ln.The method used to obtain a stationary distribution for the gas modelon Tn is very similar to that used in the ase of the triangular lattie inSubsetion 4.2. We keep the same de�nitions for F

(N)
C and F

(N)
C,D as thosegiven for the triangular lattie and de�ne for C ∈ [N ], N (C) as the set :imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



20 M. ALBENQUE
• ⋃i∈C{i + r, for − k ≤ r ≤ k} if n = 2k + 1
• ⋃i∈C{i + 2r + 1, for − k ≤ r ≤ k − 1} if n = 2k.With that new de�nition of N (C), Equations (4.7), (4.8) and (4.10) still holdtrue. Following the ideas introdued to study Ln given in [5℄, we de�ne V asthe square matrix (Vσ,τ )σ,τ with indies running over {0, 1}n−1 and de�nedas follows. If σ = (s1, . . . , sn−1) and τ = (t2, . . . , tn), then:(4.13) Vσ,τ =





0 if (s2, . . . , sn−1) 6= (t2, . . . , tn−1)
p if (s2, . . . , sn−1) = (t2, . . . , tn−1) and s1 = 1
1 + p if σ = τ = (0, 0, . . . , 0)
1 otherwise.The stationary distribution of the gas model on a line of T (N)

n is given by(4.14)
FD =

1

ZN

∏N−1

i=0
Vσi,σi+1 where { σN = σ0 and

σi(k) = 1 if and only if i + k − 1 ∈ Dwith
ZN =

∑
σ0,...,σN−1

(∏N−1

i=0
Vσi,σi+1

)
= trae(VN ).The harateristi polynomial of V, denoted χ an be alulated expliitly :

χ(x) = x2n−1−n

(
xn − xn−1(1 + 2p) + p2

n−2∑

k=0

xk

)
.We rewrite the latter equation as

χ(x) =
x2n−1−n

1 − x
(p2 − xn−1(x + p2 − 1)(x − (2p + 1))).That implies that the dominant eigenvalue λ of V satis�es λ 6= 1 and(4.15) p2 = λn−1(λ + p2 − 1)(λ − (2p + 1)).We are here in the very same situation as for Ln. We an ompute expli-itly the solutions of Equation (4.15) only for n < 4. Nevertheless the samearguments as those given for Ln apply and we obtain from Theorem 3 andEquation (4.14) :Theorem 8. Let X = (X(i, j))(i,j)∈Tn

be the gas proess under P
Tn

p . Thestohasti proess (Σi)i∈N de�ned by
Σi = (X(2i, 0),X(2(i + 1), 0), . . . ,X(2(n − 2), 0)) for i ∈ Nis a Markov hain under its stationary distribution.In other words, (X(2i, 0))i∈N

is a Markov hain with memory n− 1 underits stationary distribution.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009
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