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2Institut de Physique Théorique, CEA, IPhT, F-91191 Gif-sur-Yvette Cedex, France, CNRS URA 2306 and
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Abstract. We consider the problem of enumerating planar constellations with two points at a prescribed distance.
Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family
of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized
Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian
triangulations with two points at a prescribed distance.

Résumé. Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance
donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle,
plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de
fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve
combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.
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1 Introduction
From the initial work of Hurwitz (1891) about transitive ordered factorizations of the identity in the
symmetric group, to the bijective approach of Bousquet-Mélou and Schaeffer (2000) and Bouttier et al.
(2004), including the more algebraic approach of Goulden and Jackson (1997), constellations appear in
many forms in different areas of combinatorics. We refer the reader to the book of Lando and Zvonkin
(2004) for an extensive review of the variety of contexts in which constellations appear.

We here focus on the map point of view, and consider the problem of enumerating planar constellations
with two points at a prescribed distance. This problem is originally motivated by the seminal work of
Chassaing and Schaeffer (2004) where the distribution of distances to the root vertex in a random quad-
rangulation was investigated via a correspondence with so-called well-labeled trees. Determining the law
of the first moment of this distribution amounts to counting planar quadrangulations with two points at a
prescribed distance, a question which was first addressed by Bouttier et al. (2003a) (in a slightly differ-
ent “dual” picture): the associated generating function was found to obey a recurrence equation which,
remarkably, admits an explicit solution, see also Bouttier et al. (2003b). This recurrence equation was
generalized to the case of bipartite maps (2-constellations) with controlled face degrees, and a general
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form for its solution was conjectured, hinting at a mysterious integrability property (Bouttier et al., 2003a,
Section 5). Di Francesco (2005) further extended this approach to general constellations. Recently, Bout-
tier and Guitter (2011) proved the validity of the solution in the case of bipartite maps by a different
approach relying on the combinatorial theory of continued fractions of Flajolet (1980). The purpose of
our work is to generalize this new approach to constellations, with the intent of proving Di Francesco’s
formulas and of shedding light on this “combinatorial integrability”.

The present paper makes a first step in this direction. We exhibit a connection between our enumeration
problem and the a priori simpler problem of counting rooted constellations. This connection relies on a
decomposition involving some lattice paths, which we may rephrase in terms of multicontinued fractions.
Solving our enumeration problem amounts to finding unknown coefficients in such a multicontinued frac-
tion, which can be done via a generalization of Hankel determinants. We illustrate this approach in the
case of Eulerian triangulations, where we provide the first combinatorial derivation of a formula found
in Bouttier et al. (2003b) for the generating function of Eulerian triangulations with two points at pre-
scribed distance. These objects are in bijection with “very-well-labeled trees with small labels”, see also
(Bousquet-Mélou, 2006, Section 2.1). The next section presents in more detail our main results and the
organization of the paper.

2 Definitions and main results
A planar map is a proper embedding of a connected graph into the sphere, where proper means that edges
are smooth simple arcs which meet only at their endpoints. Two planar maps are identical if one of them
can be mapped onto the other by a homeomorphism of the sphere preserving the orientation. A planar
map is made of vertices, edges and faces. The degree of a vertex or face is the number of edges incident to
it (counted with multiplicity). Following Bousquet-Mélou and Schaeffer (2000), we consider a particular
class of planar maps called constellations, see Fig.1.

Definition 1 For p P v2,8v, a (p-)constellation is a planar map whose faces are colored black or white
in such a way that :

• adjacent faces have opposite colors,
• the degree of any black face is p,
• the degree of any white face is a multiple of p.

Each edge of a constellation receives a canonical orientation by requiring that the white face is on its
right. It is easily seen that the length of each oriented cycle is a multiple of p, and that any two vertices
are accessible from one another. A constellation is rooted if one of its edges is distinguished. The white
root face and black root face are respectively the white and black faces incident to the root edge. The root
degree is the degree of the white root face. A constellation is said to be pointed if it has a distinguished
vertex. Note that, in a pointed rooted constellation, the pointed vertex is not necessarily incident to the
root edge.

In this paper, we consider p-constellations subject to a control on white face degrees, i.e. for each
positive integer k we fix the number of white faces of degree kp. This amounts to considering multivariate
generating functions of constellations depending on an infinite sequence of variables pxkqk¥1, where xk
is the weight per white face of degree kp and the global weight of a constellation is the product of the
weights of its white faces. Two families of constellation generating functions will be of interest here.
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Fig. 1: (a) A rooted 4-constellation with root degree 8 and weight x2
1x

2
2x4, contributing to F2 (note that vertex types

around the root face form a 4-excursion). (b) A pointed rooted 4-constellation of type 3 Ñ 2, with weight x3
1x2,

contributing to all Vi with i ¥ 3.

The first family is that of rooted constellations with a prescribed root degree. More precisely, for n ¥ 1,
let Fn � Fnpx1, x2, . . .q denote the generating function of rooted p-constellations with root degree np.
By convention, we do not attach a weight xn to the white foot face and we set F0 � 1.

The second family is that of pointed rooted constellations with a bounded “distance” between the root
edge and the pointed vertex. More precisely, in a pointed constellation, we say that a vertex v is of type
j P N if j is the minimal length of an oriented path from v to the pointed vertex (due to the orientation, it
is slightly inappropriate to think of j as distance) and we say that an edge is of type j Ñ j1 if its origin and
endpoint are respectively of type j and j1. Then, for i ¥ 1, let Vi � Vipx1, x2, . . .q denote the generating
function of pointed rooted p-constellations where the root edge is of type j Ñ j�1 with j ¤ i (see Fig.1).
Note that V1 is the generating function for rooted constellations (since for i � 1, the pointed vertex must
be the endpoint of the root edge). Furthermore, we add a conventional term 1 to Vi, for all i ¥ 1.

The fundamental observation of this paper may be stated as:

Theorem 1 The sequences pFnqn¥0 and pViqi¥1 are related via the multicontinued fraction expansion

¸
n¥0

Fnt
n �

1

1 � t
p�1¹
i1�1

Vi1

1 � t
p�1¹
i2�1

Vi1�i2

1 � t
p�1¹
i3�1

Vi1�i2�i3

. . .

(1)

In the case p � 2, the r.h.s. of (1) reduces to an ordinary continued fraction (of Stieljes-type). This corre-
sponds to the bipartite case discussed in (Bouttier and Guitter, 2011, Eq. (1.13)): indeed, 2-constellations
may be identified with bipartite planar maps upon “collapsing” the bivalent black faces into non-oriented
edges.

In the spirit of the combinatorial theory of continued fractions initiated by Flajolet (1980), an alternate
formulation of Theorem 1 may be given in terms of some lattice paths. We call p-path a lattice path on
Z�N made of two types of steps: rises p1, p�1q and falls p1,�1q. Note that a p-path starting from pi0, j0q
only visits vertices pi, jq with i� j � i0 � j0 mod p. A p-excursion of length np is a p-path that starts
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at p0, 0q and ends at pnp, 0q. It is well-known that such p-excursions are in one-to-one correspondence
with p-ary rooted plane trees with n nodes, in number 1

np�1

�
np�1

n

�
. To each fall in a p-path, we attach a

weight Vi where i is the starting height of the fall (i.e. the fall starts from pj, iq for some j, and thus ends
at pj � 1, i� 1q). We define the weight of a p-path as the product of the weights of its falls. As discussed
in Section 3, the alternate formulation of Theorem 1 is then:

Theorem 2 For all n ¥ 0, Fn is equal to the sum of weights of all p-excursions of length np.

We prove this theorem in Section 4. As an illustration, for p � 3 and n � 1, 2, 3, the equality reads

F1 � V1V2

F2 � V1V2pV1V2 � V2V3 � V3V4q

F3 � V1V2pV
2
1 V

2
2 � 2V1V

2
2 V3 � V 2

2 V
2
3 � 2V1V2V3V4 � 2V2V

2
3 V4�

V 2
3 V

2
4 � V2V3V4V5 � V3V

2
4 V5 � V3V4V5V6q

(2)

We are now interested in inverting the relation (1), i.e. expressing Vi in terms of the Fn’s. For p � 2,
this may be done using Hankel determinants (see below). However, as soon as p ¥ 3, it is not difficult to
see that knowing the sequence pFnqn¥0 alone is not sufficient (for instance in (2) it appears that we have
“twice as many unknowns as equations”).

We thus need some extra knowledge. A possible way is to consider, for all n ¥ 0 and r ¥ 0, the
sum of weights of all p-paths that start at p�r, rq and end at pnp, 0q, which we denote by F prq

n . Note that
F
p0q
n � Fn and, since a p-excursion necessarily starts with a rise, F pp�1q

n � Fn�1. From now on, we
restrict the values of r to the interval v0, p � 2w. As will be discussed in Section 4, those F prq

n have a
natural interpretation in terms of constellations. Let us write down the first few F

p1q
n for p � 3:

F
p1q
0 � V1

F
p1q
1 � V1V2pV1 � V3q

F
p1q
2 � V1V2pV

2
1 V2 � 2V1V2V3 � V2V

2
3 � V1V3V4 � V 2

3 V4 � V3V4V5q

(3)

It appears that, interlacing the equations in (3) and (2), we obtain a triangular system of equations for
V1, .., V6. This fact turns out to be general and, furthermore, the solution to our inverse problem is provided
by the following formula, which we derive combinatorially in Section 3.

Theorem 3 For m P v0, p� 1w and n P N, we have the determinantal identity

Hm;n :� det
0¤i,j¤n

F
pri�mq
qi�m�j �

n¹
i�0

ip�m¹
j�1

Vj (4)

where, for k P N, qk and rk denote respectively the quotient and the remainder in the Euclidean division
of k by p� 1, namely qk � t k

p�1 u and rk � k � pp� 1qqk.

Corollary 4 Let m P v0, p� 1w, n P N, and set by convention Hm;�1 � 1. We have

Vpn�m �

$''&
''%
Hm;nHm�1;n�1

Hm;n�1Hm�1;n
if m ¥ 1

H0;nHp�1;n�2

H0;n�1Hp�1;n�1
if m � 0 and n ¥ 1.

(5)
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Note that, for p � 2, we recover the Hankel determinants: Hm;n � det0¤i,j¤n Fi�j�m with m � 0 or
1. For p � 3, the first few determinants read

H0;0 � F
p0q
0 � 1 H1;0 � F

p1q
0 H2;0 � F

p0q
2

H0;1 �
F
p0q
0 F

p0q
1

F
p1q
0 F

p1q
1

H1;1 �
F
p1q
0 F

p1q
1

F
p0q
1 F

p0q
2

H2;1 �
F
p0q
1 F

p0q
2

F
p1q
1 F

p1q
2

H0;2 �

F
p0q
0 F

p0q
1 F

p0q
2

F
p1q
0 F

p1q
1 F

p1q
2

F
p0q
1 F

p0q
2 F

p0q
3

(6)

and the reader may check, using (2) and (3), that those determinants are indeed monomials in the Vi’s,
in agreement with (4). We conjecture that, up to a simple normalization factor, Hm;n coincides with
u
pp�2q
pn�1qp�m as defined at Equation (6.31) in Di Francesco (2005), so that Equation (6.30) ibid. amounts to

Corollary 4.
In this paper, we present a simple application of Theorem 3 to the case of Eulerian triangulations,

namely 3-constellations where all the white faces are also triangular. This corresponds to specializing the
generating functions defined above at the values p � 3, x1 � x, xk � 0 for k ¥ 2, where x is a variable
controlling the number of triangles. In this case, the sequence pViqi¥1 is known to satisfy the simple
recurrence

Vi � 1 � xVi pVi�1 � Vi�1q , i ¥ 1, V0 � 0, (7)

see Bouttier et al. (2003b). Clearly, this equation fully determines Vi as a power series in x. In the same
reference, it was observed that the solution of this equation has a remarkably simple form

Vi � V
p1 � yiqp1 � yi�4q

p1 � yi�1qp1 � yi�3q
. (8)

where V and y are power series determined by the equations V � 1 � 2xV 2, y � y�1 � pxV q�1 � 2.
So far, there was no combinatorial explanation for the form of Equation 8. Theorem 3 provides such
an explanation. Let us introduce the Fibonacci polynomials defined as follows (Flajolet and Sedgewick,
2009, eq. (62), p.327)

ϕn�2pzq � ϕn�1pzq � zϕnpzq, ϕ0pzq � 0, ϕ1pzq � 1, (9)

which are reciprocals of Chebyshev polynomials of the second kind, i.e. satisfy the relation

ϕn

�
1

y � y�1 � 2



�

1 � yn

p1 � yqp1 � yqn�1
. (10)

Then, Equation 8 results from the following proposition, which we prove in Section 5.

Proposition 5 Let p � 3, xk � xδk,1 for k ¥ 1 and V �
°8

n�0
p2nq!

n!pn�1q! p2xq
n. For all n ¥ 0, we have

H0;n�1 � V np3n�1q{2ϕ3n�1pxV q

H1;n�1 � V np3n�1q{2ϕ3n�2pxV q

p1 � xV qH2;n�1 � V np3n�3q{2ϕ3n�3pxV q.

(11)



526 Marie Albenque and Jérémie Bouttier

3 p-paths and multicontinued fractions
We consider multivariate generating functions for p-paths with, for all i ¥ 1, a weight Vi per fall starting
from a height i. All results stated in this section will hold with pViqi¥1 a sequence of formal variables
(i.e. its definition of Section 2 in terms of constellations is not needed). Recall that, for n, r ¥ 0, F prq

n is
defined as the generating function of p-paths starting from p�r, rq and ending at pnp, 0q. Let us add an
extra weight t per rise and sum over all lengths, to obtain the generating functions

F prqpt;V1, V2, . . .q :�
¸
n¥0

F prq
n tn. (12)

By elementary recursive decompositions of p-paths, we obtain the recursive equations (see Fig.2)

F prqpt;V1, V2, . . .q �

#
1 � t F pp�1qpt;V1, V2, . . .q if r � 0

Vr F
p0qpt;Vr�1, Vr�2, . . .qF

pr�1qpt;V1, V2, . . .q if r ¥ 1.
(13)

We easily deduce that

F p0qpt;V1, V2, . . .q �
1

1 � t
±p�1

i�1 ViF
p0q
n pt;Vi�1, Vi�2, . . .q

(14)

By iterating this relation, we find that F p0qpt;V1, V2, . . .q is equal to the multicontinued fraction on the
r.h.s. of (1). This shows that Theorem 2 (established in Section 4) implies Theorem 1.

p−1

r

r−1

(b)(a)

Fig. 2: Decomposition of p-paths: for r � 0 we remove the first rise (a), for r ¥ 1 we perform first-passage
decomposition at height r � 1, (b).

We now turn to the proof of Theorem 3, which is an application of the celebrated LGV lemma (Lind-
ström, 1969; Gessel and Viennot, 1989). We consider the weighted acyclic directed planar graph whose
vertices are the pk, lq P Z � N such that k � l � 0 mod p, and whose edges are the rises pk, lq Ñ
pk � 1, l � p � 1q, weighted 1, and the falls pk, lq Ñ pk � 1, l � 1q, weighted Vl. For n P N, let qn and
rn be respectively the quotient and the remainder in the Euclidean division of k by p� 1, and let

An :� p�n� qn, rnq � p�pqn � rn, rnq, Bn :� pnp, 0q. (15)

The generating function for paths from Ai to Bj (i, j ¥ 0) is nothing but F priq
qi�j . Theorem 3 then results

from the LGV lemma and the following proposition, illustrated on Fig.3.

Proposition 6 For m P v0, p � 1w, there is a unique configuration of non-intersecting lattice paths con-
necting the sources Am, Am�1, . . . , Am�n to the sinks B0, B1, . . . , Bn: for i P v0, nw, the source Am�i

is connected to the source Bi via the highest possible path, passing through p�m,m � ipq. The weight
of this configuration is

±n
i�0

±ip�m
j�1 Vj .
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H0;3

B2 B3B1A0 = B0A2

A1A3

B2 B3B1A2

A1A3

A4

H1;3

B0 B2 B3B1A2

A3

A4

H2;3

A5

B0

Fig. 3: The unique configurations of non-intersecting lattice paths contributing respectively to H0;3, H1;3 and H2;3

for p � 3.

The proof is left to the reader. For p � 2 we recover the known combinatorial interpretation of Hankel
determinants, see e.g. Viennot (1998).

4 Constellations, p-paths, and the slice decomposition
In this section, we establish Theorem 2 and related results. Let us start with some definitions and notations.
For n ¥ 1, let Fn (resp. Fn) be the set of rooted (resp. pointed rooted) p-constellations with root degree
np. The generating function of Fn is Fn as defined in Section 2. Similarly, let Vi (i ¥ 1) be the set of
pointed rooted p-constellations whose root edge is of type j Ñ j � 1 with j ¤ i, to which we add a
conventional “empty map” with weight 1. The generating function of Vi is Vi.

A constellated path is a p-path such that, for all i ¥ 1, an element of Vi is associated with each fall from
height i. The weight of a constellated path is the product of the weights of its associated constellations.
We shall consider constellated excursions and bridges, where a p-bridge of length np is a p-path starting
from p0, jq and ending at pnp, jq from some j P N. Theorem 2 then follows from:

Proposition 7 There is a weight-preserving bijection between Fn and the set of constellated excursions
of length np. More generally, there is a weight-preserving bijection between Fn � N and the set of
constellated bridges of length np.

This bijection is a byproduct of the correspondence between constellations and mobiles introduced in
Bouttier et al. (2004). Here we provide a direct construction, the so-called slice decomposition, extending
the one given for p � 2 by Bouttier and Guitter (2011).

We start from a constellation C P Fn, and a ` P N (whose role will be discussed at the very end). The
white root face of C forms a directed cycle which we denote by pv0, v1, . . . , vnp�1, vnp � v0q where, say,
v0 is the endpoint of the root edge (hence vnp�1 is its origin). Let js be the type of vs (recall that the type
of a vertex v is the minimal length of an oriented path from v to the pointed vertex), and let

P :� pp0, j0 � `q, p1, j1 � `q, . . . , pnp, jnp � `qq. (16)

We claim that P is a p-bridge, i.e. js�1� js P t�1, p�1u holds true for all s P v0, np�1w. Indeed, since
pvs, vs�1q is an oriented edge, we have js ¤ js�1�1 by the definition of type. Furthermore, the black face
incident to pvs, vs�1q forms an oriented path of length p � 1 from vs�1 to vs, hence js�1 ¤ js � p � 1.
Finally, since p divides the length of any oriented cycle on f , we have js � js�1 � 1 mod p, which
concludes the proof of our claim. In particular, when C is a rooted constellation that we point at the
endpoint of the root edge, and ` � 0, then P is a p-excursion.
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m+1

m

m+ 3
m+2

m+1

m

m+3m+2

weight = 1

vs

vs+1

ws

gluing

vs

ws

vs+1

weight = Vi

(a)

(b)

(c)

leftmost
minimal path

Fig. 4: The decomposition of a rooted pointed 4-constellation along leftmost minimal path into slices (a). Slices
corresponding to edges of type mÑ m� 3 are reduced to black faces (b). Identifying the two sides of the boundary
of a slice of an edge of type mÑ m� 1 yields to a pointed-rooted constellation (c)

Let us now explain how P is constellated. Assume that the constellation C is embedded in the plane
with the white root face as outer face, and consider, for each s, the leftmost minimal (oriented) path from
vs to the pointed vertex, where minimal refers to the length of the path. This family of paths leads to
a decomposition of C into connected components that we call slices, see Fig.4(a). A slice is associated
with each edge pvs, vs�1q incident to the white root face (thus with each step of P ). More precisely, it is
delimited by pvs, vs�1q and the two paths starting from vs and vs�1 (in general, those two paths merge
before reaching the pointed vertex, and we remove their common part).

Observe that when js�1 � js � p � 1, the slice is reduced to a single black face (as the path starting
from vs�1 passes through vs after circumventing this face) with weight 1, see Fig. 4 (b).

Let us now assume that js�1 � js�1: we claim that the slice corresponds to an element of Vjs�`. Two
cases may occur. If the path starting from vs passes through vs�1, then the slice is empty, and corresponds
to the empty map in Vjs�`. Otherwise, let ws be the vertex where the two paths starting from vs and vs�1

merge. The boundary of the slice is therefore made of two (non-empty) oriented paths from vs to ws that
do not meet except at their extremities. By construction those two paths have the same length: we may
identify pairwise their edges, see Fig.4(c). This identification preserve the degrees of the white faces,
hence the weights, and the orientations guarantee that the resulting map is a constellation Cs, which we
root at pvs, vs�1q and point at ws. By construction, the identified paths form in Cs the leftmost minimal
path starting with the root edge and ending at the pointed vertex. Thus, in Cs the root edge is of type
j1s Ñ j1s � 1, with j1s ¤ js ¤ js � `, so that Cs P Vjs�` as claimed. Note that since the pointed vertex of
C is incident to at least one white face, there is at least one s such that j1s � js i.e. Cs P VjszVjs�1. This
remark allows to characterize ` as the largest integer such that P � p0, `q is still a constellated bridge.

In conclusion, the slice decomposition yields a constellated bridge. By following the steps in reverse
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order, it is clear how to reconstruct a pointed rooted constellation from a constellated bridge. By the
above remark we also recover the integer ` and we may check that the correspondence is one-to-one (note
that constellated bridges differing by a height shift yield the same constellation, but different values of `).
Thereby we prove Proposition 7 and Theorem 2. Let us now mention other byproducts of our construction.

Proposition 8 For all n ¥ 0 and r P v0, p�1w, F prq
n is the generating function of rooted p-constellations

with root degree pn � 1qp such that, if we denote by pv0, v1, . . . , vpn�1qp � v0q the directed cycle
corresponding to the white root face (v0 being the endpoint of the root edge), then all the vertices
v1, v2, . . . , vp�1�r are bivalent.

Proof: Apply the slice decomposition with v0 as pointed vertex and ` � 0. The leftmost minimal path
from v1 to v0 visits successively v2, . . . , vp�r, so that the constellated bridge starts with one rise followed
by p�1�r falls corresponding to empty slices. Removing those p�r trivial steps, we obtain a constellated
path with np� r steps going from height r to height 0. l

Proposition 9 (Bouttier et al. (2004); Di Francesco (2005)) Let F pi�1;iq
n be the generating function for

constellated paths from p0, i� 1q to pnp� 1, iq. We have:

Vi � 1 � Vi

8̧

n�1

xnF
pi�1;iq
n (17)

Proof: Apply the slice decomposition to a (non-empty) map in Vi. Taking ` � i� j, where j Ñ j � 1 is
the type of the root edge, we obtain a constellated bridge of arbitrary length, starting at height i � 1 and
ending with a fall from height i, thus the factor Vi. The weight xn accounts for the white root face. l

Note the recursive nature of (17): F pi�1;iq
n is a polynomial in the Vj’s such that |j � i|   pp� 1qn. In

particular, for iÑ8, Vi converges (in a suitable topology) to V the generating function of V �
�

i¥1 Vi,
and F pi�1;iq

n Ñ
�
np�1

n

�
V npp�1q�1. Hence V satisfies the recursive equation

V � 1 �
8̧

k�1

�
np� 1

n



xnV

npp�1q. (18)

By the Lagrange inversion formula, we may obtain an explicit expression for the coefficients of V
(Bouttier, 2005, p.131), and recover the number of rooted constellations with a prescribed degree distri-
bution (Bousquet-Mélou and Schaeffer, 2000, Theorem 2.3). By extending the construction in (Bouttier
and Guitter, 2011, Section 3.3), we may express the generating function Fn in terms of V as follows.

Proposition 10 For n ¥ 0, and V the solution of (18), we have

Fn �
1

np� 1

�
np� 1

n



V npp�1q�1 �

¸
k¥1

�¸
j�0

jp� 1

np� 1

�
np� 1

n� j


�
kp� 1

k � j


�
xkV

pk�nqpp�1q. (19)

It would be interesting to have a similar formula for all F prq
n . We could then apply Theorem 3 and

Corollary 4 and deduce a general expression for Vi. We may express F prq
n in terms of Fn using a Tutte-

like decomposition (Bousquet-Mélou and Jehanne, 2006, Section 5.3), for instance for p � 3 and r � 1
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we have

F p1q
n �

¸
l¥1

xlFn�l �
ņ

i�0

FiFn�i. (20)

Applying Proposition 10 yields in principle to an expression of F prq
n in terms of V . In practice it seems to

quickly become intractable, except in the case of Eulerian triangulations on which we focus next.

5 Application to Eulerian triangulations
We now specialize our formulas to the case of Eulerian triangulations, i.e. p � 3 and xk � xδk,1. Note
first that (17) reduces to (7), while (18) yields the simple equation V � 1 � 2xV 2, hence V is as in
Proposition 5. Furthermore, (19) and (20) become respectively:

Fn �
�
pp0qn � p1 � 2xV q � p

p3q
n�1 � pxV q

	
V 2n�1, F p1q

n � xFn�1 �
ņ

i�0

FiFn�i, (21)

where we introduce the shorthand notation pprqn :� r�1
3n�r�1

�
3n�r�1

n

�
, the number of 3-paths from p�r, rq

to p0, 3nq. By the relation pp1qn � p
p0q
n � p

p3q
n�1 (whose path interpretation is obvious), we may rewrite

Fn �
�
pp0qn � p1 � xV q � pp1qn � pxV q

	
V 2n�1. (22)

Using this relation in the expression (21) for F p1q
n , and using some summation formulas for the pprqn ’s

(following from several classical path decompositions), we arrive at

F p1q
n �

�
pp1qn � p1 � xV q2 � p

p0q
n�1 � pxV q

	
V 2n�2. (23)

We are now ready to substitute these formulas into the determinants Hn;m (m � 0, 1, 2) so as to prove
Proposition 5. We will once again use the LGV lemma, to give another non-intersecting lattice path
interpretation (NILP) of the Hn;m’s. Let us consider the same acyclic directed planar graph introduced in
Section 3 for p � 3 (i.e. the graph on which the 3-paths live), but now with a uniform weight 1 on every
edge (rise or fall). Let An and Bn be as in (15), namely An � p�t3n{2u, rnq and Bn � p3n, 0q, and let
us extend the graph by adding the vertices A1n :� p�p3n� 1q{2,�1q, for n ¥ 0 and the special edges#

e2n :� A12n Ñ A2n weighted 1�xV

ē2n :� A12n Ñ A2n�1 weighted �xV

#
e2n�1 :� A12n�1 Ñ A2n�1 weighted p1�xV q2

ē2n�1 :� A12n�1 Ñ A2n�2 weighted �xV
.

(24)
We readily see that the resulting graph is planar and, up to a factor V 2pi�jq�1 (resp. V 2pi�j�1q), that the
generating function for paths from A12i (resp. A12i�1) to Bj (i, j ¥ 0) is nothing but Fi�j (resp. F p1q

i�j).
We may get rid of those extra factors by defining

T3k�1 :�
H0;k�1

V kp3k�1q{2
, T3k�2 :�

H1;k�1

V kp3k�1q{2
, T3k�3 :�

H2;k�1p1 � xV q

V kp3k�3q{2
. (25)

and it follows from the LGV lemma that T3k�1 (resp. T3k�2 and T3k�3{p1 � xV q) is the generating
function of NILP configurations from the sources A10, . . . , A

1
k�1 (resp. A11, . . . , A

1
k and A12, . . . , A

1
k�1) to
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B0 B1 B2 B3

A0A1A2A3

The step before
(0, 3k) is a fall.

(a) If the last step before p0, 3kq
is a rise, the upper-most path is
deleted.

B0 B1 B2 B3

A0A1A2A3

B0 B1 B2

A1A2A3

B0 B1 B2

A1A2A3
ē3, (−xV )

e3, (1−xV )2

The step before
(0, 3k) is a rise.

(b) If the last step before p0, 3kq is a fall, for each path, we replace the steps after
the vertex p�1, 3i� 1q by 3i� 1 falls

Fig. 5: The decomposition of a configuration of H0;4 into a configuration of H0;3 (see (a)) or of H1;3 (see (b)).

the sinks B0, . . . , Bk�1. By convention, empty configurations (for n � 0) receive the weight 1 so that
T1 � T2 � 1 and T3 � 1 � xV . We claim that the Tn’s satisfy the recurrence relation

Tn�3 � p1 � xV qTn�1 � xV Tn (26)

and this is sufficient to prove that Tn � ϕnpxV q, since the Fibonacci polynomials with z � xV satisfy
the same recurrence and initial conditions, by (9). We prove (26) via a case-by-case analysis, depending
on the residue of n modulo 3. Here we only check the case n � 3k � 1, and leave the others cases to
the reader (beware the extra 1 � xV factor in T3k�3). Consider a NILP configuration from A10, . . . , A

1
k

to B0, . . . , Bk, as counted by T3k�4. We first easily see that, for all i, the path i (from A1i to Bi) visits
p0, 3iq, and all the steps afterward are falls. We now distinguish whether the step before p0, 3kq on the
uppermost path is a rise or a fall.
• If it is a fall, then all the preceding steps are rises, so that the path visits Ak�1 and passes through

the special edge ēk, thus has weight �xV . All the remaining paths form an unconstrained NILP
configuration from the sources A10, . . . , A

1
k�1 to the sinks B0, . . . , Bk�1, with generating function

T3k�1. The global contribution of this case is �xV T3k�1 (see Fig.5(a)).
• If it is a rise, i.e. the uppermost path visits p�1, 3k � 1q, then, by non-intersection, the path i must

visit p�1, 3i � 1q for all i ¥ 1, and the path 0 is reduced to the special edge e0, thus has weight
1 � xV . Remove the path 0, and for each path i ¥ 1, replace its steps after the vertex p�1, 3i� 1q
by 3i � 1 falls (see Fig.5): the resulting configuration is a NILP configuration from the sources
A11, . . . , A

1
k to the sinks B0, . . . , Bk�1, with generating function T3k�2. Since the correspondence

is one-to-one, the global contribution of this case is �xV T3k�2 (see Fig.5(b)).

This shows that (26) holds with n � 3k � 1. Together with the cases n � 3k � 2 and n � 3k � 3, this
concludes the proof of Proposition 5.
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