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Abstract In this article we study a class of monoids that includes Garside monoids, and give a simple combinatorial
proof of a formula for the formal sum of all elements of the monoid. This leads to a formula for the growth function
of the monoid in the homogeneous case, and can also be lifted to a resolution of the monoid algebra. These results are
then applied to known monoids related to Coxeter systems: wegive the growth function of the Artin-Tits monoids,
and do the same for the dual braid monoids. In this last case weshow that the monoid algebras of the dual braid
monoids of type A and B are Koszul algebras.

RésuméNous étudions une classe de monoïdes incluant les monoïdes de Garside, et donnons une preuve combina-
toire simple d’une formule pour la somme formelle de leurs éléments. Cela mène à une formule pour la fonction de
croissance du monoïde dans le cas homogène, et peut être aussi relevé en une résolution de l’algèbre de monoïdes.
Ces résultats sont ensuite appliqués aux monoïdes liés aux systèmes de Coxeter: nous donnons la fonction de crois-
sance des monoïdes d’Artin-Tits ainsi que des monoïdes duaux ; pour ces derniers nous montrons que leur algèbre de
monoïde en types A et B est une algèbre de Koszul.
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Introduction
We consider left cancellative monoidsM that are generated by their atomsS, and such that if a subset of
S admits a common right multiple, then it actually admits a least common multiple.

These monoids include trace monoids, for which there existsa nice combinatorial theory due to Viennot
[23]. Our first result (Theorem 2) generalizes one of the proofs of Viennot for the formal sum of elements
a monoid. When the monoid is homogeneous with respect to its set of atomsS, then we have immediately
that the growth function of the monoid (i.e. the generating function according to the length of elements as
words inS) is the inverse of a polynomial. We will apply this formula toArtin-Tits monoids, and more
generally it applies to all Garside monoids [9].

The combinatorial proof, which is a actually a sign reversing involution, has an interpretation as a
resolution ofZ as aZM -module, whereZM stands for the monoid algebra ofM . Another resolution can
be deduced from this one, and in turn this new resolution gives another formula for the growth generating
function of the monoid. We use this reduced resolution in thecase of thedual braid monoidsdefined by
Bessis in the typesA andB; for a particular choice of the reduced resolution in these cases, we will show
that the monoid algebrasZM areKoszul algebras[19, 11].
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We now give an outline of the paper. In Section 1 we define the class of monoids we study, give
formulas for the formal sum of their elements (Theorem 2) andthe growth functions of such monoids,
and give interpretations of these results as resolutions ofthe corresponding monoid algebras. In Section
2, we explain how these results apply to both trace monoids and Garside monoids. The following two
sections apply the results of Section 1 to two families of Garside monoids related to irreducible finite
Coxeter groups. In Section 3 we give the growth functions of the corresponding Artin-Tits monoids. In
Section 4, we also give the corresponding growth functions for the dual braid monoids, and show that in
typeA andB the corresponding monoid algebras are Koszul algebras.

1 Growth function and exact resolution
1.1 Monoids
A monoid(M, ·) is a setM together with an internal law· that is associative and such that there exists an
identity element1. A subsetS ⊂ M is agenerating setif every element ofM can be written as a product
of elements ofS.

Let S be a set, andR a collection of pairs(w, w′) (calledrelations), wherew andw′ are words inS.
We say that〈S |R 〉 is apresentationof the monoidM if M is isomorphic toS∗/ ≪R≫, where≪R≫
is the congruence generated byR. The presentation is said to behomogeneousif all relations ofR are
composed of two words of equal length. Given a generating setS of M , thelengthof an elementm ∈ M
is the smallest number of generators needed to write it. We will write |m|S for this length, and we note
that this length is additive ifM admits an homogeneous presentation.

An elementa is anatomof M if a 6= 1, and ifa = bc impliesb = 1 or c = 1; a monoid isatomicif it
is generated by its set of atoms, and if in addition every elementm possesses a finite number of different
decompositions as a product of atoms. It is easy to see that anatomic monoid has the property thata 6= 1
andb 6= 1 imply thatab 6= 1.

We noteZM the monoid algebra ofM , whose elements are formal linear combinations of elementsof
M with coefficients inZ; we note alsoZ〈〈M 〉〉 the algebra of formalinfinite such linear combinations.
The product of

∑
m cmm and

∑
m dmm is in both cases given by

∑
m emm whereem =

∑
ab=m cadb:

the product is well defined if the sum is finite, which is the case whenM is atomic.

1.2 Main result
In all this work, we consider monoidsM with a finite generating setS satisfying the following properties:
M is atomic, left-cancellative (ifa, u, v ∈ M are such thatau = av, thenu = v) and verifies that if a
subset ofS has a right common multiple, then it has a least right common multiple.

Lemma 1. For such a monoid, ifJ ⊂ S is such thatJ has a common multiple, then a least common
multiple (lcm) exists and is unique.

We will call cliquesthe subsets ofS having a common multiple, and letJ be the set of all cliques; if
J is a clique, we noteMJ its unique least common multiple, and letmJ be the length ofMJ . Then we
have our first result:

Theorem 2. LetM,S be as above. Then the following identity holds inZ〈〈M 〉〉:
(
∑

J∈J

(−1)|J|MJ

)
·

(
∑

m′∈M

m′

)
= 1M (1.1)
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As an important corollary, we get the following:

Corollary 3 (Bronfman ’01). GivenM,S as in the above theorem, suppose also thatM admits a homo-
geneous presentation〈 S |R 〉. Then its growth function is equal to :

GM (t) =
∑

m∈M

t|m|S =

[
∑

J∈J

(−1)|J|tmJ

]−1

(1.2)

Proof of Corollary 3: Admitting a homogeneous presentation is equivalent to the fact that the length
according toS is additive, which means that the application

∑
m cmm 7→

∑
m cmt|m|S is a homomor-

phism fromZ〈〈M 〉〉 to Z[[t]], the ring of power series with integer coefficients. It is indeed well defined
because there is a finite number of elements ofM of a given length. We can apply this homomorphism to
both sides of the above theorem, which finishes the proof.

Proof of Theorem 2:
For every elementm ∈ M , let us defineJ (m) ⊆ J to be the subsetsJ of S such that every element

s of J dividesm; by the lcm property ofM , we have that there exists a subsetJm ⊆ S, such thatJ (m)
consists exactly of the subsets ofJm.

From now on we fix a total order< on the set of generatorsS. Let us fix anym 6= 1. ClearlyJm is not
empty in this case, and so we can defines(m) as the maximal (for the order<) element ofJm. Define the
involution Φm on J (m) as follows:Φm(J) = J△{s(m)} where△ denotes the symmetric difference
A△B = (A ∪B) \ (A∩B). The applicationΦm is simply the classical involution on the subsets ofJm;
sinceΦm changes the parity of|J |, we have obviously

∑

J⊆Jm

(−1)|J| = 0. (1.3)

Note that this sum is1 if we takem = 1, since there is only one term corresponding to the empty set.
Now J ∈ J (m) means precisely thatMJ dividesm, that is there existsm′ such thatMJm′ = m: such
an elementm′ is uniquely determined by the cancellability property. Therefore Equation (1.3) can be
rewritten equivalently as

∑

(J,m′)∈J×M
MJ m′=m

(−1)|J| =

{
0 if m 6= 1;

1 if m = 1.
(1.4)

But this quantity is precisely the coefficientcm of m in the left term of Equation (1.1) written in the
form

∑
m cmm, and so this proves Theorem 2.

1.3 Posets

We refer to [22, ch. 3] for standard notions about posets. Given a locally finite poset(P,≤) (i.e all
intervals have a finite number of elements), the Möbius function can be defined inductively on all pairs
x ≤ z by

µ(x, x) = 1, µ(x, z) =
∑

x≤y<z

µ(x, y) for x < z (1.5)
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Now consider a monoidM (as in Paragraph 1.2 with the divisibility relation�. It forms a locally finite
posetPM as is readily checked, so it has a Möbius function; it has alsoa smallest element1, and we write
µ(m) = µ(1, m). In this poset, atoms of the monoids become atoms of the poset(i.e. elements that cover
1), and lcms become joins. We will use this in Section 4 to compute the growth functions of dual braid
monoids of type A and B in particular, since the interval[1, MS ] in PM for these monoids are noncrossing
partitions.

Note that one can identify the algebraZ〈〈M 〉〉 with the incidence algebraI(PM ). From this we know
thatζM =

∑
m∈M m ∈ Z〈〈M 〉〉 has for inverse inZ〈〈M 〉〉 the function

∑
m µ(m)m, so that Theorem

2 is actually a manner of computing the Möbius function of this poset, related to the crosscut theorem of
Rota [21].

1.4 An exact resolution

In this paragraph we give resolutions that generalize the one in [14] which concerned trace monoids: let
M, S be as at the beginning of Paragraph 1.2,A = ZM be the monoid algebra ofM . Let B = ZJ be
the free module with basisJ , andBn be the submodule with basisJn the cliques of cardinaln. Consider
thenCn = Bn ⊗Z A the free (right)A-module with basisJn. Now we fix a total order< onS, and we

write cliques as wordss1 . . . sn wheresi < si+1 for all i. For two cliquesJ ⊂ J ′, we also letδJ′\J
J be

the element ofM such thatMJδ
J′\J
J = MJ′ ; it is well defined thanks to the cancellability property. We

define anA-module homomorphismdn : Cn → Cn−1 by

dn(s1 . . . sn ⊗ 1) =

n∑

i=1

(−1)n−is1 . . . ŝi . . . sn ⊗ δsi

s1...ŝi...sn
(1.6)

We define alsoǫ : A → Z by ǫ(m) = 0 if m 6= 1 andǫ(1) = 1, so that we have the following sequence
of A-modules andA-homomorphism (where we letk = |S|):

0 −→ Ck
dk−→ Ck−1

dk−1

−→ · · · · · ·
d2−→ C1

d1−→ C0 = A
ǫ

−→ Z (1.7)

Theorem 4. The complex(1.7) is a resolution ofZ as anA-module.

We recall that this means that the sequence is exact, i.e. we have to check thatIm(dn) = Ker(dn−1)
for all n.

Proof: Let J = s1 . . . sn be a clique, then one checks first thatdn−1 ◦ dn = 0 for anyn. Indeed the

computation givesdn−1◦dn(J⊗1) =
∑

i<j(−1)i+j−1Ji,j⊗
(
δ

sj

Ji,j
δsi

Ji
− δsi

Jj,i
δ

sj

Jj

)
, where we letJi1,...,it

be the clique obtained by removing the generatorssi1 , . . . , sit
from J . Now the difference in the second

term is0 since both terms are equal toδsi,sj

Ji,j
.

So we haveIm(dn) ⊆ Ker(dn−1), and to check the reverse inclusion, we define aZ-homomorphism
in+1 : Cn → Cn+1 in the following way: letJ ⊗ m ∈ Cn, with J = s1 . . . sn, and consider the set
E(J, m) of divisors ofMJm that are greater thansn. If this set is empty, setin+1(J ⊗m) = 0; otherwise,
let sn+1 be the maximum element ofE(J, m) for the order<, and definem1 by δ

sn+1

J m1 = m; then set
in+1(s1 . . . sn ⊗ m) = s1 . . . snsn+1 ⊗ m1. One can then check thatin ◦ dn + dn+1 ◦ in+1 = 1 for all
n in a similar manner to [14], where1 is the identity onCn. This shows thatKer(dn) ⊆ Im(dn) and
concludes the proof.



Growth function for a class of monoids 145

Now we show how this resolution gives a proof of Theorem 2:

Proof of Theorem 2: Define theZ-moduleC(m) = ⊕nCn,m by letting the basis ofCn,m be the elements
J ⊗ m1 such that|J | = n andMJm1 = m in M . Then the functionsdn andin+1 mapC(m) to itself as
is immediately checked, so we obtain for everym ∈ M an exact sequence of freeZ-modules:

0 −→ Ck,m
dk−→ Ck−1,m

dk−1

−→ · · · · · ·
d2−→ C1,m

d1−→ C0,m
ǫ

−→ Zm (1.8)

We have thatdimZCn,m is the number of pairs(J, m1) ∈ J × M such that|J | = n andMJm1 = m;
furthermore,dimZZm is equal to1 if m = 1 and0 otherwise. Taking the Euler-Poincaré characteristic of
the resolution (1.8) gives us then Equation (1.4), which hasbeen shown to be equivalent to Theorem 2.
Reduced resolution: Given a total order onS as above, introduce now the setJ< ⊆ J of order com-
patible cliques: these are the cliquess1 . . . sn such that for alli we have thatsi is the largest divisor of
Ms1,...,si

for the order<. We will write OC for order compatible.

Lemma 5. A clique J = s1 . . . sn is OC if and only if for all t ≤ n and all sequences of indices
1 ≤ i1 < · · · < it ≤ n we have thatsit

is the maximal divisor ofMsi1
,...,sit

.

Proof: The condition is clearly sufficient; now ifJ = s1 . . . sn is OC and1 ≤ i1 < · · · < it ≤ n, we
have the inequalitiessit

≤ maxdiv(Msi1
,...,sit

) ≤ maxdiv(Ms1,s2,...,sit
) = sit

. So all inequalities are
in fact equalities and the lemma is proved.

Corollary 6. If J is an OC clique then every subset ofJ is also an OC clique.

Now let C̃i be theA-submodule ofCi with basis the OC cliques of sizei. By the last corollary, the
derivationsdi are well defined when restricted to these submodules, so we have a complex:

0 −→ C̃k
dk−→ C̃k−1

dk−1

−→ · · · · · ·
d2−→ C̃1

d1−→ C̃0 = A
ǫ

−→ Z (1.9)

Proposition 7. The complex(1.9) is an exact resolution ofZ byA-modules.

Proof: We check that the homotopyin+1 is still well defined when restricted to theZ-moduleC̃n, which
will prove the proposition. SupposeJ = s1 . . . sn is an OC clique,m ∈ M , and that the maximal element
sn+1 among the divisors ofMJm is greater thansn. Then, ifs dividesMs1,...,sn+1

, it divides alsoMJm,
and thus the greatest of these divisors issn+1; this shows thats1 . . . sn+1 is an OC clique, and thus that
the functionin+1 is well defined. So now the same proof as the one of Theorem 4 canbe applied, and the
result follows.

These modules were already considered in [8][Section 4], but with a different resolution.

Proposition 8. Theorem 2 and its corollary hold if the sum is restricted toJ< (for any given total order
< onS.)

The proof mimics the alternative proof of Theorem 2 above. Wewill use this proposition and the
resolution in Section 4.

2 Application to some classes of monoids
We give in this section some examples of monoids that satisfythe conditions of Theorem 2.
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2.1 Trace monoids

Trace monoids (also calledheaps of pieces monoids, Cartier-Foata monoidsor free partially commutative
monoids) are defined by the presentationM = 〈S | ab = ba if (a, b) ∈ I〉, whereS is a finite set of
generators andI is a symmetric and antireflexive relation onS × S called the commutation relation.
In [23], elements ofM are interpreted as heaps of pieces

At the very beginning, the aim of the work presented here was to generalize the results of [23]. It is
indeed a special case of our Theorem 2: in trace monoids, for asubsetJ of S, only two disjoint cases can
occur: either all elements ofJ commute, and their product is clearly their least common multiple; or there
exist two elements ofJ which do not commute, andJ does not admit a common multiple.

The first case corresponds to what is called cliques in the trace monoid literature, from which we
borrowed our terminology in our more general setting. It is then straightforward that the set of all least
common multiples of cliques corresponds exactly to the set of heaps of pieces of height at most one.

This work applies too to divisibility monoids which are a natural generalization of trace monoids,
studied in [10, 16].

2.2 Artin-Tits monoids

The Artin-Tits monoids are a generalization of both trace monoids and braid monoids (which are exten-
sively studied in Section 3). Given a finite setS and a symmetric matrixM = (ms,t)s,t∈S such that
ms,t ∈ N ∪ {∞} andms,s = 1, the Artin-Tits monoidM associated toS andM has the following
presentation:

M = 〈s ∈ S| sts . . .︸ ︷︷ ︸
ms,t terms

= tst . . .︸ ︷︷ ︸
ms,t terms

if ms,t 6= ∞〉 (2.1)

An Artin-Tits monoid is clearly homogeneous, has the left and right cancellation property (see Michel,
Proposition 2.4 of [17]) and has the least common multiple property (see Brieskorn and Saito, Proposition
4.1 of [7]). So in this case also our main Theorem and its corollary apply.

The Coxeter groupassociated to an Artin-Tits monoid is defined as the quotientof the latter by the
relationss2 = 1 for any s ∈ S. In other words, the Coxeter GroupW is defined by the following
presentation :

W = 〈s ∈ S | s2 = 1 and sts . . .︸ ︷︷ ︸
ms,t termes

= tst . . .︸ ︷︷ ︸
ms,t terms

if ms,t 6= ∞〉.

An Artin-Tits monoids is calledspherical if and only if its Coxeter group is finite. For example, the
only trace monoids that are spherical are the ones whose every elements commute. More generally, every
subset of generators of a spherical Artin-Tits monoid admita lcm. In this case the setJ of Theorem 2
and of Corollary 3 is naturally the set of all subsets ofS.

2.3 Garside monoids

In [9], Dehornoy and Paris generalize spherical Artin-Titsgroups as follows:

Definition 9. A Garside monoidis an atomic left cancellative monoidM , such that any two elements
have left and right lcm. We require besides thatM admits aGarside element∆: this means an element
whose sets of left and right divisors coincide, and such thatthis set is finite and generatesM .
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A Garside monoid fitted with the setS of its atoms satisfies the conditions of the main theorem. Fur-
thermore, as for spherical Artin-Tits monoids, all subsetsof atoms of a Garside monoids have a lcm and
so the setJ is the set of every subsets ofS.

3 Spherical Artin-Tits monoids
We study in this section the combinatorics of the classical braid monoid introduced by Artin and of some
of its generalizations, namely the classical braid monoidsof typesB and D. All these monoids are
spherical Artin-Tits monoids and hence some Garside monoids.

3.1 Coxeter groups

Before going further, let us just mention some points about finite Coxeter groups. A Coxeter group is said
to beirreducible if there does not exist two disjoint subsetsS1 andS2 of S such thatS = S1 ∪ S2 and
such that anys1 ∈ S1 commutes with anys2 ∈ S2. The irreducible finite Coxeter groups are completely
classified (see [13]). This section is devoted to the three infinite familiesAn, Bn andDn and more
precisely to the corresponding Artin monoids. We compute their growth functions by applying Theorem
2; this boils down to describing how to compute lcms in such monoids.

ForX = An, Bn, Dn, we write the corresponding growth function of the Artin-Tits monoidGX(t) =
1

HX (t) , whereHX is the polynomial
∑

J(−1)|J|tmJ , in which the sum is over all subsetsJ of generators
andmJ is the length of the lcmMJ of J . We describe in the following such lcms.

3.2 Type A

The Artin monoidA(An) is in fact the classical braid monoid onn + 1 strands. Hence, it admits the
following presentation:

A(An) = 〈σ1, . . . , σn |σiσi+1σi = σi+1σiσi+1 andσiσj = σjσi if |i − j| ≤ 2〉.

We denoteΣn = {σ1, . . . , σn} the set of Artin generators. To compute the lcm of a subsetJ of Σn, let
us consider a partitionJ = J1 ∪ · · · ∪ Jp such that anyσi andσj in J belong to the same block of this
partition if and only ifj = i ± 1.

We set∆{σj ,σj+1,...,σj+i} = (σj)(σj+1σj) . . . (σj+i . . . σj+1σj), thenMJ is equal to∆J1
. . .∆Jp

and
mJ =

∑p
i=1(|Ji|(|Ji| + 1)/2).

In this case, no explicit formula is known forHAn
but the form of the lcms leads easily to the following

recurrence relation:

HAn
(t) =

n∑

i=1

(−1)i+1ti(i−1)/2HAn−i
(t) + (−1)ntn(n+1)/2.

3.3 Type B

The Artin monoidA(Bn) of typeB is the monoid whose set of generators isΣn = {σ1, . . . , σn} and
which is submitted to the following relations:

σ1σ2σ1σ2 = σ2σ1σ2σ1, σiσi+1σi = σi+1σiσi+1, for i ≥ 2 and σiσj = σjσi if |i − j| ≤ 2.
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The elements of this monoid are classically represented as positive braids whose second strand is not
braided.

Similarly to Paragraph 3.2, forJ ⊂ {σ1, . . . , σn}, we writeJ = J1 ∪ . . . ∪ Jp, where the properties
satisfied by this partition are the same as those given above.Because of the particular role ofσ1, three
different cases have to be considered to compute the lcm ofJ . Eitherσ1 /∈ J or σ1 ∈ J andσ2 /∈ J
and in these casesMJ = ∆J1

. . . ∆Jp
just as before. Now ifσ1, σ2 ∈ J , without loss of generality we

assume thatσ1 ∈ J1, thenMJ = ∆̃J1
∆J2

. . . ∆Jp
, where∆̃J1

= (σ1σ2 . . . σm)|J1| with σm the maximal
element ofJ1 for the classical orderingσ1 < σ2 < . . . < σn of Σn.

The expression of lcms enable to obtain the following recurrence relation forHBn
, for n ≥ 1 (with the

conventionHB0
(t) = 1):

HBn
(t) =

n∑

i=1

(−1)i+1ti(i−1)/2HBn−i
(t) + (−1)nt(n)2 .

3.4 Type D
The Artin monoidA(Dn) of typeD is the monoid whose set of generators isΣn = {τ, σ1, . . . , σn−1}
and submitted to the following relations:

τσ2τ = σ2τσ2, σiσi+1σi = σi+1σiσi+1 for i ≥ 2, (3.1)

τσi = σiτ for i 6= 2 and σiσj = σjσi if |i − j| ≤ 2. (3.2)

In [1], Allcock introduced a representation in terms of braids on some orbifolds of the elements of this
monoid.

Let J ⊂ Σn, because of the symmetric role ofτ andσ1 we have to study two cases depending on either
at most one of them belongs toJ or both of them. Without loss of generality, we assume that only σ1

belongs toJ , thenMJ = ∆J1
. . . ∆Jp

, where theJi as defined in Paragraph 3.2 (it suffices to replace
each occurrence ofσ1 in MJ by τ to deal with the symmetric case). Ifτ andσ1 belong both toJ , we
moreover assume thatσ1 ∈ J1, thenMJ = ∆̃J1

∆J2
. . . ∆Jp

, where∆̃J1
= (τσ1σ2 . . . σm)|J1| with σm

the maximal element ofJ1 for the classical orderingσ1 < σ2 < . . . < σn of Σn.
Once again, this leads to the following recurrence relationfor the denominator of the generating func-

tion ofA(Dn), for n ≥ 2 (by conventionHB0
(t) = 1 andHB1

(t) = 1):

HDn
(t) =

n−1∑

i=1

(−1)i+1ti(i−1)/2HDn−i
(t) + (−1)n−12t(n)(n−1)/2 + (−1)nt(n)(n−1).

4 Dual braid monoids
4.1 Definition
We defined Coxeter systems in paragraph 2.2. LetT be the set of reflections ofW , i.e. the setT =
{wsw−1, s ∈ S}; T is obviously a generating set forW , and we letℓT (w) = k wherek is the minimal
number of reflectionsti ∈ T such thatw = t1 · tk; the functionℓT is then invariant under conjugation,
that is we haveℓT (w) = ℓT (zwz−1) for any two elementsw, z ∈ W . Then one defines a partial order on
W by settingw ≤T z if ℓT (w) + ℓT (w−1z) = ℓT (z). A Coxeter element is an elementc of W which
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is the product of the Coxeter generatorsS in any order; one can show that any two Coxeter elements are
conjugate inW . Given a Coxeter elementc ∈ W , one defines a posetNC(W, c) = [1, c] with respect to
the partial order≤T . SinceℓT is invariant under conjugation and any two Coxeter elementsare conjugate,
we have that the isomorphism type ofNC(W, c) does not depend on the particularc chosen, and we will
just writeNC(W ). We refer to [2] and the references therein for more information about this topic.

Bessis [5] showed that one can define a certaindual braid monoidfor every poset, with generating set in
bijection withT , which is a Garside monoid such that the lattice of elements dividing the Garside element
is isomorphic to the latticeNC(W ). As shown in Section 1.3, we need only this lattice to computethe
growth function of the monoid. We refer the reader to [5] for the general definition of the monoid, and to
[18] for explicit presentations in classical types.

Note that the values
∑

rk(x)=k µ(x) of the Möbius functions of the posetsNC(W ) have already been
computed in general, so by the results of Subsection 1.3, allgrowth functions of the dual braid monoids
can be obtained. What we will do here is to find first a combinatorial proof of this result in type A
and B, and then verify that the resolution (1.9) we obtain shows that the corresponding algebras of the
corresponding dual braid monoids are in fact Koszul algebras (Paragraph 4.5). The combinatorial objects
that we will deal with arenoncrossing alternating forests, which we now study.

4.2 Noncrossing alternating forests and unary binary trees

Considern points aligned horizontally, labeled1, 2, . . . , n from left to right. We identify pairs pairs(i, j),
i < j, with arcs joiningi and j above the horizontal line. Two arcs(i, j) and (k, l) are crossingif
i < k < j < l or k < i < l < j.

Definition 10. A noncrossing alternating forestonn points is a set of noncrossing arcs on[[1, n]] such that
at every vertexi, all the arcs are going in the same direction (to the right or to the left).

It is easily seen that these conditions determine forests inthe graph-theoretical sense, that is the arcs
cannot form a cycle.We defineNCAF(n, k) as the set of noncrossing alternating forests onn points with
k arcs, and in this subsection we will determine bijectively their cardinality denotedNCAF (n, k).

We will actually define a bijection with unary binary trees, by which we mean rooted plane trees all of
whose vertices have0, 1 or 2 sons. It is well known that such trees withm vertices are counted by the
Motzkin numberMm−1 (cf. [22]) and that they are in bijection with Motzkin paths with m − 1 steps:
these are paths inN2 from (0, 0) to (m−1, 0), with allowed steps(1, 1), (1, 0) and(1,−1). The bijection
consists of a prefix traversal of the tree, as shown by the dotted line around the tree on the left of Figure
1; for every left son (respectively right son, resp. single son) encountered for the first time, we draw an
up step (resp. a down step, resp. a horizontal step). Under this bijection, unary vertices correspond to
horizontal steps; by the cyclic lemma, it is then easy to showthat:

Proposition 11. The number of unary binary trees withm vertices andp binary vertices is given by

1

m

(
m

m − 2p− 1, p, p + 1

)
=

(m − 1)!

(m − 2p− 1)!p!(p + 1)!

Suppose we have just one connected component in a noncrossing alternating forest, i.ek = n − 1:
we obtain the noncrossing alternating trees introduced in [12], where a bijection with binary trees with
n leaves was given. We recall this bijection: given a noncrossing alternating tree onn ≥ 2 points, there
is necessarily an edge between1 andn. Destroying that arc, we get two smaller noncrossing alternating
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Fig. 1: A unary binary tree and the corresponding Motzkin path.

trees, oni andn − i points say. By induction, we can attach a binary tree to each of these smaller trees;
let T1 andT2 be these two trees respectively, and create a new root (corresponding to the deleted arc) with
left subtreeT1 and right subtreeT2. The inverse bijection is immediate.

We can generalize this bijection as follows:

Theorem 12. There is a bijection between unary binary trees withn+k−1 vertices andk binary vertices,
and noncrossing alternating forests onn points withk arcs.

Proof: Let us be given a noncrossing alternating forest onn points withk arcs; for each of then − k
components, we apply the bijection for noncrossing trees described above, keeping the labels on the
leaves. So we have a collectionC of binary trees, such that each integer[[1, n]] appears exactly once as
the label of a leaf. LetT be the tree containing the label1, and letm be such that1, . . . , m label leaves
of T , butm + 1 does not; letT ′ be the tree containing the labelm + 1. We then form a new treeT1 by
transforming the leaf labeledm in a unary vertex (still labeledm), whose attached subtree isT ′. We now
removeT andT ′ from C and replace them byT1; we can now repeat the same operation, and we do it
until C has just one element, which is a unary binary tree withn − k − 1 unary vertices.

Conversely, given a unary binary tree withk−1 unary vertices andn leaves, we make a prefix traversal
of the tree, and we label only unary vertices and leaves (thusleaving binary vertices unlabeled). Then we
cut every edge stemming from a unary vertex, which gives us a forest ofk binary trees labeled on leaves:
we apply to each of them the bijection for noncrossing trees (using as point set the labels of the leaves),
thereby obtaining the desired noncrossing forest.

The bijection is illustrated on Figure 2, in whichn = 10 andk = 5. From Proposition 11, we have the
immediate corollary:

Corollary 13. The number of noncrossing alternating forests onn points withk arcs is given by

NCAF (n, k) =
(n − 1 + k)!

(n − 1 − k)!k!(k + 1)!

4.3 Type A

In type A, the posetNC(W ) is isomorphic to the noncrossing partition latticeNCA(n), which we de-
scribe. A set partition of[n] is noncrossingif it does not have two blocksB, B′ and elementsi, j ∈ B and
k, l ∈ B′ such thati < k < j < l. Let NCA(n) be the poset of noncrossing partitions of sizen ordered
by refinement.
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Fig. 2: Bijection between unary binary trees and noncrossing alternating forests

We now need to compute joins of cliques in this poset; we will use here a certain order on atoms to
restrict to certain order compatible cliques (see Section 1). The atoms ofNCA(n) are the partitions with
one block of size2 and all other blocks are singletons, and we identify these atoms with arcs(i, j) between
the points labeledi andj if n points horizontally aligned and labelled from1 to n are given. Now we
define the following order on atoms:(i, j) < (k, l) if l − k > j − i, or if l − k = j − i andi < k; the
important point is that if an arc contains another arc, then it is bigger.

Consider a clique of size two{(i, j), (k, l)}. If i < k ≤ j < l, then the join of these elements is the
partition with one non-singleton block{i, j, k, l}; but (i, l) is smaller in the poset than this partition, and
bigger than both(i, j) and(k, l) for the order<, so the clique cannot be OC. Now it can be shown that
all other size2 cliques are OC, and that OC cliques of sizek are precisely the elements ofNCAF(n, k);
the join of such an OC-clique is simply the partition whose blocks are the labels of each tree in the
forest. For the element ofNCAF(10, 2) on the left of Figure 2, the noncrossing partition has blocks
{1, 3, 6, 7}, {2}, {4, 5}, {8, 10} and{9}.

From this, Proposition 11 and 11 we have that the growth function of the dual braid monoid of typeA
is given by

GA(t) =

(
n∑

k=0

(−1)k (n − 1 + k)!

(n − 1 − k)!k!(k + 1)!

)−1

This answers a conjecture of Krammer [15, Exercise 17.37].

4.4 Type B
Here the posetNC(W ) is isomorphic to the type B noncrossing partitionsNCB(n), which is defined
as the subposet ofNCA(2n) formed by partitions of{1, 2, · · · , n,−1,−2, · · · ,−n} that are invariant
under the bijectioni 7→ −i . We note((i1, . . . , it)) the partition with non singleton blocks{i1, . . . , it}
and{−i1, . . . ,−it}. There aren2 atoms in the posetNCB(n): n with exactly one non singleton block
[i] := {i,−i}, andn(n − 1) of the type((i, j)) and((i,−j)) where1 ≤ i < j ≤ n. Consider now as
beforen labeled points aligned horizontally: we identify the atoms[i] with the points, and((i, j)) and
((i,−j)) with arcs betweeni andj to which we assign respectively a positive and a negative sign.

Now we consider any linear order that extends the following partial order defined by Blass and Sagan
[6]: an atom –identified with a positive or negative arc, or a negative vertex– is bigger than another if it
strictly contains it, and a positive arc is bigger than the same arc with negative sign. By extending the
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analysis of [6] which focused on the top element{1, 2, · · · , n,−1,−2, · · · ,−n}, we can show that the
OC cliques of sizek can be constructed in two ways:

• Pick an element ofNCAF(n, k); then either choose any of thek arcs and assign a negative sign to
this arc and all arcs above it, or assign all arcs positive signs.

• Pick an element ofNCAF(n, k− 1), either choose any of thek− 1 arcs and assign both a positive
and a negative sign to it, or choose any of then points and mark it negatively. In both cases, assign
a negative sign to all arcs that contain the chosen arc or point and assign a positive sign to all other
arcs.

In both cases one checks that the corresponding join of atomsis of rankk exactly in the poset. From
their description above one has immediately that there are(k+1)NCAF (n, k)+(n+k−1)NCAF (n, k−
1) OC-cliques of sizek, so we get that the growth functionGB(t) for the dual braid monoid of typeB is
given by

GB(t) =

(
n∑

k=0

(−1)k

(
n

k

)(
n + k − 1

k

)
tk

)−1

Remark: for W of type Dn, the posetNC(W ) is isomorphic to the type D noncrossing partitions
NCD(n) defined in [4]; we did not find a similar order on atoms as described in typesA and B in
order to compute the growth function. Note that the order described in [6] cannot be used, since it is
applied to a certain poset of [20] that has been since shown tobe different from the posetNC(Dn).

4.5 Koszul algebras
Let A be a finitely generated graded algebraA = ⊕i≥0Ai,of the formA = Z < x1, . . . , xk >/I for an
homogeneous idealI, . A is said to be aKoszul algebraif Z admits a free resolution ofA-modules, such
that the matrices of all linear maps in the resolution have coefficients inA1 (the resolution is then called
linear) [19, 11].

Now, given a homogeneous monoidM with atomsS verifying the conditions of Section 1, the algebra
ZM is graded. In the resolutions (1.7) and (1.9), the entries ofthe matrices are (up to sign) the elements
δsi

Ji
, which are the elementsx in M such thatMJ−{si}x = MJ , and the componentA1 of the algebra

is ZS. For the orders on atoms defined for dual monoids in type A and B, our analysis of OC cliquesJ
show thatδsi

Ji
= si: indeed we showed that such cliques have joins of rankk in the poset, which means

that in the monoid the lcm is of length|J | precisely. The resolution (1.9) is thus linear, and we have:

Theorem 14. The monoid algebras of the dual braid monoids of typeA and typeB are Koszul algebras.

By the general theory of Koszul algebras, they possess graded dual algebras calledKoszul duals, whose
homogeneous components have the dimensions of the modulesC̃i in a linear resolution; in typeA for
instance, we have that this dual algebra is finite dimensional, and has a basis given by noncrossing al-
ternating forests, the number of arcs determining the grading. It would be interesting to investigate the
structure of these algebras, and generalize this to all finite Coxeter groups.

A promising way is certainly to investigate the descending chains for the EL-labeling ofNC(W )
defined in [3] and relate them to the OC cliques we described intype A and B: we can prove for instance
that they are identical in typeA, but differ in typeB.

Acknowledgment. The authors thank Vic Reiner for pointing out the link between Theorem 2 and Koszul
algebras.
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